
Model MTG-2000 Multi-Tone Signal Generator

- Calibrated output power levels
- 8 or 16 channels
- New, easy to use, operator interface

19

12

5 53 6 54 7 55

MAL AND THE

(22)

- Cellular and PCS Frequencies
- >*85 dB SFDR*

RDL.

Frequency Generation and Noise Measurement Systems 7th Ave. & Freedley St. • Conshohocken, PA 19428 610-825-3750 • Fax 610-825-3530 • www.rdl-instrumentation.com

MTG-2000 MULTI-TONE SIGNAL GENERATOR

What is the MTG

The MTG is a multi-tone signal generator where up to 16 CW signals are output simultaneously. These signals are internally combined so that the intermodulation products are controlled to be at very low levels. This output signal is primarily used to test the intermodulation performance of high power amplifiers (HPA).

Each tone is generated by a synthesizer that has 10 Hz frequency resolution and can be set to any frequency within the frequency range of that module. Any given MTG unit can be outfitted with up to 16 synthesizers. The typical configuration is either 8 or 16 tones. Both frequency range modules, Cellular and PCS, can be installed in a single MTG. The MTG represents a cost effective way to simulate the conditions presented by a base station to the output HPA.

Applications

Multi-channel amplifiers need to be tested with signals that represent the "real world". Any given base station can generate a set of carriers that might phase-align and increase the peak power to very high levels. The phase control capabilities of the MTG provide the means to simulate these signal conditions and verify that the HPA meets the intermodulation/linearity requirements of that particular communications system. Phase alignment (Phase Peaking), an automated sub-routine in the MTG, allows the user to make a signal that tests to controlled and repeatable peak-power conditions.

Random phase

This mode is provided in the MTG to verify that a feed-forward amplifier can properly respond to the varying peak power conditions presented in an actual base station. This mode, called "Continuous Random Phase", randomly moves

the phase of each channel at a controlled rate and generates a signal that has a varying peak power similar to the conditions in an actual base station. It has been empirically determined that 16 tones, operated in a continuously changing phase condition, simulate the signal presented to the HPA in both Cellular and PCS systems. Most amplifiers are tested in both the "Phase Peaked" and "Continuous Random Phase" modes to verify that the amplifier can safely respond to the highest peak power condition (Peaked) and operate in a more "real world" condition (Random Phase) where the peak power is moving over a 6-10 dB range; a range that is caused by modulation and phase drift.

Calibrated outputs

The MTG has calibrated output levels with 0.1 dB resolution. The tone-to-tone variation can be as high a 10 dB to simulate tilt or to compensate for signal path variations.

Individual outputs

Each individual tone generated inside the MTG is output on the rear panel for use in testing devices that need power levels higher that those available at the combined output of the MTG.

Easy ATE

A "Lab View" driver is available for controlling the MTG which allows for easy incorporation in ATE applications. Those users of the Model IMD Multi-tone Generator can easily move to the MTG through the use of the "IMD emulation" IEEE bus command set.

About Digital modulation and 3G applications

The latest digital modulation techniques and the need for more capacity has made HPA (High Power Amplifier) testing much more demanding. These applications have signals where the peak
Channel
Frequency
Power
Phase

1.0
1.0
1.0
1.0
1.0
1.0
1.0

Ref:
Sample:
Image: Step:
Image: Step:
Image: Step:
Image: Step:

1.0
1.780.00000
0.0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

Data Entry 8-9 followed by GHz, MHz, or kHz will change FREQUENCY Data ENTRY IN PROCESS, Press Appropriate UNITS or ENT Key When Finished

Figure 1 The "Help" menu can be accessed at any time for information about any data entry and its format. This screen shows the display while the "Frequency" of Channel one is being changed.

Data Entry followed by Units keys to change how FHEQUENCY Steps Have changed the Phases of all channels that are On, the unit is PEAKED											
Channel Frequency Power Phase											
Ihnee 1	Propagney Nite	Pourr dBn	Phase day	Channe I	Propussoy Nitz	Pourr din	Phase deg				
1 On 2 On 3 On 4 On 5 On 6 On 7 On 8 On	$\begin{array}{c} 1,700.00000\\ 1,733.33333\\ 1,766.66666\\ 1,800.00000\\ 1,833.33333\\ 1,866.66666\\ 1,900.00000\\ 1,933.33333\end{array}$	8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8	117 46 336 336 356 352 34 32	9 0n 18 0n 11 0n 12 0n 13 0n 14 0n 15 0n 16 0n	1,966.66666 2,000.00000 2,033.33333 2,066.60666 2,100.00000 2,133.33333 2,166.66666 2,200.00000	8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8	322 189 49 43 215 278 116 115				

Figure 2 This screen shows that the 16 channels have been "Peaked" (phase aligned) and is being used to change the "Step Size" for later manipulation of the frequency of the individual channels.

power can exceed the average power by many dB. These applications also require that the ACP (Adjacent Channel Power) be >65 dB down, sometimes > .75 dB as in the case of GSM/EDGE. This places unprecedented demands on the amplifier and the test equipment. The MTG-2000 has the dynamic range needed to generate a signal that can actually verify that the HPA or MCPA meets these requirements. The MTG-2000 can be used to create signals that closely simulate these signals without the dynamic range limitations of a digital modulator or the need for applicationspecific filtering.

Model MTG-2000 MULTI-TONE SIGNAL GENERATOR

Specifications

MULTI-TONES		REFERENCE OUTPUT	
Number of Channels	8 & 16	Connector	Rear panel BNC
		Power level	0 dBm ± 1.5 dB
FREQUENCY		Impedance	50 Ω output
Frequency Range	0.800-1.000 GHz	P	
1 , 0	1.700-2.200 GHz	REFERENCE INPUT	
Minimum Frequency Step Size	10 Hz	Connector	Rear panel BNC
Frequency Stability	±0.1 ppm	Power level	-3 to +10 dBm
Constant Ambient Temp.		Impedance	50 Ω input
Frequency Stability over Temp.	±0.1 ppm		
(15 to 35 C)		SAMPLE INPUT	
		RF Power	-10 to +10 dBm
RF POWER		Frequency Range	0.800-2.200 GHz
Programmable Output Range			
800 MHz to 1,000 MHz	+7 to -60 dBm	USER INTERFACE	
1,700 MHz to 2,200 MHz	+4 to -63 dBm	Remote Control	IEEE Std. 488-1987
Output level accuracy	± 0.5 dB		
(maximum to -10 dB)		INSTRUMENT STATE STORAGE	
Output level accuracy	± 0.75 dB	Internal Storage	10 NVM states
(> 10 dB below maximum)		3.5 inch floppy drive, IBM Formatted	
Relative Power , tone to tone and	0.2 dB		
total power, after manual leveling	0.1 10		
Minimum programmable Power Step Size	0.1 dB	Voltage (VAC)	90 to 130 Volts
Maximum Power Difference, tone to tone	10 dB	Automatically adjusted	200 to 240 Volts
Rear Panel RF Power Output	19.5 dBm nom	Frequency	47 to 63 Hz
PHASE CONTROL		Maximum AC Current	4 Amps
	0-359 deg.	MECHANICAL	
Phase Control Range Phase Increment	0-359 deg. 1 deg.	RF Output Connector	N-type, female, 50W
Phase Drift after 1 Hr. warm up	2 deg./Hour	External Keyboard Connector	PS/2 Rear panel
Envelope Peak Factor, after peaking	± 0.5 dB	Sample Input Connector	SMA-type, female, 50 Ω
function (10log(n))	± 0.5 db	(external phase alignment)	Sivirelype, lenidle, 30 22
Envelope Peak Factor, after nulling function	< 4 dB	Rear panel	
Phase Peak / Null Time	<25 sec.	IEEE-488 Interface	IEEE-1284
Random Phase Rate, typ.	150 msec. /channel	A/C Connector	IEC Power Input Receptacle
	,	Rack Mount	Conform to IEC-297-1
SPECTRAL PURITY			And DIN 41494, for part 1
IMD Products, phase aligned	<-85 dBc	Height	7.75 inches; (197 mm)
Spurious, offsets ≥12 kHz	<-85 dBc	Width	17.5 inches; (445 mm)
Harmonics	<-85 dBc	Depth	22.0 inches; (559 mm)
Maximum Phase Noise (dBc / Hz)	dBc/Hz	Weight, net	80 lb.; (36 kg)
Offset		Weight, shipping	100 lb. (45 kg)
1 kHz	-50		
10 kHz	-80	GENERAL	
30 kHz	-95	Safety & Electromagnetic Compatibility	CE 2001 Compliant
100 kHz	-110	Operating Temperature Range (C)	15 to 35

Ordering Information

MTG-2000-01	8 Channels	1,700 MHz to 2,200 MHz	
MTG-2000-02	16 Channels	1,700 MHz to 2,200 MHz	
MTG-2000-03	8 Channels	800 MHz to 1,000 MHz	
MTG-2000-04	16 Channels	800 MHz to 1,000 MHz	
MTG-2000-05	16 Channels	8 with 800 MHz to 1,000 MHz	8 wit
MTG-2000-06	8 Channels	4 with 800 MHz to 1,000 MHz	4 wit

vith 1,700 MHz to 2,200 MHz vith 1,700 MHz to 2,200 MHz

Specifications subject to change without notice

Frequency Generation and Noise Measurement Systems 7th Ave. & Freedley St. • Conshohocken, PA 19428 610-825-3750 • Fax 610-825-3530 • www.rdl-instrumentation.com