
DEVELOPMENT
GUIDE

confidential ©
This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged
without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut
être communiqué ou divulgué à des tiers sans son autorisation préalable.

DEVELOPMENT
GUIDE
Version: 003
Date: April, 05th 2002
Reference: WM_SW_OAT_UGD_002

Contents

1 Introduction 1
1.1 Purpose 1
1.2 References 1
1.3 Glossary 1
1.4 Abbreviations 2

2 DESCRIPTION 3
2.1 Software Architecture 3

2.1.1 Software Organization 3
2.1.2 Software Supplied by Wavecom 4

2.2 Minimum Embedded Application Code 5
2.3 Specificity of AT Commands in the Open AT Architecture 6

2.3.1 AT Command Size 6
2.3.2 AT+WDWL Command 6
2.3.3 AT+WOPEN Command 6

2.4 Notes on Memory Management 7
2.5 Known Limitations 7

2.5.1 Command Pre-Parsing Limitation 7
2.5.2 Missing Unsolicited Messages in Remote Application 7

2.6 Security 8
2.6.1 Software Security 8

2.6.1.1 RAM Access Protection
2.6.1.2 Watchdog Protection

2.6.2 Hardware Security 9

3 API 10
3.1 Data Types 10
3.2 Mandatory Functions 10

3.2.1 Stack Initialization 10
3.2.2 The wm_apmAppliInit Function 10

3.2.2.1 Parameter
3.2.2.2 Required Header
3.2.2.3 Return Value

3.2.3 The wm_apmAppliParser Function 11
3.2.3.1 Parameter
3.2.3.2 Return Values
3.2.3.3 Required Header
3.2.3.4 Notes

3.3 AT Command API 17
3.3.1 The wm_atSendCommand Function 17

3.3.1.1 Parameters
3.3.1.2 Required Header
3.3.1.3 Notes
3.3.1.4 Example: Sending AT Commands and Receiving the Corresponding Responses

3.3.2 The wm_atUnsolicitedSubscription Function 19
3.3.2.1 Parameter
3.3.2.2 Required Header
3.3.2.3 Note
3.3.2.4 Example: Receiving Unsolicited AT Responses

3.3.3 The wm_atIntermediateSubscription Function 21
3.3.3.1 Parameter
3.3.3.2 Required Header
3.3.3.3 Note
3.3.3.4 Example: Receiving Intermediate AT Responses

3.3.4 The wm_atCmdPreParserSubscribe Function 23
3.3.4.1 Parameter
3.3.4.2 Required Header
3.3.4.3 Notes
3.3.4.4 Example: Filtering or Spying AT Commands Sent by an External Application

3.3.5 The wm_atRspPreParserSubscribe Function 25
3.3.5.1 Parameter
3.3.5.2 Required Header
3.3.5.3 Notes
3.3.5.4 Example: Filtering or Spying AT Responses Sent to the External Application

3.3.6 The wm_atSendRspExternalApp Function 27
3.3.6.1 Parameters
3.3.6.2 Required Header
3.3.6.3 Notes

3.3.7 The wm_atSendUnsolicitedExternalApp Function 27
3.3.7.1 Parameters
3.3.7.2 Required Header
3.3.7.3 Notes

3.3.8 The wm_atSendIntermediateExternalApp Function 28
3.3.8.1 Parameters
3.3.8.2 Required Header
3.3.8.3 Notes

3.4 OS API 29
3.4.1 The wm_osStartTimer Function 29

3.4.1.1 Parameters
3.4.1.2 Return Values
3.4.1.3 Required Header
3.4.1.4 Note
3.4.1.5 Example: Managing a Timer

3.4.2 The wm_osStopTimer Function 30
3.4.2.1 Parameter
3.4.2.2 Return Values
3.4.2.3 Required Header

3.4.3 The wm_osDebugTrace Function 31
3.4.3.1 Parameters
3.4.3.2 Required Header
3.4.3.3 Returned values
3.4.3.4 Example: Inserting Debug Information

3.4.4 The wm_osDebugFatalError Function 32
3.4.4.1 Parameters
3.4.4.2 Required Header
3.4.4.3 Returned Value
3.4.4.4 Note

3.4.5 Important Note on Data Flash Management 32
3.4.6 The wm_osWriteFlashData Function 33

3.4.6.1 Parameters
3.4.6.2 Return Values
3.4.6.3 Required Header

3.4.7 The wm_osReadFlashData Function 33
3.4.7.1 Parameters
3.4.7.2 Return Values
3.4.7.3 Required Header

3.4.8 The wm_osGetLenFlashData Function 34
3.4.8.1 Parameter
3.4.8.2 Return Values
3.4.8.3 Required Header

3.4.9 The wm_osDeleteFlashData Function 34
3.4.9.1 Parameter
3.4.9.2 Return Values
3.4.9.3 Required Header

3.4.10 The wm_osGetAllocatedMemoryFlashData Function 34
3.4.10.1 Return Values
3.4.10.2 Required Header

3.4.11 The wm_osGetFreeMemoryFlashData Function 35
3.4.11.1 Return values***
3.4.11.2 Required Header

3.4.12 The wm_osDeleteAllFlashData Function 35
3.4.12.1 Return values
3.4.12.2 Required Header

3.4.13 Example: Managing Data Flash Objects 35
3.4.14 The wm_osGetHeapMemory Function 36

3.4.14.1 Parameter
3.4.14.2 Return Values
3.4.14.3 Required Header

3.4.15 The wm_osReleaseHeapMemory Function 36
3.4.15.1 Parameter
3.4.15.2 Return Values
3.4.15.3 Required Header

3.4.16 Example: RAM management 36
3.5 Flow Control Manager API 37

3.5.1 The wm_fcmOpenDataAndV24 Function 38
3.5.1.1 Parameters
3.5.1.2 Required Header
3.5.1.3 Return value
3.5.1.4 Notes

3.5.2 The wm_fcmCloseDataAndV24 Function 39
3.5.2.1 Required Header
3.5.2.2 Return Value
3.5.2.3 Notes

3.5.3 The wm_fcmSubmitData Function 39
3.5.3.1 Parameters
3.5.3.2 Returned Values
3.5.3.3 Required Header
3.5.3.4 Notes

3.5.4 Receive Data Blocks 41
3.5.4.1 Message Parameters
3.5.4.2 Required Header
3.5.4.3 Notes

3.5.5 The wm_fcmCreditToRelease Function 42
3.5.5.1 Parameters
3.5.5.2 Returned Values
3.5.5.3 Required Header

3.6 Input Output API 43
3.6.1 Serial Link State functions 43

3.6.1.1 The wm_ioSerialSwitchState Function
3.6.2 Gpio types and functions 44

3.6.2.1 Types
3.6.2.2 The wm_ioAllocate Function
3.6.2.3 The wm_ioRelease Function
3.6.2.4 The wm_ioSetDirection Function
3.6.2.5 The wm_ioRead Function
3.6.2.6 The wm_ioSingleRead Function
3.6.2.7 The wm_ioWrite Function
3.6.2.8 The wm_ioSingleWrite Function

3.7 Bus API 52
3.7.1 Returned values definition 52
3.7.2 The wm_busOpen Function 52

3.7.2.1 Parameters
3.7.2.2 Returned Values
3.7.2.3 Required Header

3.7.2.4 Notes
3.7.3 The wm_busClose Function 54

3.7.3.1 Parameters
3.7.3.2 Returned Values
3.7.3.3 Required Header
3.7.3.4 Notes

3.7.4 The wm_busWrite Function 54
3.7.4.1 Parameters
3.7.4.2 Returned Values
3.7.4.3 Required Header

3.7.5 The wm_busRead Function 55
3.7.5.1 Parameters
3.7.5.2 Returned Values
3.7.5.3 Required Header

3.8 Standard Library 57

4 FUNCTIONING 58
4.1 Standalone External Application 58
4.2 Embedded Application in Standalone Mode 59
4.3 Cooperative Mode 61

4.3.1 Command Pre-Parsing Subscription Mechanism:
WM_AT_CMD_PRE_EMBEDDED_TREATMENT 62

4.3.2 Command Pre-Parsing Subscription Process:
WM_AT_CMD_PRE_BROADCAST 65

4.3.3 Response Pre-Parsing Subscription Process:
WM_AT_RSP_PRE_EMBEDDED_TREATMENT 68

4.3.4 Response Pre-Parsing Subscription Process:
WM_AT_RSP_PRE_BROADCAST 71

4.3.5 Example: Embedded Application Using the Different Functioning Modes 74

LIST OF FIGURES
Figure 1: General Software Architecture 3
Figure 2: Flow Control Function 37
Figure 3: Standalone External Application Function 58
Figure 4: Embedded Application in Standalone Mode Function 59
Figure 5: WM_AT_CMD_PRE_EMBEDDED_TREATMENT 62
Figure 6: WM_AT_CMD_PRE_BROADCAST 65
Figure 7: WM_AT_RSP_PRE_EMBEDDED_TREATMENT 68
Figure 8: WM_AT_RSP_PRE_BROADCAST 71

WAVECOM, WISMO are trademarks or registered trademarks of Wavecom S.A. All other company and/or product names
mentioned may be trademarks or registered trademarks of their respective owners.

1

1 Introduction

1.1 Purpose
This User’s Guide describes the Open AT facility and provides guidelines for developing an
Embedded Application.

1.2 References
I. Tools Manual
II. AT Command Interface Guide

1.3 Glossary
Application Mandatory API..Mandatory software interfaces to be used by the Embedded

Application.
AT commandsSet of standard modem commands.
AT functionSoftware that processes the AT commands and AT

subscriptions.
Embedded API layer..............Software developed by Wavecom, containing the Open AT APIs

(Application Mandatory API, AT Command Embedded API, OS
API, Standard API, FCM API, IO API, and BUS API).

Embedded ApplicationUser application sources to be compiled and run on a Wavecom
product.

Embedded Core softwareSoftware that includes the Embedded Application and the
Wavecom library.

Embedded software..............User application binary: set of Embedded Application sources
+ Wavecom library.

External Application..............Application external to the Wavecom product that sends AT
commands through the serial link.

TargetOpen AT compatible product supporting an Embedded
Application.

Target Monitoring Tool.........Set of utilities used to monitor a Wavecom product.
Receive command.................Process for intercepting AT responses.
pre-parsing

Send commandProcess for intercepting AT commands.
pre-parsing

Standard APIStandard set of “C” functions.
Wavecom libraryLibrary delivered by Wavecom to interface Embedded

Application sources with Wavecom Core Software functions.
Wavecom Core SoftwareSet of GSM and open functions supplied to the User.

2

1.4 Abbreviations

API ...Application Programming Interface
CPU..Central Processing Unit
IR..Infrared
KB ..Kilobyte
OS ..Operating System
PDU ...Protocol Data Unit
RAM...Random-Access Memory
ROM ..Read-Only Memory
RTK ..Real-Time Kernel
SMA...SMall Adapter
SMS...Short Message Services
SDK..Software Development Kit

3

2 DESCRIPTION

2.1 Software Architecture

2.1.1 Software Organization

The Open AT facility is a software mechanism. It relies on the following software
architecture:

Figure 1: General Software Architecture

4

The different software elements on a Wavecom product are described here-below.
The Embedded Core Software (binary file) includes the following items:

❑ the Embedded Application: application to be developed and downloaded into the
Wavecom Target product. The Embedded Application must be linked to the
Wavecom library.

❑ the Wavecom library: software library provided by Wavecom (included in the
Open AT SDK) and based on the Embedded API layer.

❑ the Embedded API Layer (developed by Wavecom), which includes:
• the Application Mandatory API: mandatory software interfaces to be used by

the Embedded Application,
• the AT Command API: software interfaces providing access to the set of AT

functions,
• the OS API: software interfaces providing access to the Operating System

functions,
• the FCM API: software interfaces providing access to the Flow Control

Manager functions (secure access to V24 and Data IO flows),
• the IO API: software interfaces providing control on the serial link mode, and

on the Gpio devices.
• the BUS API: software interfaces providing control on bus devices (as SPI

or I2C bus).
• the Standard API: standard set of “C” functions.

❑ The Wavecom Core Software (another binary file), manages the GSM protocol.

2.1.2 Software Supplied by Wavecom

The software items supplied are as follows:
❑ one software library, wmopenat.lib,
❑ one set of header files (.h), defining the Open AT API functions,
❑ source code samples,
❑ a set of tools called Development ToolKit, for designing and testing any

application (see document [Ref I]).

5

2.2 Minimum Embedded Application Code
The following code must be included in any Embedded Application:

wm_apmCustomStack and wm_apmCustomStackSize are two mandatory variables, used
to define the application call stack size (see § 3.2.1: “Stack Initialization”).
wm_apmAppliInit() is a mandatory function; this is the first function called at the
embedded application initialization (see § 3.2.2: “The wm_apmAppliInit”).
wm_apmAppliParser() is a mandatory function; it is called each time the embedded
application receives a message from the Wavecom Core Software (see § 3.2.3: “The
wm_apmAppliParser”).

char wm_apmCustomStack[1024];
/* the value 1024 is an example */
const u16 wm_apmCustomStackSize = sizeof (wm_apmCustomStack];

s32 wm_apmAppliInit (wm_apmInitType_e InitType)
{

return OK;
}
s32 wm_apmAppliParser (wm_apmMsg_t * Message)
{

return OK;
}

6

2.3 Specificity of AT Commands in the Open AT Architecture
See document [Ref II].

2.3.1 AT Command Size

The maximum size of an AT command string or a Response string that can be sent
through the serial link is 512 bytes. Therefore, if the Embedded Application needs to send
more data, it must be sent in several increments.

2.3.2 AT+WDWL Command

The AT+WDWL command, used to download an application, is not pre-parsed.
Therefore, even if the Embedded Application has subscribed to the command pre-parsing
mechanism, this command is processed by means of the Wavecom software and it is not
sent back to this application.
Note: the AT+WDWL command is described in the document [Ref II].

2.3.3 AT+WOPEN Command

Open AT require some specific AT commands such as AT+WOPEN.
The latter is described below.
This command is always available for an External Application. It is not pre-parsed and it is
treated even if the AT software is busy.
This command deactivates an Embedded Application in order to ensure that a new
application can be downloaded. Typically, if an Embedded Application continuously sends
AT commands, the Wavecom AT command software is always busy. Therefore, if the
AT+WDWL command is sent by an External Application, it is not processed.
AT+WOPEN can take the values 0 (= Stop) and 1 (=Start):

❑ Sending the AT+WOPEN=0 command first, by means of an External Application,
deactivates the Embedded Application: a new Embedded Application may then
be downloaded.

❑ If the Embedded Application is deactivated, it can be restarted using
AT+WOPEN=1. The module then reboots and this application is restarted 20 sec
after the module boot.

Note: Refer to the document [Ref II] for an overview of the complete set of AT commands.

7

2.4 Notes on Memory Management
The Embedded software runs within an RTK task: the user must define the size of the
customer application call stack.
The Wavecom Core Software and the Embedded application manage their own RAM area.
Any access from one of these programs to the other’s RAM area is prohibited and causes a
reboot.
In case an Embedded Application uses more than the maximum allocated RAM in global
variables, or uses more than the maximum allocated ROM, then the behavior of the
Embedded software becomes erratic.
Global variables, call stack and dynamic memory are all part of the RAM allocated to the
embedded application.
The application can use up to 32 KB of RAM, and 384 KB of ROM.

2.5 Known Limitations

2.5.1 Command Pre-Parsing Limitation

In normal operating mode, the target serial link manager checks to see whether every
command starts with “AT” and ends with a carriage return + with a char string end.
Therefore, the only commands to be dispatched to the Embedded Application (in case of
command pre-parsing subscription) are the ones complying with the here-above
description.

2.5.2 Missing Unsolicited Messages in Remote Application

In Remote Application Execution mode, the application is started a few seconds after the
Target. Therefore, some unsolicited events might be lost.
A pre-processor flag like __REMOTETASKS__ can be used to add some specific code for
remote mode.

8

2.6 Security

2.6.1 Software Security

Two software safeguards are used in the Open AT platform: RAM access protection and
watchdog protection.
After reboot, the “wm_apmAppliInit ()” function will have the parameter set to
WM_APM_REBOOT_FROM_EXCEPTION.
After reboot, the application is started only 20 seconds after the start of the Wavecom core
software. This allows at least 20 seconds to re-download a new application.

2.6.1.1 RAM Access Protection
A specific RAM area is allocated to the Embedded Application.
The Embedded Application is seen as a Real-Time Task in the Wavecom software, and
each time this task runs, the Wavecom RAM protection is activated.
If the Embedded Application tries to access this RAM, then an exception occurs and the
software reboots.
In case of illegal RAM access, the Target Monitoring Tool screen displays:
”ARM exception 1 xxx”, where “xxx” is the address the application was attempting to access.
If the symbol file is correctly configured in the Target Monitoring Tool (see document [Ref
I]), then a Back Trace must describe the affected C functions in which the crash occurred.

2.6.1.2 Watchdog Protection
The Wavecom Core software is protected from reaching a dead-end lock by a 5-second
watchdog.
To ensure that the embedded application is not the cause of the crash, there is a specific
4.5-second watchdog of the embedded application, so an embedded application crash can
be detected.
In case of a crash, the software reboots.
If an embedded application crash is detected, the Target Monitoring Tool screen displays:
”Customer watchdog”.

9

2.6.2 Hardware Security

Protection can also be improved using an external watchdog reset circuitry.
With such a hardware watchdog protection, the Wavecom product will always be reset
even in case of the software crashes.
To achieve this, one can use a GPO connected to a specific hardware counter that will reset
the product if not refreshed.
For example, this specific hardware can be a counter with a specific counter output
connected to the reset pin of the module, and the counter reset pin connected to a GPO.
In this way, the software in the module is supposed to reset the counter periodically. If not,
the counter will increase until it reaches the specified limit and then resets the module.

10

3 API

3.1 Data Types
The available data types are described in the wm_types.h file. They ensure compatibility
with the data types used in the functional prototypes and are used for both Target and
Visual C++ generation.

3.2 Mandatory Functions

The API described below includes a set of functions the Embedded software must supply
and some mandatory variables the Embedded software must set.
This API is located in the wm_apm.h file.

3.2.1 Stack Initialization

The following mandatory variables are used to define the stack size:

These data represent the amount of memory needed by the customer call stack.

3.2.2 The wm_apmAppliInit Function

wm_apmAppliInit function is called just once during initialization.
Its prototype is:

3.2.2.1 Parameter

InitType:
Works out the item that triggered the initialization. The corresponding values are:

typedef enum

{
WM_APM_POWER_ON,
WM_APM_REBOOT_FROM_EXCEPTION

} wm_apmInitType_e;
WM_APM_POWER_ON means that normal Power On has occurred.
WM_APM_REBOOT_FROM_EXCEPTION means the module has restarted after an
exception.
The following events may cause an exception:

❑ a call to the wm_osDebugFatalError() function,
❑ unauthorized RAM access,
❑ a customer task watchdog.

s32 wm_apmAppliInit (wm_apmInitType_e InitType);

char wm_apmCustomStack[1024]; /* the value 1024 is an example */
const u16 wm_apmCustomStackSize = sizeof(wm_apmCustomStack);

11

3.2.2.2 Required Header
Wm_apm.h

3.2.2.3 Return Value

The returned value is not relevant

3.2.3 The wm_apmAppliParser Function

This function is called whenever a message is received from the Wavecom Core Software.
Its prototype is:

s32 wm_apmAppliParser (wm_apmMsg_t * Message);

3.2.3.1 Parameter

Message:
The Message structure depends on its type:

typedef struct

{
s16 MsgTyp; /* Type of the received message:

works out the associated structure of
the message body part*/

wm_apmBody_t Body; /* Specific message body */

} wm_apmMsg_t;

MsgTyp may have the following values:
❑ WM_AT_RESPONSE means the message includes an AT command response sent

by the Embedded Application.
❑ WM_AT_UNSOLICITED means the message includes an unsolicited AT response.
❑ WM_AT_INTERMEDIATE means the message includes an intermediate AT

response.
❑ WM_AT_CMD_PRE_PARSER means the message includes an AT command sent

by the External Application.
❑ WM_AT_RSP_PRE_PARSER means the message includes a response processed

by a Wavecom Core Software AT function.
❑ WM_OS_TIMER means the message is sent when the timer expires.
❑ WM_OS_RELEASE_MEMORY means the message includes the address of a

released pointer.
❑ WM_FCM_RECEIVE_BLOCK means the message includes data received by the

embedded application.
❑ WM_FCM_OPEN_FLOW means the requested flow opening operation is

successful.
❑ WM_FCM_CLOSE_FLOW means the requested flow closing operation is

successful.
❑ WM_FCM_RESUME_DATA_FLOW means the embedded application may resume

its data sending operations.
❑ WM_IO_SERIAL_SWITCH_STATE_RSP includes the response to the serial link

mode switching request.

12

The body structure is given below:
typedef union

{

/* Includes herein the different specific structures associated to MsgTyp */

/* WM_AT_RESPONSE */
wm_atResponse_t ATResponse;

/* WM_AT_UNSOLICITED */
wm_atUnsolicited_t ATUnsolicited;

/* WM_AT_INTERMEDIATE */
wm_atIntermediate_t ATIntermediate;

/* WM_AT_CMD_PRE_PARSER */
wm_atCmdPreParser_t ATCmdPreParser;

/* WM_AT_RSP_PRE_PARSER */
wm_atRspPreParser_t ATRspPreParser

/* WM_OS_TIMER */
wm_osTimer_t OSTimer;

/* WM_OS_RELEASE_MEMORY */
wm_osRelease_t OSRelease;

/* WM_FCM_RECEIVE_BLOCK */
wm_fcmReceiveBlock_t FCMReceiveBlock;

/* WM_FCM_OPEN_FLOW */
wm_fcmOpenFlow_t FCMOpenFLow

/* WM_FCM_CLOSE_FLOW */
wm_fcmFlow_e FCMCloseFlow

/* WM_FCM_RESUME_DATA_FLOW */
wm_fcmFlow_e FCMResumeFlow

/* WM_IO_SERIAL_SWITCH_STATE_RSP */
wm_ioSerialSwitchStateRsp_t
IOSerialSwitchStateRsp

} wm_apmBody_t;

13

The sub-structures of the message body are listed below:

Body for WM_AT_RESPONSE:
typedef struct {

wm_atSendRspType_e Type;
u16 StrLength; /* Length of StrData[] */
ascii StrData[1]; /* AT response */

} wm_atResponse_t;

typedef enum {

WM_AT_SEND_RSP_TO_EMBEDDED,
WM_AT_SEND_RSP_TO_EXTERNAL,
WM_AT_SEND_RSP_BROADCAST

} wm_atSendRspType_e;
(See § 3.3.1: “The wm_atSendCommand” for wm_atSendRspType_e description).

Body for WM_AT_UNSOLICITED:
typedef struct {

wm_atUnsolicited_e Type;
u16 StrLength;
ascii StrData[1];

} wm_atUnsolicited_t;

typedef enum {
WM_AT_UNSOLICITED_TO_EXTERNAL,
WM_AT_UNSOLICITED_TO_EMBEDDED,
WM_AT_UNSOLICITED_BROADCAST

} wm_atUnsolicited_e;
(See § 3.3.2: “The wm_atUnsolicitedSubscription ” for wm_atUnsolicited_e description).

Body for WM_AT_INTERMEDIATE:
typedef struct {

wm_atIntermediate_e Type;
u16 StrLength;
ascii StrData[1];

} wm_atIntermediate_t;

typedef enum {
WM_AT_INTERMEDIATE_TO_EXTERNAL,
WM_AT_INTERMEDIATE_TO_EMBEDDED,
WM_AT_INTERMEDIATE_BROADCAST

} wm_atIntermediate_e;
(See § 3.3.3: “The wm_atIntermediateSubscription” for wm_atIntermediate_e description).

14

Body for WM_AT_CMD_PRE_PARSER:
typedef struct {

wm_atCmdPreSubscribe_e Type;
u16 StrLength;
ascii StrData[1];

} wm_atCmdPreParser_t;

typedef enum {
WM_AT_CMD_PRE_WAVECOM_TREATMENT, /* Default value */
WM_AT_CMD_PRE_EMBEDDED_TREATMENT,
WM_AT_CMD_PRE_BROADCAST

} wm_atCmdPreSubscribe_e;
(See § 3.3.4: “The wm_atCmdPreParserSubscribe” for wm_atCmdPreSubscribe_e description).

Body for WM_AT_RSP_PRE_PARSER:
typedef struct {

wm_atRspPreSubscribe_e Type;
u16 StrLength;
ascii StrData[1];

} wm_atRspPreParser_t;

typedef enum {
WM_AT_RSP_PRE_WAVECOM_TREATMENT, /* Default value */
WM_AT_RSP_PRE_EMBEDDED_TREATMENT,
WM_AT_RSP_PRE_BROADCAST

} wm_atRspPreSubscribe_e;
(See § 3.3.5: “wm_atRspPreParserSubscribe” for wm_atRspPreSubscribe_e description).

Body for WM_OS_TIMER:
typedef struct {

u8 Ident; /* Timer identifier */

} wm_osTimer_t;
(See § 3.4.1: “The wm_osStartTimer” for timer identifier description).

Body for WM_OS_RELEASE_MEMORY:
typedef struct {

void *pMemoryBlock;

} wm_osRelease_t;
(See § 3.5.3: “The wm_fcmSubmitData” for this message description).

15

Body for WM_FCM_RECEIVE_BLOCK:
typedef struct {

u16 DataLength; /* number of bytes received */
u8 Reserved1[2];
wm_fcmFlow_e FlowId; /* IO flow ID */
u8 Reserved2[7];
u8 Data[1]; /* data received */

} wm_fcmReceiveBlock_t;

typedef enum {
WM_FCM_DATA,
WM_FCM_V24

} wm_fcmFlow_e;
(See § 3.5.4: “Receive Data Blocks” for wm_fcmReceiveBlock_t description).

Body for WM_FCM_OPEN_FLOW:
typedef struct {

wm_fcmFlow_e FlowId; /* opened IO flow ID */
u16 DataMaxToSend; /* max length of sent data */

} wm_fcmOpenFlow_t;

typedef enum {
WM_FCM_DATA,
WM_FCM_V24

} wm_fcmFlow_e;
(See § 3.5.1: “The wm_fcmOpenDataAndV24” for wm_fcmOpenFlow_t description).

Body for WM_FCM_CLOSE_FLOW:
typedef enum {

WM_FCM_DATA,
WM_FCM_V24

} wm_fcmFlow_e;
(See § 3.5.2: “The wm_fcmCloseDataAndV24” for wm_fcmFlow_e description).

Body for WM_FCM_RESUME_DATA_FLOW:
typedef enum {

WM_FCM_DATA,
WM_FCM_V24

} wm_fcmFlow_e;
(See § 3.5.3: “The wm_fcmSubmitData” for wm_fcmFlow_e description).

Body for WM_IO_SERIAL_SWITCH_STATE_RSP:
typedef struct {

wm_ioSerialSwitchState_e SerialMode; /* mode requested */
s8 RequestReturn; /* <0 means error */

} wm_ioSerialSwitchStateRsp_t;
(See § 3.6.1.1: “The wm_ioSerialSwitchState Fonction” for wm_ioSerialSwitchStateRsp_t
description).

16

3.2.3.2 Return Values
The return parameter indicates whether the message has been taken into account (OK : 0)
or not (ERROR : -1).

3.2.3.3 Required Header
Wm_apm.h

3.2.3.4 Notes
❑ any StrData[] or Data[] parameter present in the body sub-structure is

automatically released at the end of the function.
❑ any StrData[] data is terminated by a 0x00 character and any associated

StrLength includes the 0x00 character.

17

3.3 AT Command API

3.3.1 The wm_atSendCommand Function

The wm_atSendCommand function sends AT commands.
Its prototype is:

void wm_atSendCommand

(u16 AtStringSize,
wm_atSendRspType_e ResponseType,
ascii *AtString);

3.3.1.1 Parameters

AtString:
Any AT command string in ASCII character (terminated by a 0x00). Many strings can be
sent at the same time, depending on the type of AT command.

AtStringSize:
Size of the previous parameter, AtString. It equals the length + 1 and includes the 0x00
character.

ResponseType:
Indicates which application receives the AT responses. The corresponding values are:

typedef enum {
WM_AT_SEND_RSP_TO_EMBEDDED, /* Default value */
WM_AT_SEND_RSP_TO_EXTERNAL,
WM_AT_SEND_RSP_BROADCAST

} wm_atSendRspType_e;
WM_AT_SEND_RSP_TO_EMBEDDED means that all the AT responses will be sent back to
the Embedded Application (default mode).
WM_AT_SEND_RSP_TO_EXTERNAL means that all the AT responses will be sent back to
the External Application (PC).
WM_AT_SEND_RSP_BROADCAST means that all the AT responses will be broadcasted to
both the Embedded and External Applications (PC).

3.3.1.2 Required Header
Wm_at.h

3.3.1.3 Notes
❑ As described in the “AT Commands Interface” document, AT commands sent by

wm_atSendCommand() begin with the “AT” string, and end with a “\r” character
(carriage return), except in some cases (“A/” command, SMS writing commands
(“test\x1A”), …)

❑ AT Command responses are received by the Embedded Application through a
message. This message is available as a parameter of the wm_apmAppliParser()

function with the MsgTyp parameter set to WM_AT_RESPONSE (see § 3.2.3: “The
wm_apmAppliParser”).

❑ A response sent to an External Application cannot be pre-parsed (see § 3.3.5:
“wm_atRspPreParserSubscribe”). If an Embedded Application wants to filter or
spy the response, it must set the ResponseType parameter to
WM_AT_SEND_RSP_TO_EMBEDDED or WM_AT_SEND_RSP_BROADCAST.

18

3.3.1.4 Example: Sending AT Commands and Receiving the Corresponding Responses
The Embedded Application sends an AT command and receives the response from the AT
functionality of Wavecom Core Software using The wm_atSendCommand and The
wm_atSendRspExternalApp functions.

❑ An example of sending an AT command is given below:

❑ An example of receiving an AT response is given below:

s32 wm_apmAppliParser (wm_apmMsg_t * Message)
{

ascii * strBuffer;
u16 nLenBuffer;
switch (Message->MsgTyp)
{

….
case WM_AT_SEND_RSP:

strBuffer = &(Message->Body.AT_Response.StrData);
nLenBuffer = Message->Body. AT_Response.StrLength;
/* Receive AT response for filtering */

if (Message->Body.ATResponse.Type == AT_RESPONSE_TO_EMBEDDED)
{

if (wm_strnicmp(strBuffer, “CONNECT”, 7) == 0)
{

/* Local processing */
….
wm_atSendRspExternalApp(“CONNECT\r”, 9);

}
else
{

/* Don’t modify other responses */
wm_atSendRspExternalApp (wm_strlen(strBuffer),

strBuffer);
}

}
/* Receive AT response for spying */
else if (Message->Body.ATResponse.Type ==

WM_AT_SEND_RSP_BROADCAST)
{ ...

}
/* ERROR */

else
{ ..

}
…

}
return OK;

}

wm_atSendCommand(16, WM_AT_SEND_RSP_TO_EMBEDDED, “ATD0146290800\r”);

19

3.3.2 The wm_atUnsolicitedSubscription Function

If the Embedded Application wants to receive an unsolicited AT response (incoming call,
etc.), the wm_atUnsolicitedSubscription function is used to subscribe to the corresponding
service.
Its prototype is:

void wm_atUnsolicitedSubscription (

wm_atUnsolicited_e Unsolicited);

3.3.2.1 Parameter

Unsolicited:
Indicates which application receives the unsolicited AT response. The corresponding
values are:

typedef enum {
WM_AT_UNSOLICITED_TO_EXTERNAL, /* Default value */
WM_AT_UNSOLICITED_TO_EMBEDDED,
WM_AT_UNSOLICITED_BROADCAST,

} wm_atUnsolicited_e;
WM_AT_UNSOLICITED_TO_EXTERNAL means any unsolicited AT response will be sent
back to the External Application (PC). This is the default mode.
WM_AT_UNSOLICITED_TO_EMBEDDED means any unsolicited AT response will be sent
back to the Embedded Application.
WM_AT_UNSOLICITED_BROADCAST means any unsolicited AT response will be
broadcast to both the Embedded and External Applications (PC).

3.3.2.2 Required Header
Wm_at.h

3.3.2.3 Note
An unsolicited AT response is received by the Embedded Application through a message.
This message is available as a parameter of the wm_apmAppliParser() function with
MsgTyp parameter set to WM_AT_UNSOLICITED
(see § 3.2.3: “The wm_apmAppliParser”).

20

3.3.2.4 Example: Receiving Unsolicited AT Responses
The following example deals with The wm_atUnsolicitedSubscription function.
The two stages used to receive unsolicited AT responses are:
➊ Subscribing to an Embedded Application to receive unsolicited AT responses. Three
types of subscriptions are available: default (WM_AT_UNSOLICITED_TO_EXTERNAL),
filtering (WM_AT_UNSOLICITED_TO_EMBEDDED) and spying
(WM_AT_UNSOLICITED_BROADCAST).
An example of a filter subscription is given below:

➋ Receiving unsolicited AT responses:

s32 wm_apmAppliParser (wm_apmMsg_t * Message)
{

ascii * strBuffer;
u16 nLenBuffer;

switch (Message->MsgTyp)
{

….
case WM_AT_UNSOLICITED:

strBuffer = &(Message->Body.ATUnsolicited.StrData);
nLenBuffer = Message->Body.ATUnsolicited.StrLength;

/* Process unsolicited AT response for filtering */
if (Message->Body.ATUnsolicited.Type ==

WM_AT_UNSOLICITED_TO_EMBEDDED)
{

/* Embedded processings */
}

/* Process unsolicited AT response for spying */
else if (Message->Body.ATUnsolicited.Type ==

WM_AT_UNSOLICITED_BROADCAST)
{

/* Embedded processings */
}

…
}
return OK;

}

/* Unsolicited responses are process by Embedded Application */
wm_atUnsolicitedSubscription (WM_AT_UNSOLICITED_TO_EMBEDDED);

21

3.3.3 The wm_atIntermediateSubscription Function

If the Embedded Application wants to receive an intermediate AT response (alerting the
remote party during a mobile-originated call, SMS reading responses, etc.), the
wm_atIntermediateSubscription function is used to subscribe to the corresponding
service.
Its prototype is:

void wm_atIntermediateSubscription (
wm_atIntermediate_e Intermediate);

3.3.3.1 Parameter

Intermediate:
Indicates which application receives the intermediate AT response.
The corresponding values are:

typedef enum {
WM_AT_INTERMEDIATE_TO_EXTERNAL, /* Default value */
WM_AT_INTERMEDIATE_TO_EMBEDDED,
WM_AT_INTERMEDIATE_BROADCAST,

} wm_atIntermediate_e;
WM_AT_INTERMEDIATE_TO_EXTERNAL means any intermediate AT response will be
sent back to the External Application (PC). This is the default mode.
WM_AT_INTERMEDIATE_TO_EMBEDDED means any intermediate AT response will be
sent back to the Embedded Application.
WM_AT_INTERMEDIATE_BROADCAST means any intermediate AT response will be
broadcasted to both the Embedded and External Applications (PC).

3.3.3.2 Required Header
Wm_at.h

3.3.3.3 Note
An intermediate AT response is received by the Embedded Application through a
message. This message is available as a parameter of the wm_apmAppliParser() function
with MsgTyp parameter set to WM_AT_INTERMEDIATE
(see § 3.2.3: “The wm_apmAppliParser”).

22

3.3.3.4 Example: Receiving Intermediate AT Responses
The following example deals with the wm_atIntermediateSubscription function.
The two stages which are used to receive intermediate AT responses are:
➌ Subscribing to an Embedded Application to receive intermediate AT responses. Three
types of subscriptions are available: default (WM_AT_INTERMEDIATE_TO_EXTERNAL),
filtering (WM_AT_INTERMEDIATE_TO_EMBEDDED) and spying
(WM_AT_INTERMEDIATE_BROADCAST).
An example of a filter subscription is given below:

➍ Receiving intermediate AT responses:

s32 wm_apmAppliParser (wm_apmMsg_t * Message)
{

ascii * strBuffer;
u16 nLenBuffer;

switch (Message->MsgTyp)
{

….
case WM_AT_INTERMEDIATE:

strBuffer = &(Message->Body.ATIntermediate.StrData);
nLenBuffer = Message->Body.ATIntermediate.StrLength;

/* Process intermediate AT response for filtering */
if (Message->Body.ATIntermediate.Type ==

WM_AT_INTERMEDIATE_TO_EMBEDDED)
{

/* Embedded processing */
}

/* Process intermediate AT response for spying */
else if (Message->Body.ATIntermediate.Type ==

WM_AT_INTERMEDIATE_BROADCAST)
{

/* Embedded processing */
}

…
}
return OK;

}

/* Intermediate responses are processed by Embedded Application */
wm_atIntermediateSubscription (WM_AT_INTERMEDIATE_TO_EMBEDDED);

23

3.3.4 The wm_atCmdPreParserSubscribe Function

If the Embedded Application wants to perform AT command pre-parsing, it should then
subscribe to the corresponding services, using the wm_atCmdPreParserSubscribe
function.
The AT messages received from the External Application are forwarded to the Pre-parser
and sent to the Embedded Application through a WM_AT_CMD_PRE_PARSER type
message, of which the associated structure is wm_atCmdPreParser_t.
Note that the “AT+WDWL” and “AT+WOPEN” AT commands are not pre-parsed, so that
the User can download a new Embedded software whenever s/he wants.
The prototype of this function is:

void wm_atCmdPreParserSubscribe (
wm_atCmdPreSubscribe_e SubscribeType);

3.3.4.1 Parameter
SubscribeType:
Indicates what happens when an AT command arrives. The corresponding values are:

typedef enum {
WM_AT_CMD_PRE_WAVECOM_TREATMENT, /* Default value */
WM_AT_CMD_PRE_EMBEDDED_TREATMENT,
WM_AT_CMD_PRE_BROADCAST

} wm_atCmdPreSubscribe_e;
WM_AT_CMD_PRE_WAVECOM_TREATMENT means the Embedded Application does not
want to filter or spy the commands sent by an External Application (default mode).
WM_AT_CMD_PRE_EMBEDDED_TREATMENT means the Embedded Application wants to
filter the AT commands sent by an External Application.
WM_AT_CMD_PRE_BROADCAST means the Embedded Application wants to spy the AT
commands sent by an External Application.

3.3.4.2 Required Header
Wm_at.h

3.3.4.3 Notes
❑ Filtered or spied AT commands are received by the Embedded Application

through a message. This message is available as a parameter of the
wm_apmAppliParser() function with the MsgTyp parameter set to
WM_AT_CMD_PRE_PARSER (see § 3.2.3: “The wm_apmAppliParser”).

❑ The Embedded Application will process the received command and, for instance,
will send it back either completely or not to the wm_atSendCommand() function.
Therefore, the responses may be forwarded to the Wavecom Core Software.

❑ When a command is pre-parsed for filtering, the User has the responsibility to
send the response to the External Application.

24

3.3.4.4 Example: Filtering or Spying AT Commands Sent by an External Application
The following example deals with the wm_atCmdPreParserSubscribe() function.
The two stages which are used to filter or spy AT commands sent by an External
Application are:
➊ Subscribing to a command pre-parsing mechanism to filter or spy the AT commands
sent by the External Application.
An example of a filtering subscription is given below:

An example of a spying subscription is given below:

➋ Receiving and processing the pre-parsed commands (an AT command sent by the
External Application) in the Embedded Application:

s32 wm_apmAppliParser (wm_apmMsg_t * Message)
{

ascii * strBuffer;
u16 nLenBuffer;

switch (Message->MsgTyp)
{

….
case WM_AT_CMD_PRE_PARSER:

strBuffer = &(Message->Body.ATCmdPreParser.StrData);
nLenBuffer = Message->Body. ATCmdPreParser.StrLength;

/* Process pre-parsed AT command for filtering */
if (Message->Body.ATCmdPreParser.Type ==

WM_AT_CMD_PRE_EMBEDDED_TREATMENT)
{

/* Filtering Embedded processings */
…

}
else if (Message->Body.ATCmdPreParser.Type ==

WM_AT_CMD_PRE_BRAODCAST)
{
/* Spying Embedded processing */

…
}

…
}
return OK;

}

/* Spy subscription */
wm_atCmdPreParserSubscribe(WM_AT_CMD_PRE_BROADCAST);

/* Filter subscription */
wm_atCmdPreParserSubscribe(WM_AT_CMD_PRE_EMBEDDED_TREATMENT);

25

3.3.5 The wm_atRspPreParserSubscribe Function

If the Embedded Application wants to perform an AT response pre-parsing, it should then
subscribe to the corresponding services, using the wm_atRspPreParserSubscribe function.
An AT message sent by an external application and processed by the Wavecom Core
Software generates a response. Depending on the subscription type, this response
may be forwarded to the Embedded Application through a message of the
WM_AT_RSP_PRE_PARSER type of which the associated structure is wm_atRspPreParser_t.
Its prototype is:

void wm_atRspPreParserSubscribe (
wm_atRspPreSubscribe_e SubscribeType);

3.3.5.1 Parameter

SubscribeType:
Indicates what happens when an AT response arrives. The corresponding values are as
follows:

typedef enum {
WM_AT_RSP_PRE_WAVECOM_TREATMENT, /* Default value */
WM_AT_RSP_PRE_EMBEDDED_TREATMENT,
WM_AT_RSP_PRE_BROADCAST

} wm_atRspPreSubscribe_e;
WM_AT_RSP_PRE_WAVECOM_TREATMENT means the Embedded Application does not
want to filter or spy the responses sent to an External Application (default mode).
WM_AT_RSP_PRE_EMBEDDED_TREATMENT means the Embedded Application wants to
filter the AT responses sent to an External Application.
WM_AT_RSP_PRE_BROADCAST means the Embedded Application wants to spy the AT
responses sent to an External Application.

3.3.5.2 Required Header
Wm_at.h

3.3.5.3 Notes
❑ Filtered or spied AT responses are received by the Embedded Application through

a message. This message is available as a parameter of the
wm_apmAppliParser() function with the MsgTyp parameter set to
WM_AT_RSP_PRE_PARSER (see § 3.2.3: “The wm_apmAppliParser”).

❑ If the Embedded Application subscribes to
WM_AT_RSP_PRE_EMBEDDED_TREATMENT, it will process the response and
send it to the External Application, using the wm_atSendRspExternalApp()

function (see § 3.3.6: “The wm_atSendRspExternalApp”).
❑ The response pre-parser will only be active if the AT command has not been sent

through wm_atSendCommand(). In this case, the response is processed as
described in the ResponseType parameter (see § 3.3.1: “wm_atSendCommand”).

26

3.3.5.4 Example: Filtering or Spying AT Responses Sent to the External Application
The following example deals with the wm_atRspPreParserSubscribe() function.
The two stages used to filter or spy the AT response sent to the External Application are:
➊ Subscribing to the response pre-parsing mechanism in order to filter or spy the AT
response sent to the External Application.
An example of a filter subscription is given below:

An example of a spying subscription is given below:

➋ Processing the pre-parsed response in the Embedded Application:

s32 wm_apmAppliParser (wm_apmMsg_t * Message)
{

ascii * strBuffer;
u16 nLenBuffer;

switch (Message->MsgTyp)
{

….
case WM_AT_RSP_PRE_PARSER:

strBuffer = &(Message->Body.ATRspPreParser.StrData);
nLenBuffer = Message->Body.ATRspPreParser.StrLength;

/* Process pre-parsed AT command for filtering */
if(Message>Body.ATRspPreParser.Type ==
WM_AT_RSP_PRE_EMBEDDED_TREATMENT)

{
/* Filtering Embedded processing */
…

}
else if (Message->Body.ATRspPreParser.Type ==

WM_AT_RSP_PRE_BRAODCAST) {
/* Spying Embedded processing */
…

}
…

}
return OK;

}

/* Spy subscription */
wm_atRspPreParserSubscribe(WM_AT_RSP_PRE_BROADCAST);

/* Filter subscription */
wm_atRspPreParserSubscribe(WM_AT_RSP_PRE_EMBEDDED_TREATMENT);

27

3.3.6 The wm_atSendRspExternalApp Function

The wm_atSendRspExternalApp function sends an AT response to the External
Application, in case of AT command pre-parsing.
Its prototype is:

void wm_atSendRspExternalApp

(u16 AtStringSize,
ascii *AtString);

3.3.6.1 Parameters

AtString:
Any AT response string in ASCII characters (terminated by a 0x00 character). This string is
sent on the serial link without any change : it should include “\r\n” characters at the end
and/or the beginning of the string.

AtStringSize:
Size of the previous AtString parameter. It equals the length + 1 and includes the 0x00
character.

3.3.6.2 Required Header
Wm_at.h

3.3.6.3 Notes
❑ This function should be used to transmit to the external application the responses

received by the embedded application through the WM_AT_RESPONSE message.

3.3.7 The wm_atSendUnsolicitedExternalApp Function

The wm_atSendUnsolicitedExternalApp function sends an AT unsolicited response to the
External Application.
Its prototype is:

void wm_atSendUnsolicitedExternalApp (u16 AtStringSize,
ascii *AtString);

3.3.7.1 Parameters

AtString:
Any AT unsolicited response string in ASCII characters (terminated by a 0x00 character).
This string is sent on the serial link without any change : it should include “\r\n” characters
at the end and/or the beginning of the string.

AtStringSize:
Size of the previous AtString parameter. It equals the length + 1 and includes the 0x00
character.

3.3.7.2 Required Header
Wm_at.h

28

3.3.7.3 Notes
❑ An unsolicited response string sent by the wm_atSendUnsolicitedExternalApp

function will only be displayed on the serial link when the Wavecom AT task is not
busy by a command processing. If it is busy in a such processing, the unsolicited
response string is stored, and displayed at the end of the process (after the
terminal AT response).

❑ Sending an AT response by the wm_atSendRspExternalApp function will display
all previously stored unsolicited responses (after this response display).

❑ This function should be used to transmit to the external application the
unsolicited responses received by the embedded application through the
WM_AT_UNSOLICITED message.

3.3.8 The wm_atSendIntermediateExternalApp Function

The wm_atSendIntermediateExternalApp function sends an AT intermediate response to
the External Application.
Its prototype is:

void wm_atSendIntermediateExternalApp (u16 AtStringSize,
ascii *AtString);

3.3.8.1 Parameters

AtString:
Any AT intermediate response string in ASCII characters (terminated by a 0x00 character).
This string is sent on the serial link without any change : it should include “\r\n” characters
at the end and/or the beginning of the string.

AtStringSize:
Size of the previous AtString parameter. It equals the length + 1 and includes the 0x00
character.

3.3.8.2 Required Header
Wm_at.h

3.3.8.3 Notes
❑ An intermediate response string sent by the wm_atSendIntermediateExternalApp

function will always display this string on the serial link, either the Wavecom AT
task is busy on a command processing or not.

❑ Previously stored unsolicited responses will not be displayed after a call to the
wm_ atSendIntermediateExternalApp function.

❑ This function should be used to transmit to the external application the
intermediate responses received by the embedded application through the
WM_AT_INTERMEDIATE message.

29

3.4 OS API

3.4.1 The wm_osStartTimer Function

The wm_osStartTimer function sets up a timer associated to an existing TimerId.
Its prototype is:

s32 wm_osStartTimer (u8 TimerId,
bool bCyclic,
u32 TimerValue);

3.4.1.1 Parameters

TimerId:
Timer identifier: the range 0 to WM_OS_MAX_TIMER_ID is accepted.

BCyclic:
This parameter may have one of the following values:

❑ TRUE: the timer is cyclic and is automatically set up when a cycle is over,
❑ FALSE: in case the timer has only one cycle.

TimerValue:
Timer unit :100 ms.

3.4.1.2 Return Values
The return parameter is positive or null if the timer is set up and negative if not.

3.4.1.3 Required Header
wm_os.h

3.4.1.4 Note
❑ The timer expiry indication is received by the Embedded Application through a

message. This message is available as a parameter of the wm_apmAppliParser()

function with the MsgTyp parameter set to WM_OS_TIMER (see § 3.2.3: “The
wm_apmAppliParser”).

30

3.4.1.5 Example: Managing a Timer
The range 0 to WM_OS_MAX_TIMER_ID is accepted. A timer may or may not be cyclic.
An example of setting up a timer is given below:

An example of receiving a timer expiry event is given below:

3.4.2 The wm_osStopTimer Function

The wm_osStopTimer function stops the timer identified by TimerId.
Its prototype is:

s32 wm_osStopTimer (u8 TimerId);

3.4.2.1 Parameter

TimerId:
Timer identifier: the range 0 to WM_OS_MAX_TIMER_ID is accepted.

3.4.2.2 Return Values
The return parameter is the remaining time if the timer was still running, and a negative
value otherwise.

3.4.2.3 Required Header
wm_os.h

s32 wm_apmAppliParser (wm_apmMsg_t * Message)
{

ascii * strBuffer;
u16 nLenBuffer;

switch (Message->MsgTyp)
{

….
case WM_OS_TIMER:

…
}
return OK;

}

/* Timer start, not cyclic, value = 1second */
wm_osStartTimer(1, FALSE, 10);

31

3.4.3 The wm_osDebugTrace Function

The wm_osDebugTrace function is aimed at trace managing.
Its prototype is:

s32 wm_osDebugTrace (u8 Level, char *Format, ...);

3.4.3.1 Parameters

Level:
Used to differentiate the traces. The PC trace software gives access to level configuration.

Format:
Used to specify a string and the corresponding formats (like the printf function), as far as
the data to trace is concerned. The supported formats are ‘c’, ’x’, ‘X’, ‘u’, ‘d’.
Up to 6 parameters may be included in the Format string.
As the ‘s’ format is not supported, the way to display a char * string is to replace the
Format string by this char, without any parameters.
…:
Represents the list of data to be traced.

3.4.3.2 Required Header
wm_os.h

3.4.3.3 Returned values
A positive or null value indicates that the trace has been sent; otherwise a negative error
value is sent.

3.4.3.4 Example: Inserting Debug Information
Debug information is included in the Embedded Application, and therefore it uses ROM
space and CPU resources.
The Target Monitoring Tool is used to display the Debug information.
An example of tracing an informational message is given below:

An example of tracing an informational message using a decimal parameter is given
below:

u8 param =12;
wm_osDebugTrace (2, “This is an informational message on level 2 with 1 parameter
=%d”, param);
/* To visualise this, the Target Monitoring Tool must be configured to extract level 2
traces */

/* The result string using the Target Monitoring Tool should be:
“This is an informational message on level 2 with 1 parameter =12” */

wm_osDebugTrace (1, “This is an informational message on level 1”);
/* To visualise this, the Target Monitoring Tool must be configured to extract level 1
traces */
/* The result string using the Target Monitoring Tool should be:
“This is an informational message on level 1” */

32

An example of tracing a string is given below:

3.4.4 The wm_osDebugFatalError Function

The wm_osDebugFatalError function is the fatal error function: it stores the error code and
then performs a reboot.
Its prototype is:

s32 wm_osDebugFatalError (char * Message);

3.4.4.1 Parameters

Message:
String to be displayed whenever an error occurs.

3.4.4.2 Required Header
wm_os.h

3.4.4.3 Returned Value
A negative error value indicates that the fatal error did not happened.

3.4.4.4 Note
The reboot is performed after the call to the fatal error function. In order to ensure the
downloading of a new binary file after a fatal error has been detected, the User software
startup is delayed 20 sec.
Therefore, in order not to miss any event, the application has to handle a startup delay of
20 sec.

3.4.5 Important Note on Data Flash Management

The Data Flash Identifiers are organized in the memory as follows:
❑ a 10-byte header,
❑ the body.

An application cannot use more than 5KB of Data Flash. Therefore, depending on the size
of the stored data, the number of available Identifiers will vary.
For instance:

❑ if the application needs to store 1 byte of data, the number of available Identifiers
is equal to 5000/11 = 454 Identifiers.

❑ if the application needs to store 100 bytes of data, the number of available
Identifiers is equal to 5000/110 = 45 Identifiers.

ATTENTION :
The identifiers are represented by a u16 value. Any value can be used as identifier, except
0xFFFF.

ascii String[]=”Hello World”;
wm_osDebugTrace (3, String);
/* To visualise this, the Target Monitoring Tool must be configured to extract level 3
traces */
/* The result string on Target Monitoring Tool should be:
“Hello World” */

33

3.4.6 The wm_osWriteFlashData Function

The wm_osWriteFlashData function is used to write data into Flash ROM. The
corresponding identifier is assigned to the stored data.
The prototype of this function is:

s32 wm_osWriteFlashData (u16 Id, u16 DataLen, u8 *Data);

3.4.6.1 Parameters

Id:
Identifier assigned to the stored data.

DataLen:
Length of the data to be stored (in bytes).

Data:
Pointer to the data to be stored.

3.4.6.2 Return Values
The return parameter is positive or null if data has been written, and negative if not.

3.4.6.3 Required Header
wm_os.h

3.4.7 The wm_osReadFlashData Function

The wm_osReadFlashData function is used to read data identified by Id from the Flash
ROM.
Its prototype is:

s32 wm_osReadFlashData (u16 Id, u16 DataLen, u8 *Data);

3.4.7.1 Parameters

Id:
Identifier assigned to the stored data.

DataLen:
Length of the data to be read (in bytes).

Data:
Pointer to the data to be read.

3.4.7.2 Return Values
The return parameter is the length to be read and copied to *Data on success, and a
negative value on error.

3.4.7.3 Required Header
wm_os.h

34

3.4.8 The wm_osGetLenFlashData Function

The wm_osGetLenFlashData function supplies the length of the data stored in Flash ROM
and identified by Id.
Its prototype is:

s32 wm_osGetLenFlashData (u16 Id);

3.4.8.1 Parameter

Id:
Identifier assigned to the stored data.

3.4.8.2 Return Values
The return parameter is the byte length of the data identified by Id. If it is negative, an error
has occurred.

3.4.8.3 Required Header
wm_os.h

3.4.9 The wm_osDeleteFlashData Function

The wm_osDeleteFlashData function deletes the data stored in Flash ROM and identified
by Id.
Its prototype is:

s32 wm_osDeleteFlashData (u16 Id);

3.4.9.1 Parameter

Id:
Identifier assigned to the stored data.

3.4.9.2 Return Values
The return parameter is positive or null if the data have been deleted, and negative if not.

3.4.9.3 Required Header
wm_os.h

3.4.10 The wm_osGetAllocatedMemoryFlashData Function

The wm_osGetAllocatedMemoryFlashData function returns the quantity of allocated
memory in Flash ROM.
Its prototype is:

s32 wm_osGetAllocatedMemoryFlashData (void);

3.4.10.1 Return Values
The return parameter is the quantity of allocated memory in Flash ROM (Unit : bytes) on
success, and a negative value on error.

3.4.10.2 Required Header
wm_os.h

35

3.4.11 The wm_osGetFreeMemoryFlashData Function

The wm_osGetFreeMemoryFlashData function returns the quantity of available memory in
Flash ROM.
Its prototype is:

s32 wm_osGetFreeMemoryFlashData (void);

3.4.11.1 Return values***
The return parameter is the quantity of free memory in Flash ROM on success, and a
negative value on error.

3.4.11.2 Required Header
wm_os.h

3.4.12 The wm_osDeleteAllFlashData Function

The wm_osDeleteAllFlashData function deletes all the data previously stored in flash
memory by the embedded application.
Its prototype is :

s32 wm_osDeleteAllFlashData (void);

3.4.12.1 Return values
If the delete operation if successful, returns the number of deleted objects.
Otherwise, returns a negative error value.

3.4.12.2 Required Header
wm_os.h

3.4.13 Example: Managing Data Flash Objects

5KB of Data Flash objects are available for Embedded Applications.
Data Flash objects are organized in Ids and managed by the Embedded Application.
An Example related to Data Flash reading/writing is given below:

s32 LengthRead;
s32 Length;
u8* ptr;
u16 Id;
s32 Writen;
FlashId = 112;
/* Get the len */
Length = wm_osGetLenFlashData (FlashId);
Ptr = wm_osGetHeapMemory (Length);
/* Read the Flash Id item */
LengthRead = wm_osReadFlashData (FlashId, Length, Ptr);
Ptr[3] = 0x10; /* Change something */
/* Write the modified Flash Id item */
Writen = wm_osWriteFlashData (FlashId, Length, Ptr);

36

3.4.14 The wm_osGetHeapMemory Function

The wm_osGetHeapMemory function gets memory from the Embedded heap.
Its prototype is:

void *wm_osGetHeapMemory (u16 MemorySize);

3.4.14.1 Parameter

MemorySize:
Requested size.

3.4.14.2 Return Values
The return parameter is the the memory address or is NULL if an error has occurred.

3.4.14.3 Required Header
wm_os.h

3.4.15 The wm_osReleaseHeapMemory Function

The wm_osReleaseHeapMemory function releases the previously reserved memory.
Its prototype is:

s32 wm_osReleaseHeapMemory (void * ptrData);

3.4.15.1 Parameter

PtrData:
Points to the reserved memory.

3.4.15.2 Return Values
The return parameter is positive or null if the reserved memory has been released, and
negative if not.

3.4.15.3 Required Header
wm_os.h

3.4.16 Example: RAM management

32 KB of RAM are available for Embedded Applications and the provided Wavecom library
manages this RAM.
An example of the RAM request function is given below:

An example of the RAM release function is given below:

wm_osReleaseHeapMemory (ptr);

void *ptr;
ptr = wm_osGetHeapMemory (1000); /* 1000 bytes are asked */

37

3.5 Flow Control Manager API

Figure 2: Flow Control Function

The Flow Control Manager API provides two IO flows to the embedded application:
one from the V24 serial link, and one from a Data Communication (though the GSM air
interface).
By default, these flows are closed (in Figure 2, Switches 2a and 2b are closed to transmit
all data directly between the V24 serial link and Data communication).
The embedded application can use the wm_fcmOpenDataAndV24()

(see § 3.5.1: “The wm_fcmOpenDataAndV24”) and wm_fcmCloseDataAndV24()

(see § 3.5.2: “The wm_fcmCloseDataAndV24”) functions to open or close these flows.
One flow cannot be opened alone (on Figure 2, the switches 2a and 2b are always closed
or opened together).
The Switch 1 function is described in § 3.6.1: “The wm_ioSerialSwitchState.”

38

3.5.1 The wm_fcmOpenDataAndV24 Function

The wm_fcmOpenDataAndV24 function opens two flows between the embedded
application and the V24 serial link, and between the application and a Data
communication.
Its prototype is:

s32 wm_fcmOpenDataAndV24 (u16 DataMaxToReceiveFromData,
u16 DataMaxToReceiveFromV24);

3.5.1.1 Parameters

DataMaxToReceiveFromData:
Maximum block size to be sent to the embedded application from a Data communication.
This size can not exceed 270 bytes.

DataMaxToReceiveFromV24:
Maximum block size to be sent to the embedded application from the V24 serial link. This
size can not exceed 120 bytes.

3.5.1.2 Required Header
Wm_fcm.h

3.5.1.3 Return Value
The returned value is not relevant.

3.5.1.4 Notes
❑ The flow opening response is received by the Embedded Application through a

message. This message is available as a parameter of the wm_apmAppliParser()

function with the MsgTyp parameter set to WM_FCM_OPEN_FLOW (see § 3.2.3:
“The wm_apmAppliParser”). The embedded application will receive a message
for each type of flow (V24 serial link and Data).

❑ The DataMaxToSend parameter of the WM_FCM_OPEN_FLOW message informs
the embedded application of the maximum data block size it can send on this
flow. If this parameter is 0, there is no size limitation.

❑ The wm_fcmOpenDataAndV24() function must be called before using the “ATD”
command to set up a data call.

39

3.5.2 The wm_fcmCloseDataAndV24 Function

The wm_fcmCloseDataAndV24 function closes the two flows between the embedded
application and V24 serial link, and between the application and a Data communication.
Its prototype is:

s32 wm_fcmCloseDataAndV24 (void);

3.5.2.1 Required Header
Wm_fcm.h

3.5.2.2 Return Value
The returned value is not relevant.

3.5.2.3 Notes
❑ The flow closing response is received by the Embedded Application through a

message. This message is available as a parameter of the wm_apmAppliParser()

function with the MsgTyp parameter set to WM_FCM_CLOSE_FLOW (see § 3.2.3:
“The wm_apmAppliParser”). The embedded application will receive a message
for each flow type (V24 serial link and Data).

❑ The wm_fcmCloseDataAndV24() function must be called after any data call
release.

3.5.3 The wm_fcmSubmitData Function

The wm_fcmSubmitData function submits a data block to the Flow Control Manager.
Its prototype is:

s32 wm_fcmSubmitData (wm_fcmFlow_e Flow,
wm_fcmSendBlock_t * fcmDataBlock);

3.5.3.1 Parameters

Flow:
Specifies the IO flow where the data are sent; the possible values are:

typedef enum {
WM_FCM_DATA,
WM_FCM_V24

} wm_fcmFlow_e;
WM_FCM_DATA represents the data flow of a Data Communication.
WM_FCM_V24 represents the data flow of the V24 serial link.

fcmDataBlock:
Pointer on a wm_fcmSendBlock_t structure, allocated (see § 3.4.13:
“The wm_osGetHeapMemory ”) and filled by the embedded application before sending.
The definition of this structure is as follows:

typedef struct {
u16Reserved1[4];
u16DataLength; /* number of byte of data to send */
u16Reserved2[5];
u8 Data[1]; /* data to send */

} wm_fcmSendBlock_t;

40

3.5.3.2 Returned Values
WM_FCM_OK means the data block is sent, the memory allocated for fcmDataBlock is
released, and the embedded application may go on sending more data blocks.
WM_FCM_EOK_NO_CREDIT means the data block is sent and the memory allocated for
fcmDataBlock is released, but the embedded application must wait for the
WM_FCM_RESUME_DATA_FLOW message before sending more data blocks. This
message is available as a parameter of the wm_apmAppliParser() function (see § 3.2.3:
“The wm_apmAppliParser”).
WM_FCM_ERR_NO_CREDIT means the data block is not sent and the memory allocated
for fcmDataBlock is not released. The embedded application must wait for the
WM_FCM_RESUME_DATA_FLOW message before sending more data blocks. This
message is available as a parameter of the wm_apmAppliParser() function (see § 3.2.3:
“The wm_apmAppliParser”).
WM_FCM_ERR_NO_LINK means the flow is not opened. The data block is not sent and the
memory allocated for fcmDataBlock is not released.
WM_FCM_ERR_UNKNOWN_FLOW means the embedded application used an incorrect
flow ID. The data block is not sent and the memory allocated for fcmDataBlock is not
released.

3.5.3.3 Required Header
Wm_fcm.h

3.5.3.4 Notes
❑ A successful data send by the wm_fcmSubmitData() function (with WM_FCM_OK

ot WM_FCM_EOK_NO_CREDIT return code) will result in the receipt of a
WM_OS_RELEASE_MEMORY message by the Embedded Application. This
message is available as a parameter of the wm_apmAppliParser() function with
the MsgTyp parameter set to WM_OS_RELEASE_MEMORY (see § 3.2.3: “The
wm_apmAppliParser”).

❑ You should not call the wm_fcmSubmitData() function more than once in the
same message treatment. The embedded application should set a timer between
each data block sending on the IO flows.

❑ Set a timer between the last data block sending on an IO flow, and this flow
closing operation. Also, a timer should be set between the last data block sending
on the V24 flow, and a call to the wm_ioSwitchSerialState

(WM_IO_SERIAL_AT_MODE) function.
❑ In remote task mode, as the serial link is strongly used (AT commands and

responses, traces and messages between the remote task and the target
software), a data send operation on the V24 flow with high speed rate will not
work. The embedded application should send data blocks on the V24 flow a very
low speed rate, in remote task mode.

41

3.5.4 Receive Data Blocks

The embedded application may receive data blocks from an opened Data or V24 IO flow,
through the WM_FCM_RECEIVE_BLOCK message. This message is available as a
parameter of the wm_apmAppliParser() function (see § 3.2.3: “The wm_apmAppliParser”).

3.5.4.1 Message Parameters
This is the WM_FCM_RECEIVE_BLOCK message structure:

typedef struct {
u16 DataLength; /* number of bytes received */
u8 Reserved1[2];
wm_fcmFlow_e FlowId; /* IO flow ID */
u8 Reserved2[7];
u8 Data[1]; /* data received */

} wm_fcmReceiveBlock_t;

DataLength:
Number of data bytes received in Data parameter from this flow. This size will not exceed
DataMaxToReceiveFromData or DataMaxToReceiveFromV24 parameters (depending on
the flow type) of the wm_fcmOpenDataAndV24() function
(see § 3.5.1: “The wm_fcmOpenDataAndV24”).

FlowID:
Specifies the opened IO flow from where the data are received. The possible values are:

typedef enum {
WM_FCM_DATA,
WM_FCM_V24

} wm_fcmFlow_e;

WM_FCM_DATA represents the data flow of a Data Communication.
WM_FCM_V24 represents the data flow of the V24 serial link.

Data:
Data block received from the IO flow. The memory allocated for Data parameter will be
released at the end of the wm_apmAppliParser() function
(see § 3.2.3: “The wm_apmAppliParser”).

42

3.5.4.2 Required Header
Wm_fcm.h

3.5.4.3 Notes
❑ When the embedded application has treated one or more data blocks, it should

inform the Flow Control Manager to release credits, in order to receive more data,
by using the wm_fcmCreditToRelease() function
(see § 3.5.5: “The wm_fcmCreditToRelease”).

3.5.5 The wm_fcmCreditToRelease Function

The wm_fcmCreditToRelease function informs the Flow Control Manager that the
embedded application has treated some data blocks, and is ready to receive more data.
This credit release system provides more security for the data transfer.
Its prototype is:

s32 wm_fcmCreditToRelease (wm_fcmFlow_e Flow,
u8 Credits);

3.5.5.1 Parameters

Flow:
Specifies the IO flow on which the Flow Control Manager may release credits.
The possible values are:

typedef enum {
WM_FCM_DATA,
WM_FCM_V24

} wm_fcmFlow_e;

WM_FCM_DATA represents the data flow of a data communication.
WM_FCM_V24 represents the data flow of the V24 serial link.

Credits:
Specifies the number of credits the embedded application wants the Flow Control
Manager to release. This represents the number of data blocks received and treated by the
embedded application.
For example: when the embedded application has received and treated 3 data blocks
(i.e. 3 WM_FCM_RECEIVE_BLOCK messages), it should inform the Flow Control Manager
by calling the wm_fcmCreditToRelease() function with the Credits parameter set to 3.

3.5.5.2 Returned Values
The returned value is ≥ 0 if the credits are released, otherwise it is negative (an error
occurred and the credits are not released).

3.5.5.3 Required Header
Wm_fcm.h

43

3.6 Input Output API
This API manages Serial Link State and Gpio operations.

3.6.1 Serial Link State functions

3.6.1.1 The wm_ioSerialSwitchState Function
The wm_ioSerialSwitchState function sets the serial link mode: AT command computing,
or direct data transmission through the V24 Serial Link Flow.
Its prototype is:

void wm_ioSerialSwitchState (wm_ioSerialSwitchState_e SerialState);

3.6.1.1.1 Parameters

SerialState:
Specifies the requested state of the Serial Link. The possible values are defined bellow:

typedef enum {
WM_IO_SERIAL_AT_MODE,
WM_IO_SERIAL_DATA_MODE,
WM_IO_SERIAL_ATO

} wm_ioSerialSwitchState_e;
WM_IO_SERIAL_AT_MODE represents the AT commands computing mode. In this mode,
data received from V24 serial link are parsed and treated like AT commands.
WM_IO_SERIAL_DATA_MODE represents the direct data transmission mode. In this mode,
data received from V24 serial link are transmitted without treatment through the V24 Serial
Link Flow.
WM_IO_SERIAL_ATO is used only if the external application sent a “+++” string, in order
to switch the V24 interface in “ONLINE” mode (see “Notes”).

3.6.1.1.2 Required Header
Wm_io.h

3.6.1.1.3 Notes
❑ The serial mode switching response is received by the Embedded Application

through a message. This message is available as a parameter of the
wm_apmAppliParser() function with the MsgTyp parameter set to
WM_IO_SERIAL_SWITCH_STATE_RSP (see § 3.2.3: “The wm_apmAppliParser”).
The SerialMode parameter of this message is the requested Serial Link Mode; if
the RequestReturn parameter is negative, an error occurred, and the Serial Link
Mode does not change.

❑ The wm_ioSerialSwitchState() function is not allowed if the V24 Serial Link
and the Data Flows are not opened by the embedded application
(see § 3.5.1: “The wm_fcmOpenDataAndV24”).
In this case, the WM_IO_SERIAL_SWITCH_STATE_RSP message will always
return a negative RequestReturn parameter.

❑ In Figure 2 (see § 3.5: “Flow Control Manager API”), the wm_ioSerialSwitchState()

function controls Switch 1.

44

IMPORTANT NOTES
❑ Using the ATD command to begin a data call (from external or embedded

application) will switch the serial link to WM_IO_SERIAL_DATA_MODE state after
the CONNECT response.

❑ When a data call is released (from the remote party, or with the ATH command),
the serial link is switched to WM_IO_SERIAL_AT_MODE state (respectively after
the NO CARRIER or OK response).

❑ Sending the “+++” sequence from an external application while the serial link is
in WM_IO_SERIAL_DATA_MODE state will switch it to WM_IO_SERIAL_AT_MODE
state after the OK response, during or out of a data call. The “+++” sequence must
be preceded and followed by a period of one second without character sending;
otherwise the serial link state will not switch to WM_IO_SERIAL_AT_MODE.

❑ During a data call, the ATO command will switch the serial link to
WM_IO_SERIAL_DATA_MODE state after the OK response.

❑ Out of data call, the ATO command is not allowed; the embedded application may
use the WM_IO_SERIAL_ATO mode to return to the WM_IO_SERIAL_DATA_MODE
state.

3.6.2 Gpio types and functions

3.6.2.1 Types

3.6.2.1.1 The wm_ioConfig_t structure
This structure is used by the wm_ioAllocate function in order to set the reserved Gpio
parameters.

typedef struct

{
wm_ioLabel_u eLabel;
u32 Pad;
wm_ioDirection_e eDirection;
wm_ioState_e eState;

} wm_ioConfig_t;
The eLabel member represents the Gpio label.
The eDirection member represents the Gpio direction.
The eState member represents the Gpio state.

3.6.2.1.2 The wm_ioLabel_u union
This union represents the different Gpio labels, depending on the used product.

typedef union

{
wm_ioLabel_Quik_e Quik_Label;
wm_ioLabel_Pac_e Pac_Label;

} wm_ioLabel_u;
The Quik_Label member must be used on Wismo Quik based products.
The Pac_Label member must be used on Wismo Pac based products.

45

3.6.2.1.2.1 Wismo Quik Gpio Labels
The Gpio labels for Wismo Quik based products are defined by the values below :

typedef enum

{

WM_IO_QUIK_GPI = 0x00000001,

WM_IO_QUIK_GPO_1 = 0x00000004,

WM_IO_QUIK_GPO_2 = 0x00000008,

WM_IO_QUIK_GPIO_0 = 0x00000010,
WM_IO_QUIK_GPIO_4 = 0x00000100,
WM_IO_QUIK_GPIO_5 = 0x00000200,

} wm_ioLabel_Quik_e;
3.6.2.1.2.2 Wismo Pac Gpio Labels
The Gpio labels for Wismo Pac based products are defined by the values below:

typedef enum

{

WM_IO_PAC_GPI = 0x00000001,

WM_IO_PAC_GPIO_0 = 0x00000008,
WM_IO_PAC_GPIO_2 = 0x00000020,
WM_IO_PAC_GPIO_3 = 0x00000040,
WM_IO_PAC_GPIO_4 = 0x00000080,
WM_IO_PAC_GPIO_5 = 0x00000100,

} wm_ioLabel_Pac_e;

3.6.2.1.3 The wm_ioDirection_e type
This type represents the direction used for a Gpio.

typedef enum

{
WM_IO_OUTPUT,
WM_IO_INPUT,
WM_IO_NORMAL

} wm_ioDirection_e;
The WM_IO_OUTPUT constant is used to set a Gpio as an output.
The WM_IO_INPUT constant is used to set a Gpio as an input.

A GPI must always be allocated with the WM_IO_INPUT direction.

A GPO must always be allocated with the WM_IO_NORMAL direction.

46

3.6.2.1.4 The wm_ioState_e type
This type represents the state of a Gpio.

typedef enum

{
WM_IO_LOW,
WM_IO_HIGH

} wm_ioState_e;
The WM_IO_LOW constant represents the low state of a Gpio.
The WM_IO_HIGH constant represents the high state of a Gpio.

3.6.2.1.5 The wm_ioSetDirection_t structure
This type is used by the wm_ioSetDirection function to set a Gpio to a new direction.

typedef struct

{
wm_ioLabel_u eLabel;
wm_ioDirection_e eDirection;

} wm_ioSetDirection_t;
The eLabel member represents the Gpio label.
The eDirection member represents the new Gpio direction.

3.6.2.1.6 Return values definition
WM_IO_PROC_DONE (0) : the function processing is done successfuly.
WM_IO_UNKNOWN_TYPE (-1) : a direction parameter has an incorrect value.
WM_IO_INPUT_CANT_BE_SET (-2) : the function tried to set an Input pin.
WM_IO_OUTPUT_CANT_BE_READ (-3) : the function tried to read an Output pin.
WM_IO_NO_MORE_HANDLES_LEFT (-4) : no more handle to allocate the requested Gpios.
WM_IO_EXCEED_MAX_NUMBER (-5) : a parameter exceed the allowed range value.
WM_IO_UNALLOCATED_HANDLE (-6) : a handle parameter has an incorrect value.
WM_IO_INCOHERENCE_BETWEEN_HANDLE_AND_MASK (-7) : the function tried to use a
Gpio mask with an incorrect Handle.
WM_IO_INCOHERENCE_BETWEEN_DIRECTION_AND_MASK (-8) : the function tried to set
an input pin direction to output, or an output pin direction to input.
WM_IO_IO_ALREADY_USED (-9) : the function tried to allocate a Gpio already allocated on
another Handle.
WM_IO_INCOHERENCE_BETWEEN_HANDLE_AND_IO_NUMBER (-18) : the function tried
to use a Gpio value with an incorrect Handle.

3.6.2.2 The wm_ioAllocate Function
The wm_ioAllocate function reserves one or more Gpio(s) for the embedded application
use.
Its prototype is:

s32 wm_ioAllocate (u32 NbGpioToAllocate,
wm_ioConfig_t * GpioCustomerConfig);

47

3.6.2.2.1 Parameters

NbGpioToAllocate:
Size of the GpioCustomerConfig array.

GpioCustomerConfig:
Array of values, defined by the wm_ioConfig_t structure (see §3.6.2.1.1).

For each member of this array:
❑ eLabel represents the label of the requested Gpio, Gpi or Gpo, depending on the

used product.
❑ eDirection represents the direction used for this Gpio.
❑ eState represents the state of the requested Gpio.

3.6.2.2.2 Returned Values
If the Gpio allocate operation is successful, the returned value is a positive or null Handle,
which must be used in all further operations on the reserved Gpios.

Otherwise, a negative returned value represents an error (cf § 3.6.1.2.6 “Returned values
definition”).

3.6.2.2.3 Required Header
Wm_io.h

3.6.2.2.4 Notes
❑ The eDirection member of the wm_ioConfig_t structure is only significant for Gpio

pins. Gpi pins should be always set as an input ; Gpo pins should be always set as
an output. Otherwise, the eDirection parameter is not taken into account.

❑ The eState member of the wm_ioConfig_t structure is only significant for pins set
as an output by the eDirection parameter. Otherwise, the eState parameter is not
taken into account.

❑ After a successful allocation, Gpio allocated by the embedded application are no
more available for AT commands (AT+WIOR, AT+WIOW, AT+WIOM).

3.6.2.3 The wm_ioRelease Function
The wm_ioRelease function allows to release one or more Gpio reserved by the
wm_ioAllocate function.
Its prototype is:

s32 wm_ioRelease (s32 Handle,
u32 NbGpioToRelease,
wm_ioLabel_u * GpioCustomerLabel);

48

3.6.2.3.1 Parameters

Handle:
Handle returned by the wm_ioAllocate function. All Gpios of GpioCustomerLabel
parameter must be related to this Handle.

NbGpioToRelease:
Size of the GpioCustomerLabel array.

GpioCustomerLabel:
Array of values, defined by the wm_ioLabel_u union (see §3.6.2.1.2).

Each member of this array represents the label of one Gpio to release.

3.6.2.3.2 Returned Values
0 : successful completion

Otherwise, a negative returned value represents an error (cf § 3.6.1.2.6 “Returned values
definition”).

3.6.2.3.3 Required Header
Wm_io.h

3.6.2.3.4 Notes
❑ If one of the given Gpio labels is not related to the given Handle, the

wm_ioRelease function will fail.
❑ After a successful release, Gpio released control is resumed by AT commands

(AT+WIOR, AT+WIOW, AT+WIOM).

3.6.2.4 The wm_ioSetDirection Function
The wm_ioSetDirection function allows to change the direction of an allocated Gpio.
Its prototype is:

s32 wm_ioSetDirection (s32 Handle,
u32 NbGpioToChangeDir,
wm_ioSetDirection_t * GpioDirection);

3.6.2.4.1 Parameters

Handle:
Handle returned by the wm_ioAllocate function. All Gpios of GpioDirection parameter
must be related to this Handle.

NbGpioToChangeDir:
Size of the GpioDirection array.

GpioDirection:
Array of values, defined by the wm_ioSetDirection_t structure (see §3.6.2.1.5).

For each member of this array:
❑ eLabel represents the label of the Gpio, Gpi or Gpo to change direction,

depending on the used product.
❑ eDirection represents the new direction to use for this Gpio.

49

3.6.2.4.2 Returned Values
0 : successful completion

Otherwise, a negative returned value represents an error (cf § 3.6.1.2.6 “Returned values
definition”).

3.6.2.4.3 Required Header
Wm_io.h

3.6.2.4.4 Notes
❑ If one of the given Gpio labels is not related to the given Handle, the

wm_ioSetDirection function will fail.
❑ This function is only useful for Gpio pins. Gpi or Gpo pins direction should not be

changed.

3.6.2.5 The wm_ioRead Function
The wm_ioRead function allows to read the current state of one or more allocated Gpio(s).
Its prototype is :

s32 wm_ioRead (s32 Handle,
u32 Gpio,
u32 * GpioState);

3.6.2.5.1 Parameters

Handle:
Handle returned by the wm_ioAllocate function. All Gpios of Gpio parameter must be
related to this Handle.

Gpio:
Mask designating the Gpio(s) to read. This mask is obtained by performing a OR with
members of the wm_ioLabel_u union.

GpioState:
Mask used to return the read states. Each bit of this mask represents the state of the
corresponding Gpio in the “Gpio” parameter.

3.6.2.5.2 Returned Values
0 : successful completion

Otherwise, a negative returned value represents an error (cf § 3.6.1.2.6 “Returned values
definition”).

3.6.2.5.3 Required Header
Wm_io.h

3.6.2.5.4 Notes
❑ If one of the given Gpio labels is not related to the given Handle, the wm_ioRead

function will fail.

50

3.6.2.6 The wm_ioSingleRead Function
The wm_ioSingleRead function allows to read the current state of one single allocated
Gpio.
Its prototype is:

s32 wm_ioSingleRead (s32 Handle,
u32 Gpio);

3.6.2.6.1 Parameters

Handle:
Handle returned by the wm_ioAllocate function. The Gpio parameter must be related to
this Handle.

Gpio:
Value designating the Gpio to read, member of the wm_ioLabel_u union.

3.6.2.6.2 Returned Values
If the read operation is successful, the function returns the Gpio state.

Otherwise, a negative returned value represents an error (cf § 3.6.1.2.6 “Returned values
definition”).

3.6.2.6.3 Required Header
Wm_io.h

3.6.2.6.4 Notes
❑ If the given Gpio label is not related to the given Handle, the wm_ioSingleRead

function will fail.

3.6.2.7 The wm_ioWrite Function
The wm_ioWrite function allows to define a new state for one or more allocated Gpio(s).
Its prototype is :

s32 wm_ioWrite (s32 Handle,
u32 Gpio,
u32 GpioState);

3.6.2.7.1 Parameters

Handle:
Handle returned by the wm_ioAllocate function. All Gpios of Gpio parameter must be
related to this Handle.

Gpio:
Mask designating the Gpio(s) to write. This mask is obtained by performing a OR with
members of the wm_ioLabel_u union.

GpioState:
Mask used to indicate the different states to write. Each bit of this mask represents the
state of the corresponding Gpio in the “Gpio” parameter.

51

3.6.2.7.2 Returned Values
0 : successful completion

Otherwise, a negative returned value represents an error (cf § 3.6.1.2.6 “Returned values
definition”).

3.6.2.7.3 Required Header
Wm_io.h

3.6.2.7.4 Notes
❑ If one of the given Gpio labels is not related to the given Handle, the wm_ioWrite

function will fail.

3.6.2.8 The wm_ioSingleWrite Function
The wm_ioSingleWrite function allows to define a new state for one single allocated Gpio.
Its prototype is:

s32 wm_ioSingleWrite (s32 Handle,
u32 Gpio
u32 State);

3.6.2.8.1 Parameters

Handle:
Handle returned by the wm_ioAllocate function. The Gpio parameter must be related to
this Handle.

Gpio:
Value designating the Gpio to write, member of the wm_ioLabel_u union.

State:
Value designating the State to write (High or Low).

3.6.2.8.2 Returned Values
0 : successful completion

Otherwise, a negative returned value represents an error (cf § 3.6.1.2.6 “Returned values
definition”).

3.6.2.8.3 Required Header
Wm_io.h

3.6.2.8.4 Notes
❑ If the given Gpio label is not related to the given Handle, the wm_ioSingleWrite

function will fail.

52

3.7 BUS API
This API manages the I2C Soft and SPI bus operations.

3.7.1 Returned values definition

WM_BUS_PROC_DONE (0) : the function processing is successfuly done.
WM_BUS_MODE_UNKNOWN_TYPE (-1) : unknown open mode type.
WM_BUS_UNKNOWN_TYPE (-11) : unknown bus type.
WM_BUS_BAD_PARAMETER (-12) : a parameter has a not allowed value.
WM_BUS_SPI1_ALREADY_USED (-13) : the SPI bus is already opened.
WM_BUS_I2C_SOFT_ALREADY_USED (-15) : the I2C Soft bus is already opened.
WM_BUS_UNKNOWN_HANDLE (-21) : the handle used has an incorrect value.
WM_BUS_HANDLE_NOT_OPENED (-22) : no opened handle for this bus.
WM_BUS_NOT_CONNECTED_ON_I2C (-31) : no peripheral connected on I2C Soft bus.
WM_BUS_NOT_ALLOWED_ADDRESS (-32) : unknown address.
WM_BUS_I2C_SOFT_GPIO_NOT_GPIO (-33) : the function tried to Open I2C Soft bus with a
GPI or a GPO.
WM_BUS_SPI_SIZE_TOO_LARGE (-36) : the function has tried to read or write more than
512 bytes on SPI bus.
WM_BUS_I2C_SIZE_TOO_LARGE (-37) : the function has tried to read or write more than
512 bytes on I2C bus.

3.7.2 The wm_busOpen Function

The wm_busOpen function allows to allocate a Handle on the required bus, and to open it
for further read/write operations.
Its prototype is:

s32 wm_busOpen (u32 BusType,
u32 Mode
wm_busSettings_u * Settings);

3.7.2.1 Parameters

BusType:
Type of the bus to open. Defined values are:

❑ WM_BUS_SPI1 for SPI bus ;
❑ WM_BUS_SOFT_I2C for I2C software bus.

Mode:
Bus mode ; the only defined value is WM_BUS_MODE_STANDARD.

Settings:
Pointer on settings union, defined as below.

typedef union

{
wm_busSPISettings_t SPI;
wm_busI2CSoftSettings_t I2C_Soft;

} wm_busSettings_u;

53

To open the SPI bus, you must use the SPI member of this union, defined as below:
typedef struct

{
u32 Clk_Speed;
u32 Clk_Mode;

} wm_busSPISettings_t;
The Clk_Speed parameter is the SPI clock speed ; defined values are:

❑ WM_SCL_SPEED_101Khz ;

❑ WM_SCL_SPEED_812Khz ;

❑ WM_SCL_SPEED_1_625MHz ;

❑ WM_SCL_SPEED_3_25MHz.

The Clk_Mode parameter is the SPI clock mode ; defined values are:
❑ WM_SCK_MODE_0 (rest state 0, data valid on rising edge);
❑ WM_SCK_MODE_1 (rest state 0, data valid on falling edge);
❑ WM_SCK_MODE_2 (rest state 1, data valid on rising edge);
❑ WM_SCK_MODE_3 (rest state 1, data valid on falling edge);

To open the I2C soft bus, you must use the I2C_Soft parameter of the union, defined as
below:

typedef struct

{

u32 Scl_Gpio;
u32 Sda_Gpio;

} wm_busI2CSoftSettings_t;
The Scl_Gpio parameter is the label of the Gpio used to handle the SCL signal.
The Sda_Gpio parameter is the label of the Gpio used to handle the SDA signal.
Each of these labels must be a member of the wm_ioLabel_u union (see §3.6.2.1.2).

3.7.2.2 Returned Values
On successful completion, the function returns a positive or null Handle, to use for further
Read / Write / Close operations on this bus.

Otherwise, the function will return a negative error value (cf §3.7.1 “Return values
definition”).

3.7.2.3 Required Header
Wm_bus.h

3.7.2.4 Notes
❑ For I2C soft bus, the two Gpios labels passed in the Settings parameter must not

be allocated by the embedded application ; only Gpio are allowed, using Gpi or
Gpo to open the I2C bus will result as an error.

❑ A bus is available only if it was not opened before by AT commands (AT+WBM),
otherwise, the wm_busOpen will result as an error. If a bus is opened by the
Embedded application, it will be not available to AT commands, until the use of
wm_busClose function.

54

3.7.3 The wm_busClose Function

The wm_busClose function allows to close a bus previously allocated by the wm_busOpen
function.
Its prototype is:

s32 wm_busClose (s32 Handle);

3.7.3.1 Parameters

Handle:
Handle of the bus to close, returned by wm_busOpen function.

3.7.3.2 Returned Values
On successful completion, the function returns 0.

Otherwise, the function will return a negative error value (cf §3.7.1 “Return values
definition”).

3.7.3.3 Required Header
Wm_bus.h

3.7.3.4 Notes
❑ For I2C soft bus, the two Gpios labels passed in the Settings parameter of the

wm_busOpen function are available again after the return of the wm_busClose
function.

3.7.4 The wm_busWrite Function

The wm_busWrite function allows to write on a bus previously allocated by the
wm_busOpen function.
Its prototype is:

s32 wm_busWrite (s32 Handle
u32 Address,
void * pDataToWrite,
u32 NbBytes);

55

3.7.4.1 Parameters

Handle:
Handle of the bus device to write on, returned by wm_busOpen function.

Address:
Address of the device present on the requested bus, at which the function must write. This
address depends on bus type:
For SPI: This parameter uses a set of chip select pins, dedicated to specific mapping of
address:

❑ WM_BUS_SPI_ADDRESS_NO_CS : the function does not use any Chip Select
(in order to use a GPIO as Chip Select, for example);

❑ WM_BUS_SPI_ADDRESS_SPI_EN : the function uses the SPI_EN pin as Chip
Select ;

❑ WM_BUS_SPI_ADDRESS_SPI_AUX : the function uses the SPI_AUX pin as Chip
Select.

For I2C soft: this parameter is the slave address byte. This is a 7-bits address, shift to left
from 1 bit, padded with the LSB set to 0 (to write), and sent on the I2C bus before
performing the writing operation.

pDataToWrite:
Buffer containing data to write on the requested bus.

NbBytes
Size of the pDataToWrite buffer. This size must not exceed 512 bytes.

3.7.4.2 Returned Values
On successful completion, the function returns the number of bytes written.

Otherwise, the function will return a negative error value (cf §3.7.1 “Return values
definition”).

3.7.4.3 Required Header
Wm_bus.h

3.7.5 The wm_busRead Function

The wm_busRead function allows to read on a bus previously allocated by the
wm_busOpen function.
Its prototype is :

s32 wm_busRead (s32 Handle
u32 Address,
void * pDataToRead,
u32 NbBytes);

56

3.7.5.1 Parameters

Handle:
Handle of the bus device to read from, returned by wm_busOpen function.

Address:
Address of the device present on the requested bus, at which the function must read. This
address depends on bus type:
For SPI: this parametrer uses a set of chip of select pins, dedicated to specific mapping of
address:

❑ WM_BUS_SPI_ADDRESS_NO_CS : the function does not use any Chip Select (in
order to use a GPIO as Chip Select, for example) ;

❑ WM_BUS_SPI_ADDRESS_SPI_EN : the function uses the SPI_EN pin as Chip
Select ;

❑ WM_BUS_SPI_ADDRESS_SPI_AUX : the function uses the SPI_AUX pin as Chip
Select.

For I2C soft: this parameter is the slave address byte. This is a 7-bits address, shift to left
from 1 bit, padded with the LSB set to 1 (ro read), and sent on the I2C bus before
performing the readintg operation.

pDataToRead:
Buffer containing data to read from the requested bus.

For SPI bus, the 2 first bytes should be used to send an operation code byte to the slave,
before performing the reading operation. The first byte is the operation code length, in bits
(from 1 to 8). The second byte is operation code value (as the MSB in always sent first, if
the length is less than 8 bits, only the most significant bytes will be sent (example: to send
first a bit set to 1, the buffer must be set to “0180“)).

NbBytes
Size of the pDataToRead buffer. This size must not exceed 512 bytes.

3.7.5.2 Returned Values
On successful completion, the function returns the number of bytes read.

Otherwise, the function will return a negative error value (cf §3.7.1 “Return values
definition”).

3.7.5.3 Required Header
Wm_bus.h

57

3.8 Standard Library
The available standard functions are as follows:

char *wm_strcpy(char * dst, char * src);

char *..........................wm_strncpy(char * dst, char * src, u32 n);

char *wm_strcat(char * dst, char * src);

char *wm_strncat(char * dst, char * src, u32 n);

u32wm_strlen(char * str);

s32wm_strcmp(char * s1, char * s2);

s32wm_strncmp(char * s1, char * s2, u32 n);

s32wm_stricmp(char * s1, char * s2);

s32wm_strnicmp(char * s1, char * s2, u32 n);

char *..........................wm_memset(char * dst, char c, u32 n);

char *..........................wm_memcpy(char * dst, char * src, u32 n);

s32wm_memcmp(char * dst, char * src, u32 n);

char *..........................wm_itoa ..(s32 a, char * szBuffer);

s32wm_atoi ..(char * p);

s32wm_strcmpi(char * dst, char * src);

s32wm_strnicmp(char * first, char * last, u32 count);

charwm_isascii(char c);

charwm_isdigit(char c);

Required Header
wm_stdio.h

58

4 FUNCTIONING
There are three different functioning modes, depending on the type of application. They
are described in the following paragraphs.

4.1 Standalone External Application
This mode corresponds to the standard operation mode: no Embedded Application is
active.

Figure 3: Standalone External Application Function

The steps are performed in the following sequence:
➊ The External Application sends an AT command,
➋ The serial link transmits the command to the AT processor function of the Wavecom

Core Software,
➌ The AT function processes the command,
➍ The AT function sends an AT response to the External Application,
➎ This response is sent through the serial link, and
➏ The External Application receives the response.
Note: This mode is also compatible with the mode described in § 4.2, where the AT function is in
charge of dispatching the responses to the right application.

59

4.2 Embedded Application in Standalone Mode
This mode is based on an Embedded Application driving the GSM product independently.

Figure 4: Embedded Application in Standalone Mode Function

The steps are performed in the following sequence:
➊ The Embedded Application calls the “wm_atSendCommand” function to send an AT

command. The response parameter is then WM_AT_SEND_RSP_TO_EMBEDDED,
➋ The Wavecom library calls the appropriate AT function from the Wavecom Core

Software,
➌ The AT function processes the command,
➍ The AT function sends the AT response to the Embedded Application,
➎ This response is dispatched by the Wavecom library which calls the

“wm_apmAppliParser” function of the Embedded Application,
➏ The “wm_apmAppliParser” function processes the response (the AT response is a

parameter of the function). The Message type is WM_AT_RESPONSE.

60

Example: appli.c file of a Standalone Mode embedded application

/**/
/* Appli.c - Copyright Wavecom S.A. (c) 2001 */
/**/
#include "wm_types.h"
#include "wm_apm.h"
#define TIMER 01
/**************************/
/* Mandatory Variables */
/**************************/
char wm_apmCustomStack[1024];
const u16 wm_apmCustomStackSize = sizeof (wm_apmCustomStack);
/**************************/
/* Mandatory Functions */
/**************************/
/*************************************/
/* wm_apmAppliInit */
/* Embedded Application initialisation */
/************************************/
s32 wm_apmAppliInit (wm_apmInitType_e InitType)
{

wm_osDebugTrace(1, "Embedded: Appli Init");

wm_osStartTimer (TIMER, FALSE, WM_S_TO_TICK (2));
return OK;

}
/**/
/* wm_apmAppliParser */
/* Embedded Application message parser */
/**/
s32 wm_apmAppliParser (wm_apmMsg_t * pMessage)
{

wm_osDebugTrace (1, "Embedded: Appli Parser");

switch (pMessage->MsgTyp)
{

case WM_OS_TIMER:
wm_osDebugTrace (1, "WM_OS_TIMER received");
if (pMessage->Body.OSTimer.Ident == TIMER)
{

wm_atSendCommand (4, WM_AT_SEND_RSP_TO_EMBEDDED,
“AT\r”);

wm_osDebugTrace (1, "Send command \”AT\\r\”");
}

break;
case WM_AT_RESPONSE:

wm_osDebugTrace (1, "WM_AT_RESPONSE received");
if (pMessage->Body.ATResponse.Type ==

WM_AT_SEND_RSP_TO_EMBEDDED)
{

wm_osDebugTrace (1, "Response received:");
wm_osDebugTrace (1, pMessage->Body.ATResponse.StrData);

}
break;

}
return OK;

}

61

Target Monitoring Tool traces with this example:

Trace CUS 1 Embedded: Appli Init

Trace CUS 1 Embedded: Appli Parser

Trace CUS 1 WM_OS_TIMER received

Trace CUS 1 Send command "AT\r"

Trace CUS 1 Embedded: Appli Parser

Trace CUS 1 WM_AT_RESPONSE received

Trace CUS 1 Response received:

Trace CUS 1 <CR><LF>OK<CR><LF>

4.3 Cooperative Mode
This mode corresponds to the interaction between an External Application and an
Embedded Application.
Whenever the Embedded Application wants to filter or spy the commands sent by the
External Application, it can use the command pre-parsing mechanism.
Three types of subscription are available. They define the level of information required by
the Embedded Application:

❑ The Embedded Application does not want to filter or spy the commands sent by
the External Application: this is done using
WM_AT_CMD_PRE_WAVECOM_TREATMENT.

❑ The Embedded Application wants to filter the AT commands sent by the External
Application: this is done using WM_AT_CMD_PRE_EMBEDDED_TREATMENT.
In this configuration, it is up to the Embedded Application to process or not the AT
command and to send a response to the External Application.

❑ The Embedded Application wants only to spy the AT commands sent by the
External Application: this is done using WM_AT_CMD_PRE_BROADCAST.

Whenever the Embedded Application wants to filter or spy the responses sent to the
External Application, it can use the response pre-parsing mechanism.
Three types of subscription are available. They define the level of information required by
the Embedded Application:

❑ The Embedded Application does not want to filter or spy the responses sent to
the External Application: this is done using
WM_AT_RSP_PRE_WAVECOM_TREATMENT.

❑ The Embedded Application wants to filter the AT responses sent to the External
Application: this is done using WM_AT_RSP_PRE_EMBEDDED_TREATMENT.
In this configuration, it is up to the Embedded Application to send a response to
the External Application.

❑ The Embedded Application wants only to spy the AT responses sent to the
External Application: this is done using WM_AT_RSP_PRE_BROADCAST.

62

4.3.1 Command Pre-Parsing Subscription Mechanism:

WM_AT_CMD_PRE_EMBEDDED_TREATMENT

Figure 5: WM_AT_CMD_PRE_EMBEDDED_TREATMENT

The steps in a Pre-Parsing subscription are performed in the following sequence:
➊ The Embedded Application subscribes to the command pre-parsing service, by calling

the wm_atCmdPreParserSubscribe() function,
➋ The Wavecom library calls the appropriate function from the Wavecom Core Software,

and
➌ The AT function sets the subscription.
The steps in AT command processing are performed in the following sequence:
➍ The External Application sends an AT command,
➎ The serial link transmits the command to the AT processor function in the Wavecom

Core Software,
➏ The AT function does not process the command but transmits it to the Embedded

Application,
➐ The command is routed by the Wavecom library which calls the “wm_apmAppliParser”

function of the Embedded Application (the Message type is
WM_AT_CMD_PRE_PARSER),

➑ This function processes the command: the parameters of the function include the AT
command and an indication that the command comes from an External Application.

63

Example: appli.c file of a WM_AT_CMD_PRE_EMBEDDED_TREATMENT Mode Embedded
Application

/**/
/* Appli.c - Copyright Wavecom S.A. (c) 2001 */
/**/
#include "wm_types.h"
#include "wm_apm.h"
#define TIMER 01
/**************************/
/* Mandatory Variables */
/**************************/
char wm_apmCustomStack[1024];
const u16 wm_apmCustomStackSize = sizeof (wm_apmCustomStack);
/**************************/
/* Mandatory Functions */
/**************************/
/*************************************/
/* wm_apmAppliInit */
/* Embedded Application initialisation */
/************************************/
s32 wm_apmAppliInit (wm_apmInitType_e InitType)
{

wm_osDebugTrace(1, "Embedded: Appli Init");
wm_atCmdPreParserSubscribe (WM_AT_CMD_PRE_EMBEDDED_TREATMENT);
wm_osStartTimer (TIMER, FALSE, WM_S_TO_TICK (2));
return OK;

}
/**/
/* wm_apmAppliParser */
/* Embedded Application message parser */
/**/
s32 wm_apmAppliParser (wm_apmMsg_t * pMessage)
{

wm_osDebugTrace (1, "Embedded: Appli Parser");
switch (pMessage->MsgTyp)
{

case WM_OS_TIMER:
wm_osDebugTrace (1, "WM_OS_TIMER received");

break;
case WM_AT_CMD_PRE_PARSER:

wm_osDebugTrace (1, "WM_AT_CMD_PRE_PARSER received");
if (pMessage->Body.ATCmdPreParser.Type ==

WM_AT_CMD_PRE_EMBEDDED_TREATMENT)
{

wm_osDebugTrace (1, "command received:");
wm_osDebugTrace (1, pMessage->Body.ATCmdPreParser.StrData);

if (!wm_strncmp (pMessage->Body.ATCmdPreParser.StrData,
"AT-W", 4))

{
/* filter Specific embedded application command */
wm_osDebugTrace (1, "Specific embedded application command");

/* send response to external application */
wm_atSendRspExternalApp (10, "\r\n->WOK\r\n");

}
else
{

/* command must be treated by AT Software */
wm_osDebugTrace (1, "Wavecom Core Software command");
wm_atSendCommand (

pMessage->Body.ATCmdPreParser.StrLength,
WM_AT_SEND_RSP_TO_EXTERNAL,
pMessage->Body.ATCmdPreParser.StrData);

}
}

break;
}

return OK;
}

64

 An AT command log for the external application with this example:

AT
OK
AT-W
->WOK

Target Monitoring Tool traces with this example:

Trace CUS 1 Embedded: Appli Init

Trace CUS 1 Embedded: Appli Parser

Trace CUS 1 WM_OS_TIMER received

Trace CUS 1 Embedded: Appli Parser

Trace CUS 1 WM_AT_CMD_PRE_PARSER received

Trace CUS 1 command received:

Trace CUS 1 AT<CR>

Trace CUS 1 Wavecom Core Software command

Trace CUS 1 Embedded: Appli Parser

Trace CUS 1 WM_AT_CMD_PRE_PARSER received

Trace CUS 1 command received:

Trace CUS 1 AT-W<CR>

Trace CUS 1 Specific embedded application command

65

4.3.2 Command Pre-Parsing Subscription Process: WM_AT_CMD_PRE_BROADCAST

Figure 6: WM_AT_CMD_PRE_BROADCAST

The steps in a Pre-Parsing subscription are performed in the following sequence:
➊ The Embedded Application subscribes to the command pre-parsing service, by calling

the wm_atCmdPreParserSubscribe() function,
➋ The Wavecom library calls the appropriate function in the Wavecom Core Software, and
➌ The AT function sets the subscription.
The steps in AT command processing are performed in the following sequence:
➍ The External Application sends an AT command,
➎ The serial link transmits the command to the AT function of the Wavecom Core

Software,
➏ This AT function checks the subscription status of the “external” AT command,
➐ This external AT command is dispatched by the Wavecom library which calls the

“wm_apmAppliParser” function of the Embedded Application,
➐’ Meanwhile, the AT function processes the command,
➑ The “wm_apmAppliParser” function spies the command: the parameters include the AT

command and the indication of whether or not the command is a copy (the Message
type is WM_AT_CMD_PRE_PARSER).

66

Example: appli.c file of a WM_AT_CMD_PRE_BROADCAST Mode embedded application

/**/
/* Appli.c - Copyright Wavecom S.A. (c) 2001 */
/**/
#include "wm_types.h"
#include "wm_apm.h"
#define TIMER 01
/**************************/
/* Mandatory Variables */
/**************************/
char wm_apmCustomStack[1024];
const u16 wm_apmCustomStackSize = sizeof (wm_apmCustomStack);
/**************************/
/* Mandatory Functions */
/**************************/
/************************************/
/* wm_apmAppliInit */
/* Embedded Application initialisation */
/************************************/
s32 wm_apmAppliInit (wm_apmInitType_e InitType)
{

wm_osDebugTrace(1, "Embedded: Appli Init");
wm_atCmdPreParserSubscribe (WM_AT_CMD_PRE_BROADCAST);
wm_osStartTimer (TIMER, FALSE, WM_S_TO_TICK (2));
return OK;

}
/**/
/* wm_apmAppliParser */
/* Embedded Application message parser */
/**/
s32 wm_apmAppliParser (wm_apmMsg_t * pMessage)
{

wm_osDebugTrace (1, "Embedded: Appli Parser");
switch (pMessage->MsgTyp)
{

case WM_OS_TIMER:
wm_osDebugTrace (1, "WM_OS_TIMER received");

break;
case WM_AT_CMD_PRE_PARSER:

wm_osDebugTrace (1, "WM_AT_CMD_PRE_PARSER received");
if (pMessage->Body.ATCmdPreParser.Type ==

WM_AT_CMD_PRE_BROADCAST)
{

/* spy command sent by external application */
wm_osDebugTrace (1, "command received from external application");
wm_osDebugTrace (1, pMessage->Body.ATCmdPreParser.StrData);

}
break;

}
return OK;

}

67

AT command log for the external application with this example:

AT
OK

Target Monitoring Tool traces with this example:

Trace CUS 1 Embedded: Appli Init

Trace CUS 1 Embedded: Appli Parser

Trace CUS 1 WM_OS_TIMER received

Trace CUS 1 Embedded: Appli Parser

Trace CUS 1 WM_AT_CMD_PRE_PARSER received

Trace CUS 1 command received from external application

Trace CUS 1 at<CR>

68

4.3.3 Response Pre-Parsing Subscription Process: WM_AT_RSP_PRE_EMBEDDED_TREATMENT

Figure 7: WM_AT_RSP_PRE_EMBEDDED_TREATMENT

The steps in a Pre-Parsing subscription are performed in the following sequence:
➊ The Embedded Application subscribes to the response pre-parsing facility, by calling the

wm_atRspPreParserSubscribe() function,
➋ The Wavecom library calls the appropriate function from the Wavecom Core Software,

and
➌ The AT function sets the subscription.
The steps in AT command processing are performed in the following sequence:
➍ The External Application sends an AT command,
➎ The serial link transmits the command to the AT function of the Wavecom Core

Software,
➏ This configuration does not rely on command pre-parsing. The AT function processes

the command,
➐ The AT function checks the subscription status of the response and does not send the

response to the External Application. Instead, it sends the response to the Embedded
Application,

➑ The response is dispatched by the Wavecom library which calls the
“wm_apmAppliParser” function of the Embedded Application (the Message type is
WM_AT_RSP_PRE_PARSER),

➒ This function processes the response (the parameters of the function include an
indication of the response filtering).

69

Example: appli.c file of a WM_AT_RSP_PRE_EMBEDDED_TREATMENT Mode embedded
application

/**/
/* Appli.c - Copyright Wavecom S.A. (c) 2001 */
/**/
#include "wm_types.h"
#include "wm_apm.h"
#define TIMER 01
/**************************/
/* Mandatory Variables */
/**************************/
char wm_apmCustomStack[1024];
const u16 wm_apmCustomStackSize = sizeof (wm_apmCustomStack);
/**************************/
/* Mandatory Functions */
/**************************/
/*************************************/
/* wm_apmAppliInit */
/* Embedded Application initialisation */
/*************************************/
s32 wm_apmAppliInit (wm_apmInitType_e InitType)
{

wm_osDebugTrace(1, "Embedded: Appli Init");
wm_atRspPreParserSubscribe (WM_AT_RSP_PRE_EMBEDDED_TREATMENT);
wm_osStartTimer (TIMER, FALSE, WM_S_TO_TICK (2));
return OK;

}
/**/
/* wm_apmAppliParser */
/* Embedded Application message parser */
/**/
s32 wm_apmAppliParser (wm_apmMsg_t * pMessage)
{

wm_osDebugTrace (1, "Embedded: Appli Parser");
switch (pMessage->MsgTyp)
{

case WM_OS_TIMER:
wm_osDebugTrace (1, "WM_OS_TIMER received");

break;
case WM_AT_RSP_PRE_PARSER:

wm_osDebugTrace (1, "WM_AT_RSP_PRE_PARSER received");
wm_osDebugTrace (1, pMessage->Body.ATRspPreParser.StrData);
if (pMessage->Body.ATRspPreParser.Type ==

WM_AT_RSP_PRE_EMBEDDED_TREATMENT)
{

if (!wm_strncmp ("\r\nOK\r\n",
pMessage->Body.ATRspPreParser.StrData, 6))

{
wm_osDebugTrace (1, "OK response modified for external application");
wm_atSendRspExternalApp (10, "\r\n->WOK\r\n");

}
else
{

wm_osDebugTrace (1, "no modified response");
wm_atSendRspExternalApp (

pMessage->Body.ATRspPreParser.StrLength,
pMessage->Body.ATRspPreParser.StrData);

}
}

break;
}

return OK;
}

70

AT commands log for the external application with this example:

AT
->WOK
at+wopen?
+WOPEN: 1
->WOK

Target Monitoring Tool traces with this example:

Trace CUS 1 Embedded: Appli Init

Trace CUS 1 Embedded: Appli Parser

Trace CUS 1 WM_OS_TIMER received

Trace CUS 1 Embedded: Appli Parser

Trace CUS 1 WM_AT_RSP_PRE_PARSER received

Trace CUS 1 <CR><LF>OK<CR><LF>

Trace CUS 1 OK response modified for external application

Trace CUS 1 Embedded: Appli Parser

Trace CUS 1 WM_AT_RSP_PRE_PARSER received

Trace CUS 1 <CR><LF>+WOPEN: 1<CR><LF>

Trace CUS 1 no modified response

Trace CUS 1 Embedded: Appli Parser

Trace CUS 1 WM_AT_RSP_PRE_PARSER received

Trace CUS 1 <CR><LF>OK<CR><LF>

Trace CUS 1 OK response modified for external application

71

4.3.4 Response Pre-Parsing Subscription Process: WM_AT_RSP_PRE_BROADCAST

Figure 8: WM_AT_RSP_PRE_BROADCAST

The steps in a Pre-Parsing subscription are performed in the following sequence:
➊ The Embedded Application subscribes to the response pre-parsing facility, by calling the

wm_atRspPreParserSubscribe() function,
➋ The Wavecom library calls the appropriate function in the Wavecom Core Software, and
➌ The AT function sets the subscription.
The steps in AT command processing are performed in the following sequence:
➍ The External Application sends an AT command,
➎ The serial link transmits the command to the AT function of the Wavecom Core

Software,
➏ This configuration does not rely on command pre-parsing. The AT function processes

the command,
➐ The AT function checks the subscription status of the response and sends it to both the

External Application and the Embedded Application,
➑ The response is dispatched by the Wavecom library, which calls the

“wm_apmAppliParser” function of the Embedded Application (the Message type is
WM_AT_RSP_PRE_PARSER),

➒ This function processes the response (the parameters of the function include a
broadcast response indication),

➑’ This response is sent through the serial link,
➒’ The External Application receives the response.

72

Example: appli.c file of a WM_AT_RSP_PRE_BROADCAST Mode embedded application

/**/
/* Appli.c - Copyright Wavecom S.A. (c) 2001 */
/**/

#include "wm_types.h"
#include "wm_apm.h"
#define TIMER 01
/**************************/
/* Mandatory Variables */
/**************************/
char wm_apmCustomStack[1024];
const u16 wm_apmCustomStackSize = sizeof (wm_apmCustomStack);
/**************************/
/* Mandatory Functions */
/**************************/
/************************************/
/* wm_apmAppliInit */
/* Embedded Application initialisation */
/************************************/
s32 wm_apmAppliInit (wm_apmInitType_e InitType)
{

wm_osDebugTrace(1, "Embedded: Appli Init");
wm_atRspPreParserSubscribe (WM_AT_RSP_PRE_BROADCAST);
wm_osStartTimer (TIMER, FALSE, WM_S_TO_TICK (2));
return OK;

}
/**/
/* wm_apmAppliParser */
/* Embedded Application message parser */
/**/
s32 wm_apmAppliParser (wm_apmMsg_t * pMessage)
{

wm_osDebugTrace (1, "Embedded: Appli Parser");
switch (pMessage->MsgTyp)
{

case WM_OS_TIMER:
wm_osDebugTrace (1, "WM_OS_TIMER received");

break;
case WM_AT_RSP_PRE_PARSER:

wm_osDebugTrace (1, "WM_AT_RSP_PRE_PARSER received");
if (pMessage->Body.ATRspPreParser.Type ==

WM_AT_RSP_PRE_BROADCAST)
{

/* spy response sent to external application */
wm_osDebugTrace (1, "response sent to external application");
wm_osDebugTrace (1, pMessage->Body.ATRspPreParser.StrData);

}
break;

}
return OK;

}

73

AT command log for the external application with this example:

AT
OK

Target Monitoring Tool traces with this example:

Trace CUS 1 Embedded: Appli Init

Trace CUS 1 Embedded: Appli Parser

Trace CUS 1 WM_OS_TIMER received

Trace CUS 1 Embedded: Appli Parser

Trace CUS 1 WM_AT_RSP_PRE_PARSER received

Trace CUS 1 response sent to external application

Trace CUS 1 <CR><LF>OK<CR><LF>

74

4.3.5 Example: Embedded Application Using the Different Functioning Modes

/**/
/* Appli.c - Copyright Wavecom S.A. (c) 2001 */
/**/
#include "wm_types.h"
#include "wm_apm.h"
#define TIMER 01
typedef enum
{

STANDALONE,
CMD_PREPARSING_EMBEDDED,
CMD_PREPARSING_BROADCAST,
RSP_PREPARSING_EMBEDDED,
RSP_PREPARSING_BROADCAST,

} wm_AtMode_e;

/**************************/
/* Mandatory Variables */
/**************************/
char wm_apmCustomStack[1024];
const u16 wm_apmCustomStackSize = sizeof (wm_apmCustomStack);
/**************************/
/* Global Variables */
/**************************/
wm_AtMode_e AtMode = STANDALONE;
/**************************/
/* Global Function */
/**************************/
void AtAutomate(state)
{

switch(state)
{
case STANDALONE:

wm_osDebugTrace(1, "STANDALONE");
wm_atCmdPreParserSubscribe(WM_AT_CMD_PRE_WAVECOM_TREATMENT);
wm_atRspPreParserSubscribe(WM_AT_RSP_PRE_WAVECOM_TREATMENT);
wm_atSendRspExternalApp(16,"STANDALONE mode");
wm_atSendRspExternalApp(18,"send an at command");

break;
case CMD_PREPARSING_EMBEDDED:

wm_osDebugTrace(1, "CMD_PREPARSING_EMBEDDED");
wm_atCmdPreParserSubscribe(WM_AT_CMD_PRE_EMBEDDED_TREATMENT);
wm_atRspPreParserSubscribe(WM_AT_RSP_PRE_WAVECOM_TREATMENT);
wm_atSendRspExternalApp(29,"CMD_PREPARSING_EMBEDDED mode");
wm_atSendRspExternalApp(18,"send an at command");

break;
case CMD_PREPARSING_BROADCAST:

wm_osDebugTrace(1, "CMD_PREPARSING_BROADCAST");
wm_atCmdPreParserSubscribe(WM_AT_CMD_PRE_BROADCAST);
wm_atRspPreParserSubscribe(WM_AT_RSP_PRE_WAVECOM_TREATMENT);
wm_atSendRspExternalApp(30,"CMD_PREPARSING_BROADCAST mode");
wm_atSendRspExternalApp(18,"send an at command");

break;
case RSP_PREPARSING_EMBEDDED:

wm_osDebugTrace(1, "RSP_PREPARSING_EMBEDDED");
wm_atCmdPreParserSubscribe(WM_AT_CMD_PRE_WAVECOM_TREATMENT);
wm_atRspPreParserSubscribe(WM_AT_RSP_PRE_EMBEDDED_TREATMENT);
wm_atSendRspExternalApp(29,"RSP_PREPARSING_EMBEDDED mode");
wm_atSendRspExternalApp(18,"send an at command");

break;
case RSP_PREPARSING_BROADCAST:

wm_osDebugTrace(1, "RSP_PREPARSING_BROADCAST");
wm_atCmdPreParserSubscribe(WM_AT_CMD_PRE_WAVECOM_TREATMENT);
wm_atRspPreParserSubscribe(WM_AT_RSP_PRE_BROADCAST);
wm_atSendRspExternalApp(30,"RSP_PREPARSING_BROADCAST mode");
wm_atSendRspExternalApp(18,"send an at command");

break;

75

default:
wm_osDebugTrace(1, "mode unexpected");
break;

}
}
/**************************/
/* Mandatory Functions */
/**************************/
/*************************************/
/* wm_apmAppliInit */
/* Embedded Application initialisation */
/*************************************/
s32 wm_apmAppliInit (wm_apmInitType_e InitType)
{

wm_osDebugTrace(1, "Embedded: Appli Init");
wm_osStartTimer (TIMER, FALSE, WM_S_TO_TICK (2));
return OK;

}
/**/

/* wm_apmAppliParser */
/* Embedded Application message parser */
/**/
bool wm_apmAppliParser (wm_apmMsg_t * pMessage)
{

wm_osDebugTrace (1, "Embedded: Appli Parser");
switch (pMessage->MsgTyp)
{

case WM_OS_TIMER:
wm_osDebugTrace (1, "WM_OS_TIMER received");
AtAutomate(AtMode);
if (AtMode!=RSP_PREPARSING_BROADCAST)
{

AtMode++;
wm_osStartTimer (TIMER, FALSE, WM_S_TO_TICK(10));

}
break;
case WM_AT_RESPONSE:

wm_atSendRspExternalApp(33, "message WM_AT_RESPONSE
received:");

wm_strncpy(strReceived, pMessage->Body.ATResponse.StrData,
pMessage->Body.ATResponse.StrLength);

strReceived[pMessage->Body.ATResponse.StrLength] = '\0';
wm_atSendRspExternalApp(pMessage->Body.ATResponse.StrLength +

1, strReceived);
break;
case WM_AT_CMD_PRE_PARSER:

wm_atSendRspExternalApp(39, "message WM_AT_CMD_PRE_PARSER
received:");

wm_strncpy(strReceived, pMessage->Body.ATCmdPreParser.StrData,
pMessage->Body.ATCmdPreParser.StrLength);

strReceived[pMessage->Body.ATCmdPreParser.StrLength] = '\0';
wm_atSendRspExternalApp(pMessage->Body.ATResponse.StrLength +

1, strReceived);
break;

case WM_AT_RSP_PRE_PARSER:
wm_atSendRspExternalApp(39, "message WM_AT_RSP_PRE_PARSER

received:");
wm_strncpy(strReceived, pMessage->Body.ATRspPreParser.StrData,

pMessage->Body.ATRspPreParser.StrLength);
strReceived[pMessage->Body.ATRspPreParser.StrLength] = '\0';
wm_atSendRspExternalApp(pMessage->Body.ATResponse.StrLength +

1, strReceived);
break;

}
return TRUE;

}

76

AT command log for the external application with this example:

STANDALONE mode

at no interaction between external

OK and embedded application

CMD_PREPARSING_EMBEDDED mode

send an at command

at command sent to embedded application

• message WM_AT_CMD_PRE_PARSER received:

at and not to Wavecom AT Software

CMD_PREPARSING_BROADCAST mode

send an at command

at command sent to both

OK response of Wavecom AT Software

• message WM_AT_CMD_PRE_PARSER received:

at command received by embedded application

RSP_PREPARSING_EMBEDDED mode

send an at command

at command sent to Wavecom AT Software

• message WM_AT_RSP_PRE_PARSER received:

OK response sent to embedded application

RSP_PREPARSING_BROADCAST mode

send an at command

at command sent to Wavecom AT Software

OK response sent to external application

• message WM_AT_RSP_PRE_PARSER received:

OK response sent to embedded application

77

Target Monitoring Tool traces with this example:

Trace CUS 1 Embedded: Appli Init

Trace CUS 1 Embedded: Appli Parser

Trace CUS 1 WM_OS_TIMER received

Trace CUS 1 STANDALONE

Trace CUS 1 Embedded: Appli Parser

Trace CUS 1 WM_OS_TIMER received

Trace CUS 1 CMD_PREPARSING_EMBEDDED

Trace CUS 1 Embedded: Appli Parser

Trace CUS 1 Embedded: Appli Parser

Trace CUS 1 WM_OS_TIMER received

Trace CUS 1 CMD_PREPARSING_BROADCAST

Trace CUS 1 Embedded: Appli Parser

Trace CUS 1 Embedded: Appli Parser

Trace CUS 1 WM_OS_TIMER received

Trace CUS 1 RSP_PREPARSING_EMBEDDED

Trace CUS 1 Embedded: Appli Parser

Trace CUS 1 Embedded: Appli Parser

Trace CUS 1 WM_OS_TIMER received

Trace CUS 1 RSP_PREPARSING_BROADCAST

Trace CUS 1 Embedded: Appli Parser

WAVECOM S.A. - 12, boulevard Garibaldi - 92442 Issy-les-Moulineaux Cedex - France - Tel: +33 (0)1 46 29 08 00 - Fax: +33 (0)1 46 29 08 08
WAVECOM, Inc. - 4810 Eastgate Mall - Second floor - San Diego, CA 92121 - USA - Tel: +1 858 362 0101 - Fax: +1 858 558 5485
WAVECOM Asia Pacific Ltd - 5/F Shui On Centre - 6/8 Harbour Road - Hong Kong, PRC - Tel: +852 2824 0254 - Fax: +852 2824 0255

www.wavecom.com

