Z-12-RTM DGPS Reference Station

Operation & Technical Manual

Ashtech 1170 Kifer Road Sunnyvale, CA USA 94086

Phone and Fax Numbers

• Main

Voice: 408-524-1400
Fax: 408-524-1500

Sales

• US: 800-922-2401

• International: 408-524-1670

• Fax: 408-524-1500

Europe

• Voice: 44-993-883-3533

Fax: 44-993-883-3977

Support

• US: 800-229-2400

• International: 408-524-1680

• Fax: 408-524-1500

BBS

• Direct: 408-524-1527

Internet

support@ashtech.com

http://www.ashtech.com

Copyright Notice

Copyright © 1997 Ashtech Inc. ("Ashtech") All rights reserved.

No part of this publication or the computer programs described in it may be reproduced, translated, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical photocopying, recording, or otherwise, without prior written permission of Ashtech. Your rights with regard to this publication and the computer programs are subject to the restrictions and limitations imposed by the copyright laws of the United States of America ("U.S.A.") and/or the jurisdiction in which you are located. For information on translations and distribution outside the U.S.A. please contact Ashtech.

Warranty Disclaimer

THIS MANUAL IS PROVIDED "AS IS"; ASHTECH MAKES NO WARRANTIES TO ANY PERSON OR ENTITY WITH RESPECT TO THE SUBJECT MATTER OR USE OF THE INFORMATION CONTAINED HEREIN OR ANY DERIVATIVES THEREOF OR ANY SERVICES OR LICENSES AND DISCLAIMS ALL IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. FURTHER, ASHTECH DOES NOT WARRANT, GUARANTEE, OR MAKE AND REPRESENTATIONS REGARDING THE CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

ASHTECH SHALL NOT BE RESPNSIBLE OR LIABLE WITH RESPECT TO ANY SUBJECT MATTER OF THIS WARRANTY UNDER ANY CONTRACT, NEGLIGENCE, STRICT LIABILITY OR OTHER THEORY: (1) FOR LOSS OR INACCURACY OF DATA TO COST OF PROCUREMENT OF SUBSTITUTE GOODS, SERVICES OR TECHNOLOGY, OR (II) FOR ANY INDIRECT, INCIDENTAL OR CONSEQUENTIAL DAMAGES INCLUDING, BUT NOT LIMITED TO LOSS OF PROFITS.

Printed in the United States of America.

© Copyright March 1997 Ashtech

Part Number: 630066 Revision B

Trademarks

Ashtech ® is a registered trademark of Ashtech Inc. Z-12-RTM DGPS Reference Station and the Ashtech logo are trademarks of Ashtech. All other product and brand names are trademarks of their respective holders.

Table of Contents

Chapter 1.	Overview
Integrity	ce Station 2 Monitor 2 Station 2
Chapter 2.	General Information
List of F Specific Antenna Front Pa	etion
	Self-Test Messages
General Sources RTCM As a Re As Rem RTCM RTCM RTC RTC RTC RTC RTC RTC RTC RTC RTC RTC	Real-Time Differential 3. of Error 3. SC104 Format, Version 2.1 3. ference Station 3. ote Equipment 3. Differential Set Up 3. Options 3. CM Type 5 Message Submenu 3. CM Type 7 Message Submenu 4. CM Type 15 Message Submenu 4. CM Type 16 Message Submenu 4. CM Type 16 Message Submenu 4. cessing MSK Functions 4. ce Station or Base Mode 4. uipment or Remote Mode 4. OFF Handshake 4.
Chapter 4.	Screen Operations
Screen 2 Screen 2 Scr	0 - Skysearch Information 49 1 - Orbit Information 50 2 Navigation Information 52 een 2, Page 1 52 een 2, Page 2, Navigation Information 54

Table of Contents

Screen 3 Tracking Information	 . 55
Screen 4 Mode Control	
Receiver Control Parameters	 . 57
Receiver Options	 . 57
Position Fix Parameters	 . 59
Differential Mode Selection	 . 61
Session Program Parameters	
Receiver Control Subscreen	
Serial Port Setting	
External Frequency Setup	 . 66
Pulse Generation Parameters	 . 68
Period	
Offset	
Output Time on A:N B:N C:N D:N:	 . 69
Datum Select Subscreen	
User	 . 70
Modem Setup Subscreen	
Subcommands Subscreen	
Screen 5 Differential Information and Range Residuals/Position Error	
RTCM Information	
Range Residuals	
Screen 6 Waypoint Control	
LOG Present POS	
Set Display	
Edit Waypoint	
Edit Route	
Restart Route	
Waypoint Switch	
Range/Bearing	
Unit Selection	
MAGVAR Mode	
Screen 7 Satellite Selection Control	
Screen 8 System Control	
File Creation	
System-Level Commands	
Closing a File	
Deleting a File	
Resetting to Default, Saving User Parameters	
Receiver Configuration	
Screen 9 Site and Session Control	
Screen 10 All-in-View Information	
Single Track	 . 96

PRN: 12 Locked	96
Screen 11 Visibility Information	96
Screen 12 Bar Code Control	97
Chapter 5. Serial Port Output Options	. 101
Real-Time Data Output	. 101
Setting Up the Receiver	
Commands	
Setting Commands	
Query Commands	
Real-Time Data Files in ASCII	
MBEN Files in ASCII	
PBEN Files in ASCII	
Real-Time Data Files in Binary	
MBEN Files in Binary	
PBEN Files in Binary	
SNAV Files	
NMEA Output Option	
Setting Up the Receiver	
NMEA Message Types	
Latitude/Longitude for Position	
Present Position Fix with Time of Fix	
Global Positioning System Position	
COG/SOG	
SNR of GPS Satellites Being Tracked	122
Autopilot Format	
Almanac Message	. 123
RTCM Message	
Message Type 1, or 9 Format: RTCM Corrections	. 125
Message Type 3 Format: Reference Station Coordinates	. 125
Message Type 5 Format: Satellite Health Status	. 126
Message Type 7 Format: Radio Beacon Station Almanac	
Message Type 15 Format: Ionospheric Corrections	. 127
Message Type 16 Format:	. 127
Cross-Track Error	. 128
Bearing and Distance	. 128
Almanac	
DOP and Active Satellites	130
Satellites in View	
Trigger Time Tag Serial Output Message	. 131
Satellite Range Residuals and Position Errors	
GPS Satellite Range Residuals	132
Position Using UTM Coordinates	. 133

Table of Contents vii

Chapter 6. RSIM Messages	5
Conventions	5
Message Designations	
NMEA0183/IEC1182 Common Conventions	5
Maximum Number of Characters	6
Repeating Fields	6
Checksum	
Hardware Interface Protocol	6
Null Fields	6
Floating Point Numbers	
RSIM Message Grouping	
Illustration of Use	
Typical Transaction	
Normal Operating Condition	
Alarm Recovery Mode	
Guidelines	
Satellite Health	
Timing	
RSIM Message Definitions	
RSIM#1: RSIM Message# Query/Reporting Interval	
RSIM#2: RSIM Unrecognized Message Alarm	
RSIM#3: RSIM Control Commands	
RSIM#4: RSIM Data Archive Control	
RSIM#5: RSIM Diagnostic Report/Alarm	
RSIM#6: GPS Receiver Parameters	
RSIM#7: GPS Receiver Satellites Status	
RSIM#8: Satellite Health Control	
RSIM#9: Satellite Health Status	
RSIM#10: Reference Station Data Link Parameters	1
RSIM#11: Reference Station Alarm	_
Thresholds	
RSIM#12: Reference Station Alarms	
RSIM#13: Reference Station Correction Data	
RSIM#20: Integrity Monitor System Feedback	
RSIM#22: RTCM Broadcast Scheduling	
RSIM#23: RTCM Universal Message	
Chapter 7. Detailed DBEN Message Structure	5
General	
DBEN Message Structure	
Message Header Part	5

Message Data Part Message Tail: DBEN Message Types With Doppler Message Compression Pseudo Range Smoothing	167 167 168 169
Chapter 8. System Control	171
Self-Test Messages Unhealthy Codes Resetting Memory Receiver User Parameters	171 173
Chapter 9. Maintenance	179
General Antenna Cables Power Cables RS-232 Pinout Radio Interference Power Consumption Internal Batteries Lithium Battery Disposal Instructions Sleep Mode AC to DC Power Conversion Fuse Replacement DC Fuse AC Fuse Upgrading Firmware General Program Execution Warning Messages Error Messages and Abnormal Termination Boot Loading	179 181 182 183 183 183 183 183 184 184 186 186 186 188
Appendix A. Ashtech-to-RINEX Conversion	A-1
Input Data Files Output Data Files Program Execution Ashtech Source Files Source Disk Drive: and Source Directory RINEX Target Files Target Disk Drive: and Target Directory Option A: File Input/Output Menu	A-1 A-2 A-2 A-2 A-3

Table of Contents ix

	Option B: Create RINEX Observation File	ι-5
	Agency Information (Top Section)	-6
	Equipment and Data Information (Second Section)	7
	Antenna Offsets (Third Section)	
	All Optional Headers (Bottom Section)	1-8
	Processing the Conversion	
	Option C: Create RINEX Navigation File	
	Agency Information (Top Section)	
	Option D: Create RINEX Meteorological File A-	
	Option E: Exit A-	
	Warning Messages	
	Error Messages A-	11
App	pendix B. Data Logger	3-1
	Input Data Files	3-1
	Output Data Files B	
	Program Execution	
	Command Line Options	3-4
App	pendix C. HOSE C	:-1
	Input Data Files	:-1
	Output Data Files	:-1
	Program Execution	:-1
	Main Menu and Display C	:-2
	Option Selection Section	:-3
	Option A: Display Receiver Directory	'-4
	Option B: Download receiver files	:-5
	Option C: Change Communications Parameters	
	Option D: Change Destination Path	
	Option E: Reset for New Receiver	
	Option F: Read Photogrammetry Data	
	Option G: Read Almanac Data	
	Option H: Edit Waypoints	
	Quit/Execute Section	
	Normal Program Termination	
	Troubleshooting	
	Advanced Program Options	
	Command Line Parameters	
	Hose Cable	
App	pendix D. Additional Information	
	Position Determination with GPS	
	Doing a Static Survey)- 1

System Set Up	D-2
Measuring Antenna Height	D-2
Operating the Receiver	D-3
Entering Site Name	D-5
ASHTECH Bulletin Board	D-6
Multi-line Operation	D-6
File Transfer	
Ionosphere Information	D-7
Reference Documents	
Two excellent reference books on GPS theory are:	D-7
Heavy mathematical treatment:	
Sources of GPS Information	
Common GPS Acronyms	D-8
Warranty	

Table of Contents xi

List of Figures

Figure 2.1:	Z-12-R Receiver	25
Figure 2.2:	Rear Panel	26
Figure 2.3:	Antenna Housing	26
Figure 2.4:	Antenna Dimensions	27
Figure 2.5:	Front Panel	29
Figure 3.1:	Screen 4, Data Entry Mode Screen	36
Figure 3.2:	Screen 4, Differential Mode Screen	36
Figure 3.3:	RTCM Options Menu Screen	37
Figure 3.4:	RTCM Type 5 Message Screen	39
Figure 3.5:	RTCM Type 7 Message Screen	41
Figure 3.6:	RTCM Type 15 Message Screen	42
Figure 3.7:	RTCM Type 16 "Send Message" Screen	
Figure 3.8:	RTCM Type 16 "Receive Message" Screen	43
Figure 3.9:	Differential Mode Selection Screen	44
Figure 3.10:	MSK Setup Mode Screen	44
Figure 3.11:	RTCM Options Menu Screen	45
Figure 3.12:	RTCM Options Menu	46
Figure 4.1:	Skysearch Information Screen	49
Figure 4.2:	Orbit Information Screen	50
Figure 4.3:	Navigational Information Screen	52
Figure 4.4:	Navigation Information Screen (Page 2)	54
Figure 4.5:	Tracking Information Screen	55
Figure 4.6:	Mode Control Screen	56
Figure 4.7:	Position Fix Parameters Screen	59
Figure 4.8:	Differential Mode Selection Screen	61
Figure 4.9:	Session Program Parameters Screen	63
Figure 4.10:	Receiver Control Screen	64
Figure 4.11:	Serial Port Setting Screen	65
Figure 4.12:	External Frequency Setup Screen	66
Figure 4.13:	Pulse Generation Parameters Screen	68
Figure 4.14:	Pulse Generation	68
Figure 4.15:	Datum Select Screen	
Figure 4.16:	DATUM Select Screen - More Datums	70
Figure 4.17:	User Datum Entry Screen	
Figure 4.18:	Modem Setup Screen	71
Figure 4.19:	Subcommands Screen	72
Figure 4.20:	RTCM Information Screen	
Figure 4.21:	Range Residuals and Position Errors Screen	75

List of Figures xiii

Figure 4.22:	Waypoint Control Screen	. 76
Figure 4.23:	Submenu Screen	. 76
Figure 4.24:	First Waypoint of Route Screen	. 77
Figure 4.25:	Display Update Mode Screen	. 77
Figure 4.26:	Without Route Screen	. 78
Figure 4.27:	Edit Waypoint Screen	. 79
Figure 4.28:	"Copy From" Screen	. 80
Figure 4.29:	Edit Route Screen	. 81
Figure 4.30:	Restart Route Screen	. 82
Figure 4.31:	Advancement Criteria Screen	. 83
Figure 4.32:	Waypoint Switch	. 84
Figure 4.33:	Route Display Screen	
Figure 4.34:	Unit Selection Menu Screen	. 85
Figure 4.35:	MAGVAR Mode Screen	. 86
Figure 4.36:	MAGVAR Mode (Manual) Screen	. 86
Figure 4.37:	Auto Selection Screen	. 87
Figure 4.38:	System Control Screen	
Figure 4.39:	Configuration Identification Screen	
Figure 4.40:	Site and Session Control Screen	
Figure 4.41:	All-In-View Information Screen	. 95
Figure 4.42:	Single Track Screen	
Figure 4.43:	Visibility Screen	
Figure 4.44:	Bar Code Control Screen	
Figure 5.1:	Mode Control Screen	
Figure 5.2:	Port A Parameter Selection Screen	
Figure 5.3:	$Measurement\ Output\ on\ Port\ A\dots\dots\dots\dots\dots\dots\dots\dots\dots$	
Figure 5.4:	Screen 4, Setup	
Figure 5.5:	Screen 4, Port A Parameter Selection	
Figure 5.6:	NMEA Options Menu Port A	
Figure 5.7:	NMEA Sentence (Example).	
Figure 6.1:	Control Station & Reference Station	
Figure 9.1:	Antenna Cable	180
Figure 9.3:	Power Cable	-
Figure 9.4:	RS-232 Pinout	
Figure 9.5:	Connector Pin Assignment.	
Figure 9.6:	Fuse Location.	
Figure 9.7:	Power Module	
Figure 9.8:	Fuse Latch	
Figure 9.9:	Fuse Container	
Figure A.1:	Ashtech Source File Screen	
Figure A.2:	Menu 2.1 ASHTECH Source Files / RINEX Target Files $\ \ldots \ .$	
Figure A.3:	Menu 2.0 Program Options	A-4

Figure A.4:	Menu 2.2 Information Screen
Figure A.5:	RINEX Navigation, Option C
Figure A.6:	RINEX Meteorological File, Option D
Figure B.1:	DATALOGR ScreenB-2
Figure B.2:	DATALOGR Status
Figure B.3:	DATALOGR, Option "i"
Figure C.1:	Menu Screen
Figure C.2:	HOSE Main Menu
Figure C.3:	Main Option Menu
Figure C.4:	Selection Screen
Figure C.5:	Main Options Menu
Figure C.6:	Download Summary Menu
Figure C.7:	Option C, Change Communication Parameters
Figure C.8:	Option D, Change Destination
Figure C.9:	Option E, Reset for New Receiver
Figure C.10:	Option H, Edit Waypoint
Figure C.11:	Option H, Waypoint File to Download
Figure C.12:	Waypoint File Name
Figure C.13:	Editing Waypoint
Figure C.14:	Clearing Waypoints
Figure C.15:	Serial Port Pin Diagram
Figure D.1:	Screen 4, Mode Control
Figure D.2:	Screen 1, Site Information
Figure D.3:	Screen 9, Data Entry Mode

List of Figures xv

List of Tables

Table 2.1:	Supplied Equipment	27
Table 2.2:	Performance Specification	28
Table 2.3:	Front Panel Functions	29
Table 2.4:	Screen Display Functions	30
Table 3.1:	RTCM Message Types	35
Table 3.2:	RTCM Options Menu	37
Table 3.3:	Reference Station Health Conditions	39
Table 3.4:	RTCM Type 5	40
Table 3.5:	RTCM Type 7	41
Table 3.6:	RTCM Type 15	42
Table 3.7:	MSK Setup Menu	
Table 4.1:	Skysearch Information Functions	49
Table 4.2:	Orbit Information Functions	51
Table 4.3:	Navigation Information Functions (Screen 2, Page 1)	52
Table 4.4:	Navigation Information Functions (Screen 2, Page 2)	54
Table 4.5:	Tracking Information Symbols	55
Table 4.6:	Receiver Control Parameters Functions	
Table 4.7:	Receiver Options	58
Table 4.8:	Position Fix Parameters	60
Table 4.9:	Differential Mode Selection Functions	61
Table 4.10:	Session Program Parameters	63
Table 4.11:	Serial Port Setting	66
Table 4.12:	External Frequency Setup Functions	67
Table 4.13:	External Frequency Setup Parameters & Specifications	67
Table 4.14:	PPS Accuracy	69
Table 4.15:	Modem Setup Subscreen	71
Table 4.16:	Available System-Level Commands	72
Table 4.17:	RTCM Screen	73
Table 4.18:	Range Residuals and Position Errors Keys	75
Table 4.19:	System Control Commands	88
Table 4.20:	System Level Command Function	89
Table 4.21:	Configuration Identification Screen	91
Table 4.22:	Site and Session Control	93
Table 4.23:	All-In-View Information	95
Table 4.24:	Visibility Functions	97
Table 4.25:	Data Entry Storing Format	98
Table 5.1:	Serial Port Message Type and Formats	. 101
Table 5.2:	Baud Rate Codes.	

List of Tables xvii

Table 5.3:	"z" Codes	105
Table 5.4:	"w" Codes	105
Table 5.5:	"d" Code Output Rate	108
Table 5.6:	MBEN Format in ASCII	110
Table 5.7:	Total number of bytes sent	112
Table 5.8:	MBEN file in Binary	113
Table 5.9:	PBEN File in Binary	114
Table 5.10:	SNAV Files	115
Table 5.11:	Latitude/Longitude Field Descriptions	120
Table 5.12:	Present Position Field Descriptions	120
Table 5.13:	GPS Field Descriptions	121
Table 5.14:	COG/SOG Field Descriptions	121
Table 5.15:	SNR of GPS Field Descriptions	122
Table 5.16:	Autopilot Format Field Descriptions	
Table 5.17:	Almanac Messages Field Descriptions	
Table 5.18:	RTCM Messages Field Descriptions (1-7)	124
Table 5.19:	RTCM Messages Field Descriptions (8-17)	125
Table 5.20:	Message Type 3 Format Field Descriptions	125
Table 5.21:	Message Type 5 Field Descriptions	126
Table 5.22:	Message Type 7 Field Descriptions	126
Table 5.23:	Message Type 15 Field Descriptions	127
Table 5.24:	Message Type 16 Field Descriptions	128
Table 5.25:	Cross Track Error Field Description	
Table 5.26:	Bearing and Distance Field Descriptions	128
Table 5.27:	Almanac Field Descriptions	
Table 5.28:	DOP and Active Satellites Field Descriptions	130
Table 5.29:	Satellites in View Field Descriptions	131
Table 5.30:	Trigger Time Tag Field Descriptions	
Table 5.31:	Satellite Range Residuals Field Descriptions	132
Table 5.32:	GPS Satellite Range Field Descriptions	132
Table 5.33:	Position Using UTM Field Descriptions	
Table 6.1:	RTCM SC104 RSIM Message Types	
Table 6.2:	Differential Subscreen of Screen 4	
Table 6.3:	List of RSIM Variables	
Table 7.1:	Message Header	
Table 7.2:	Message Data	166
Table 7.3:	Message Tail	
Table 7.4:	DBEN Message Definition	
Table 7.5:	DBEN Message Size (bits)	
Table 7.6:	Doppler Message Size (bits)	
Table 8.1:	NAV Data Health (Bits 0 through 2)	172
Table 8.2:	NAV Data Health (Bits 3 through 7)	172

Table 8.3:	Receiver User Parameters	174
Table 9.2:	Antenna Cable Electrical Specifications	180
Table A.1:	B-File Parameters	A-7
Table B.1:	Command Line Options	B-4
Table B.2:	Command Parameters	B-4
Table C.1:	Directory Information	C-4
Table C.2:	Waypoint Functions	C-11
Table C.3:	HOSE Command Line Parameters	C-14

List of Tables xix

Overview

The Ashtech Z-12-RTM GPS receiver, makes full use of the NAVSTAR GLOBAL POSITIONING SYSTEM. This GPS receiver provides state-of-the-art precision surveying and navigation. Model Z-12-RTM, the most sophisticated GPS receiver available today, is the first to offer true all-in-view automatic tracking as well as dual frequency smoothing. With twelve independent channels, it tracks all the satellites in view automatically. This receiver records L1 C/A, L1 P-code, and L2 P-code and carrier measurements even in the presence of Anti-Spoofing (AS). Its main function is to serve as a reference station for DGPS using radio beacons

Reference Station

The Reference Station (RS) includes the Reference Receiver and the Modulator. The primary function of the RS is to compute the PRC's for satellites above the elevation mask angle. When possible, the RS may track satellites below the mask angle on available channels, even though it is not broadcasting any pseudorange corrections for them. The RS produces C/A Code Pseudorange Corrections (PRC's) using the GPS observables (at least C/A Code Phase, L1 Carrier Phase and Rate).

PRCs and ancillary information are formatted according to RTCM SC104, modulated within the RS, and output over a coaxial line to the transmitter.

The RS contains a two-way port for communication with the Control Station (CS) using RSIM messages. A receive-only port is connected to the Integrity Monitor (IM). The IM sends system feedback (RSIM#20) periodically to the RS to assure that the service is being monitored. The IM gives immediate feedback to the RS when it is determined that an anomaly is occurring for a single satellite or that the position solution has exceeded the protection limit.

Integrity Monitor

The Integrity Monitor (IM) receives the RS broadcast and verifies that the information is within tolerance. The IM routinely provides positive system feedback to the RS to indicate normal, monitored operation. During out-of-tolerance conditions, the IM generates alarms. The most important alarms are the position and pseudorange correction (PRC) alarms. These require a simple radial error check of the DGPS navigational solution against a known position, and an analysis of the accuracy of individual ranges from satellites (the latter taking into consideration the known, fixed position of the IM).

Overview 21

The IM provides a measure of the integrity of the DGPS signal broadcast and the content of the DGPS corrections. The IM consists of monitoring processes and integrity processes. Quantities monitored consist of characteristics of the radiobeacon MSK signal, the RTCM SC-104 message stream, accuracy of DGPS corrected pseudoranges and the resulting positioning using these ranges. Integrity functions consist of ensuring that data quality factors in the RTCM SC-104 data are internally consistent within the accuracy of the data. An IM can be configured to either report alarms for a particular reference station ID or report alarms for whatever broadcast is being received. When programmed to monitor a particular Reference Station ID, and that is not the ID being received, the IM continues to monitor the DGPS broadcast, but does not report alarms, generate system feedback to the RS, or store any archive data.

Control Station

The Control Station (CS) provides capabilities for real time system status monitoring and control of the functional and performance parameters of remote DGPS broadcast sites. More specifically, the control station ascertains the functional status of the broadcast sites which are assigned to it in a network, sets the broadcast site parameters, controls the broadcast site functions, supplies network status information to the broadcast sites for dissemination, and collects and manages various types of performance data from the network of broadcast sites.

One workstation can serve as the CS for many DGPS sites, or each site could have a dedicated CS . A dedicated CS can be located at the site or it can be remotely located. For local control, the CS may consist of a computer or it may be integrated into the RS and IM equipment.

The CS is particularly critical for applications which have maritime requirements for high availability (for example harbor/harbor approach). The system status monitoring capabilities provided by the CS minimize loss of service by ensuring that system operators are quickly notified in the event of a system failure or Out of Tolerance (OOT) condition. Using the status monitoring capabilities provided by the CS, system operators can correct detected problems remotely, or if necessary dispatch technicians, to minimize system downtime.

The CS provides capabilities for dissemination of system status and safety messages to navigation users. In certain applications like a harbor/harbor approach, navigation users need information concerning such events as expected system outages, or forecasted GPS outages for planning purposes. The CS provides capabilities for formatting and scheduling information messages of this type as part of its services to enhance service reliability.

The system status provided at the CS is intended to permit recovery operations to be initiated as soon as possible when a system fault has been detected. It is important to be aware that the status monitoring at the CS is not an integral part of the system integrity function. The RS and IM at each broadcast site act together to maintain a broadcast which meets the accuracy and integrity requirements of a particular application.

Overview 23

General Information

Introduction

Figure 2.1: Z-12-R Receiver

The Z-12-R receiver features a specially designed locking power switch. The red square in the center of the switch is the lock. In order to turn on the power, move the red square up and push the rocker switch toward the top of the receiver. When the receiver is turned on the LED in the switch turns on. To turn off the unit, move the red lock and push the rocker switch toward the bottom of the receiver.

General Information 25

Figure 2.2: Rear Panel

As shown in Figure 2.2, both AC and DC power inputs are available as well as four RS-232 serial ports. These ports conform to the RSIM command message protocol. For more information refer to Chapter 6, **RSIM Messages**.

Also, external frequency and 1-pulse-per-second (1PPS) options, along with the MSK signal output for the marine radiobeacons, are available.

The system includes the microstrip antenna, shown in Figure 2.3, mounted on a precision machined platform for accurate positioning above the survey mark.

Figure 2.3: Antenna Housing

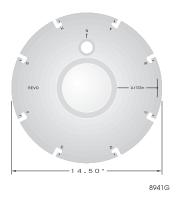


Figure 2.4: Antenna Dimensions

List of Equipment Supplied

Table 2.1 lists the supplied equipment for the Z-12-R.

Table 2.1: Supplied Equipment

Part Number	Description
100914	Cable, GPS Antenna, 30 meter
102207	Cable, 110V, Power Cable
103331	Conn. BNC, 50, M, Crimp, WHP, RG58 (3)
103629	Shipping Box, RKMT
103630	Shipping Box, Antenna w/radome
103648	Screw, 12-24x1/2 PH Truss, Steel (4)
103649	Clipnut, 12-24, U-type, Steel, Blk (4)
103658	Bag, 24x36, 4 Mil, Clear Polycarb
103824	Conn, N, PLG, STR, RG8, NWP
630066	Z-12-R DGPS Operating and Technical Manual
600286	S/W, Reference Station Utilities
700263	CBL, DC, Power Cable
700829	Geodetic Antenna 3 w/radome
800089	Rackmount Reference Station

General Information 27

Specification Summary

Table 2.2 summarizes the performance specifications of the Z-12-R.

Table 2.2: Performance Specification

Specification	Description
RTCM message output	Message types 1, 3, 5, 6, 7, 9-1, 9-3, 15, 16
RSIM message output	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1 1, 12, 13, 20, 21, 22, 23
Radiobeacon output	MSK selectable for 25, 50, 100, or 200 bits per second
Reference input frequency standard	1.00 to 21.00 MHz sine wave 1 vrms 50W
1 PPS output	Within 1 usec of start of GPS second
Weight	Rack mount Z-12-R receiver: 14 lbs Antenna: 3.5 lbs (5 lbs with radome)
Input power	AC: 100-120/200 - 240 VAC 2/1A, 50/60 Hz DC: 12 VDC, 3A

Antenna Platform

A geodetic microstrip antenna is seated on a precision machined platform protected by a weatherproof cover. A low-noise preamplifier housed at the base of the antenna provides sufficient gain for a cable up to 30 meters long. Cable specifications are listed in Table 9.2.

For antenna height measurement, it is recommended to mount the antenna on a fixed surface, and survey in the position of the actual antenna.

If you are placing the antenna over a known surveyed position and must measure the antenna height position, the distance from the center of the antenna to the outside edge of the ground plane is 0.1430 meters.

The antenna platform can be mounted on a variety of tripods and range poles, using either a 5/8x11 female threaded connector or tribrach connector.

Front Panel

The receiver's front panel, shown in Figure 2.5, includes an 8-line x 40-character backlit LCD display, and various keys for controlling the receiver and entering data.

Figure 2.5: Front Panel

The Z-12-R receiver is easy to operate. Operating controls and DC power switch are on the front; input and output connections as well as the AC power switch are on the back.

The functionality is available through several easy-to-use screens. Information in the title of a screen means display only. Control in the title indicates a screen you interact with, such as Screens 4 and 9. All screens are described in detail in Chapter 4, **Screen Operations**. Subscreens are described in Chapter 4, **Screen Operations**, under their top-level screens.

The keys that activate the receiver's functions are:

Table 2.3: Front Panel Functions

Field	Description
0 - 9	Pressing a number key calls up a specific screen directly. The lower right corner of the screen displays the screen number. Whenever the manual explains a screen, it identifies the screen by number (for example, Screen 1, Orbit Information). • The number keys are used to enter alphanumeric data such as latitude, antenna height, site name. Depending on the particular screen, number keys may have other functions; for example, the [8] key for 'yes'.
[]	In this manual, square brackets indicate all receiver keys except the directional arrows.
<>	In this manual, angle brackets indicate computer keys.
[c]	Use the [c] key to cancel the current entry.

General Information 29

Table 2.3: Front Panel Functions (continued)

Field	Description
[e]	Press the [e] key to enter data-entry mode, to save entered values, and to go back to higher level displays; the [e] key functions like the <enter> key on a computer.</enter>
▶ ◀	In display mode, use the ▶ key or the ◀ key to change to the next higher or lower numbered screen or subscreen.
▼▲	Scrolls through the different pages of a screen, or to raise and lower the contrast when only one page is available and the receiver is in the display mode. After two minutes of keyboard inactivity, the backlighting automatically turns off to extend the life of the battery. To restore it, push any key. Ashtech recommends [c] because it does not change the display.
VAP	In data-entry mode, use the arrow keys to move the cursor: to highlight a field or to flash in a character position where the next entry goes. The ▶ key and the ◀ key moves the cursor horizontally and the ▲ key and the ▼ key move it vertically.
highlight	To highlight a parameter, use an arrow key $(\blacktriangle, \blacktriangledown, \blacktriangleright, \text{ or } \blacktriangleleft)$ to move the cursor until that field is displayed in inverse video and a character position in that field is flashing.
toggle	To toggle a field, highlight it and press the [+] or [-] key until it displays the desired setting. For example, below Screen 4, on the Port A/B/C/D Parameter Selection screens, you can toggle through various baud rates. Use the ▶ key to highlight the BAUD RATE indicator and press the [+] key or [-] key to scan through 300, 600, 1200, 2400, 4800, 9600, 19200, 38400, 57600, and 115200 to the desired baud rate.

 Table 2.4: Screen Display Functions

Screens	Display/Function
0	Skysearch Information
1	Orbit Information
2	Navigation Information
3	Tracking Information
4	Mode Control
5	Differential Information
6	Waypoint Control
7	Satellite Selection Control
8	System Control
9	Site and Session Control
10	All-in-View Information

Table 2.4: Screen Display Functions (continued)

Screens	Display/Function
11	Visibility Information
12	Bar Code Control

Powering the Receiver

In order to turn the power ON, ensure that the power cable is connected and flip the power switch in the back of the receiver.

Self-Test Messages

At power-up, the receiver performs internal tests to check various components and circuits. As the self-test is completed, the respective self-test messages are displayed:

- EPROM Checksum test pass
- XRAM installed
- Mag var checksum OK
- Downloading channel

If all tests pass, the screen will display the message "downloading channel" and proceed to Screen 0. If any test fails, the program halts with the corresponding self-test message.

Resetting Memory

When powering the receiver for the first time after receiving it from the factory, it is recommended to reset internal and external memory. A reset of the internal memory of the receiver clears the receiver to the factory defaults, including almanac data. To complete the resetting procedure, proceed as follows:

- 1. Turn the receiver OFF
- 2. While pressing the \triangle key, turn the receiver ON.
- 3. Keep holding the ▲ key down until the message "Test of internal RAM. Will clear all data. Press YES within 10 seconds to continue" is displayed.
- 4. Press [8] (YES) and a message appears: "Push any key to continue." Press any key to continue with the receiver normal operation.

A reset of the external memory of the receiver erases all data files displayed on Screen 8 and stored in the memory RAM board. To complete this reset, proceed as follows:

- 1. Turn the receiver OFF
- 2. While pressing the ▶ key, turn the receiver on.

General Information 31

- 3. Keep holding the ▶ key down until the message "test of external RAM. Will clear all data. Press YES within 10 seconds to continue" is displayed.
- 4. Press [8] (YES) and the message "Push any key to continue" appears. Press any key. The receiver is now ready for use.

Real-Time Differential

This chapter describes the Real-Time Differential Option that is standard in Ashtech Z-12-R receivers.

This chapter contains a general description of real-time differential philosophy including major sources of errors, followed by a description of the RTCM-104 format (the differential format available) with a detailed explanation of RTCM differential setup, options, and operation.

General

Real-time differential GPS requires a base receiver computing the satellite range corrections and transmitting them to the remote receivers. The base receiver transmits these corrections in real time to the remote receivers using a telemetry link. Remote receivers apply the corrections to their measured ranges using corrected ranges to compute their position.

The base receiver determines range correction by subtracting the **measured** range from the **true range**, computed by using the accurate position entered in Screen 4, (Figure 3.1) of the receiver. (This accurate position must have been previously surveyed using GPS or some other technique.) The remote receivers subtract the received corrections from their measured ranges and use the corrected ranges for position computation.

A stand-alone GPS receiver can compute a position of approximately 25 meters with SA off, and about 100 meters with SA on. Differential GPS, using C/A code, can achieve one meter accuracy at the remote receivers even with SA on. Differential GPS, using dual frequency smoothing, can obtain sub-meter accuracy.

The receiver can be designated as the base or remote station. In base mode, the receiver computes the range errors in every cycle. The cycle is nominally each ½ second. The receiver, set to base mode, can transmit the range corrections using a serial port with a wide selection of baud rates. If using the Z-12-R with the MSK modulator, the corrections are transmitted from the MSK port.

A communication link must exist between the base and remote receivers. In actual use, the communication link can be a radio link, telephone line, cellular phone, satellite communication link or any other medium that can transfer digital data. For testing, connect both receivers using a full handshake null modem RS-232 cable to any of the serial ports.

Real-Time Differential 33

Sources of Error

The major sources of error affecting the accuracy of GPS range measurements are satellite orbit estimation, satellite clock estimation, ionosphere, troposphere, and receiver noise in measuring range. The first four are almost totally removed using differential GPS, with residual error in the order of 1 mm for every kilometer between base and remote receivers.

Receiver noise is not correlated between the base and the remote receiver and is not canceled by differential GPS. However, in Z-12-R receivers, integrated Doppler is used to smooth the range measurements and reduce the receiver noise.

At the instant a satellite is locked, there is also rms noise affecting the range measurement. This rms noise is reduced with the square root of n where n is the number of measurements. For example, after 100 seconds of locking to a satellite, the rms noise in range measurement is reduced by a factor of 10 (one meter of noise is reduced to 0.1 meter). The noise is further reduced over time.

If the lock to a satellite is lost, the noise goes back to one meter and smoothing starts from the one-meter level. The loss of lock to a satellite is rare. It typically happens only when the direct path to the satellite is blocked by an object. Total position error (or error-in-position) is a function of the range errors (or errors-in-range) multiplied by the PDOP (three-coordinate position dilution of precision). The PDOP is a function of the geometry of the satellites.

RTCM SC104 Format, Version 2.1

This section describes the part of the RTCM SC104 format Version 2.1 (Radio Technical Commission for Maritime Service Special Committee 104), implemented in the Z-12-R receiver. The format is an international standardized protocol developed to transmit and receive differential corrections.

When using the receiver in base operation the Z-12-R computes and transmits differential corrections which can be received and used by the user equipment. A common word for a base station is **reference station**. This term is frequently used in this manual. The user equipment has to be set up in **remote** operation to be able to accept the corrections from the base station. The corrections are applied to improve the position accuracy in the user equipment.

When a port is set up to transmit RTCM in base mode, all other output options on that port are disabled and the message:

Port N will output differential data at a rate of xxxx baud is displayed. N is the serial port being used for RTCM and xxxx is the selected baud rate for that port.

For more information about RTCM SC104, Version 2.1, contact:
Radio Technical Commission for Maritime Services
P.O. Box 19087 Washington DC 20036-9087

As a Reference Station

When a receiver is used as a reference station and the RTCM format is selected, the receiver computes differential corrections for up to 9 satellites, converts those corrections to RTCM format and transmits the converted messages using its serial ports and/or the MSK port. The receiver can generate message types 1, 3, 5, 6, 7, 9-1, 9-3, 15, and 16 as follows:

Component **Function** 1 Differential GPS corrections 3 Reference station parameters 5 Health status of satellite Null frame 6 7 Radiobeacon station parameters 9-1 Differential GPS corrections in groups of 1 9-3 Differential GPS corrections in groups of 3 15 Ionospheric corrections 16 Special Message

Table 3.1: RTCM Message Types

The RTCM format uses the 6-of-8 format (data bits A1 through A6 of an 8-bit byte) for communication between the reference station and user equipment.

As Remote Equipment

When the receiver is used as remote equipment and the RTCM format is selected, the receiver can accept any type of RTCM message. However it decodes only types 1, 2, 3, 5, 6, 7, 9, 15, and 16 and uses only types 1, 2, and 9 for differential corrections. The RTCM format includes parity bits which enable the user to detect errors in the transmitted data and prevent erroneous corrections from being used.

Real-Time Differential 35

RTCM Differential Set Up

To use the RTCM differential option, do the following:

1. On Screen 4, press [e] to shift to data-entry mode:

Figure 3.1: Screen 4, Data Entry Mode Screen

- 2. If the receiver is the base station, a previously surveyed antenna position must be entered in the POS line. Also, you should lower the elevation mask in submenu POSITION to about 5°. This elevation mask controls which corrections the receiver generates.
- 3. Next highlight DIFFERNTL and press [e] to go to the Differential Mode Selection screen:

Figure 3.2: Screen 4, Differential Mode Screen

- 4. Highlight the mode indicator and press the [+] or [-] key to toggle it (through base, remote, and disabled) and select the right mode. Select it here or on the RTCM OPTIONS screen.
- 5. Highlight the output port indicator and toggle it through USE PORT A or B or C or D so that it corresponds with the serial port you are using for the

- differential corrections. If you are sending corrections using MSK, select NONE and refer to the MSK SETUP menu.
- 6. Highlight the C/A code indicator and toggle it to select C/A code or L1 P-code.
- 7. To turn on the auto differential option enabled, highlight the AUTO DIFF field and press the [+] or [-] key to set it to ON.
- 8. Press [e] to record the new setup. The display shows the specified port and baud rate.
- 9. Press [e] again to return to the main display, Screen 4.

RTCM Options

With RTCM format highlighted on the Differential Mode Selection screen, press [1] to access the RTCM OPTIONS Menu.

Figure 3.3: RTCM Options Menu Screen

Table 3.2: RTCM Options Menu

Component	Function
MODE	Sets the receiver to operate RTCM differential in BASE, REMOTE, or OFF. For a base station, set it to BASE. For user equipment, set it to REMOTE. The mode can be set here or on the Differential Mode Selection screen.
SPEED	Sets the number of bits per second issuing from the serial port. The available speeds are 25, 50, 100, 110, 150, 200, 250, 300, and 1500. The default is 100 bits per second. (An RTCM byte has six significant bits.) This is not used in remote mode. When the receiver operates in remote mode, it automatically detects the speed of the corrections.
STID	Is the reference station identification supplied by the user. It can be set to any number from 0 to 1023.

Real-Time Differential 37

 Table 3.2: RTCM Options Menu (continued)

Component	Function				
STHE	Is the reference station health. It can be set to a value from 0 to 7, based on the conditions in Table 3.3.				
MAXAGE	In remote mode, specifies a maximum age, in seconds, for messages. The user receiver uses differential messages which are not older than MAXAGE. It may be set to a value from 0 to 1199 seconds. The default is 30. In base mode, MAXAGE has three uses: • When a previously healthy satellite is forced unhealthy or starts broadcasting unhealthy, its RTCM corrections are set to DO NOT USE values for this period of time and no more corrections are sent for this particular satellite. • When an RSIM 20 is received by the RS with a satellite's PR Residual flag set, indicating that the IM detected bad corrections from that satellite, the RS broadcasts DO NOT USE values for the satellite's corrections for this period of time. The RS then resets the corrections smoothing for this particular satellite and starts broadcasting corrections again. • When a satellite that is tracked by the RS drops below the elevation mask angle, DO NOT USE corrections are sent for this period of time for this particular satellite.				
QAFREQ	In remote mode, allows evaluation of the communication quality between the base station and the user equipment. This number is a percent of the parity passed messages. When the total number of received messages reaches QAFREQ, the quality number is reset to 100. QAFREQ may be set to any number from 0 to 999. It defaults to 100. It is not used in base mode.				
SEQ	Check or not for the sequence number in a message to be sequential to accept the RTCM message (used in remote mode only).				
ТҮРЕ	Indicates the type of message to be generated. The receiver can generate message types 1, 3, 5, 6, 7, 9-1, 9-3, 15, and 16. The default is message type 9-3. Toggle between 9-1 and 9-3 formats. When L1 P-code is selected, type 10 is displayed instead of type 1. Both messages give differential GPS corrections in Type 1 format.				
FREQ	Specifies the period/frequency for message types 1, 3, 5, 7, 9, 15, and 16. Each can be set to a value that ranges from 0 to 99. 0 means no message is generated. 99 generates a message continuously. A value from 1 to 98 specifies time between messages. For message types 1, 9, and 15, the time interval is in seconds. For message types 3, 5, 7, and 16 the time interval is in minutes.				
STAT	Allows type 2 and 6 messages to be turned ON or OFF.				
TYPE 5/TYPE7/ TYPE15TYPE16	Allows data entry or observation of type 5, 7, 15, and 16 messages, as described on the following pages.				

The UDRE scale factor indicates the range of UDRE values for the set of corrections currently being transmitted or received.

Table 3.3: Reference Station Health Conditions

Value	Code	Health Indication
7	111	Reference station not working.
6	110	Reference station transmission not monitored.
5	101	UDRE scale factor = 0.10
4	100	UDRE scale factor = 0.20
3	011	UDRE scale factor = 0.30
2	010	UDRE scale factor = 0.50
1	001	UDRE scale factor = 0.75
0	000	UDRE scale factor = 1.00

RTCM Type 5 Message Submenu

If you select TYPE 5 from the RTCM OPTIONS MENU, the RTCM TYPE 5 message submenu appears, as shown in Figure 3.4; the Type 5 screen is display only, no data can be entered.

Figure 3.4: RTCM Type 5 Message Screen

Real-Time Differential 39

Table 3.4: RTCM Type 5

Component	Function
SATELLITE	Satellite ID (PRN 1-32).
IOD LINK	Set to 0, indicates this information refers to navigation data with IOD in message types 1, 9, 20, and 21. Set to 1, indicates this information refers to navigation data with IOD in type 2 message.
SV LOSS WARN	Set to 1, indicates that a change in the satellite's health to unhealthy is scheduled. The healthy time remaining is estimated in the time to unhealthy.
TIME TO UNHEL	Scale factor is five minutes with a range of 0 to 75 minutes.
DATA HEALTH	Standard information concerning satellite navigation data health, refer to Table 20-VII of ICD-GPS-200. This is a repeat of the three most-significant bits of the 8-bit ephemeris health status words provided in the GPS navigation message.
SIGNAL NOISE	Satellite signal-to-noise ratio as measured at the reference station. Scale factor is 1dB-Hz. Range is 25 to 55 dB-Hz. The value 0 indicates that the satellite is not being tracked by the reference station.
HEALTH ENABLE	Set to 1, indicates that satellite can be considered healthy by DGPS User Equipment despite the fact that satellite navigation data indicates the satellite is unhealthy.
NEW NAV.DATA	Set to 1, indicates that new satellite navigation data is being acquired by the reference station and being integrated into the pseudorange correction. There will soon be a new IOD indicated in type 1 message

A Type 5 message is immediately generated for either of two conditions:

- When a satellite which is broadcasting unhealthy is forced healthy.
- When information is given to the RS which indicates a particular satellite will be set unhealthy at some time in the future.

These conditions can be generated using the RSIM 8 serial command. Note that the display only gives information for one satellite, while a broadcast Type 5 message can handle up to 12 satellites.

When scheduled, a Type 5 message is not generated unless one of the above conditions is true. For as long as either condition exists for any satellite, Type 5 messages are broadcast as scheduled.

RTCM Type 7 Message Submenu

If you select TYPE 7 from the RTCM OPTIONS MENU, the RTCM TYPE 7 MESSAGE submenu appears, as shown below:

Figure 3.5: RTCM Type 7 Message Screen

In remote mode, this submenu is display only. In base mode, data can be entered.

Table 3.5: RTCM Type 7

Component	Function
LAT	Radio beacon location latitude.
LON	Radio beacon location longitude
RANGE	Radio beacon usable signal range in Km, 0 - 1023 Km
FREQ	Broadcast frequency, 190-599.5 KHz
HEALTH	Radio beacon health, where: • 0 = Radio beacon operation normal • 1 = Unmonitored • 2 = No information available • 3 = Don't use this radio beacon
STAT ID	Broadcast station identification, 0-1023
SPEED	Broadcast bit rate in bits per second, 25-300
MOD.MOD	Modulation mode: 0 = MSK, 1 = FSK
SYNC	Synchronization type: 0 = asynchronous, 1 = synchronous
CODING	Broadcast coding: 0 = no added coding, 1 = FEC coding If any values entered in the above fields are out of range, an error flashes on the screen and you cannot exit the screen until proper values are entered.

Real-Time Differential 41

Type 7 messages are generated as scheduled by the user for up to four radio beacon locations. The display only allows entry (and shows information) for one radio beacon location. To enter more than one location, use the RSIM 21 serial command.

Changes to any parameters in this message must exist for at least one minute before a new Type 7 message is generated with these changes. If the schedule for a Type 7 message to be broadcast is greater than two minutes after its parameters change, a Type 7 message is automatically generated within two minutes.

RTCM Type 15 Message Submenu

When selecting TYPE 15 from the RTCM OPTIONS MENU, the RTCM TYPE 15 MESSAGE submenu appears, as shown below:

Figure 3.6: RTCM Type 15 Message Screen

This submenu is display only, no data can be entered.

Table 3.6: RTCM Type 15

Component	Function
SAT.ID #1/2	Satellite ID (PRN 1-32).
ION.MEAS #1/2	Ionospheric measurement in meters.
ION.RATE #1/2	Ionospheric rate measurement in centimeters per minute.

RTCM Type 16 Message Submenu

When selecting TYPE 16 from the RTCM OPTIONS MENU when the receiver is set to base mode, the RTCM TYPE 16 MESSAGE submenu appears, as shown below.

Figure 3.7: RTCM Type 16 "Send Message" Screen

To enter an ASCII message, type it using the keys on the receiver panel. To enter other characters than numbers, use the s key to call them up on the screen and press one of the keys [0] through [9] that represents the desired character. The characters are displayed in blocks of ten. Five sets of characters are available.

When selecting TYPE 16 from the RTCM OPTIONS MENU when the receiver is set to remote mode, the RTCM TYPE 16 MESSAGE appears as shown below.

Figure 3.8: RTCM Type 16 "Receive Message" Screen

This menu contains information about the last TYPE 16 message received.

Real-Time Differential 43

Accessing MSK Functions

MSK functions are accessed by selecting DIFFERNTL on Screen 4 and pressing the [e] key. The following screen appears.

Figure 3.9: Differential Mode Selection Screen

Select MSK SETUP. This displays the MSK Setup Menu:

Figure 3.10: MSK Setup Mode Screen

Table 3.7: MSK Setup Menu

Component	Function
MSK	Turns MSK signal on or off. Default is OFF.
CH1 FREQ	Sets the carrier frequency of channel 1 from 283.5 to 325.0 kHz in steps of 0.5 kHz. If set to 0, no signal is generated. The default is 000.0.
CH2 FREQ	Sets the carrier frequency of channel 2 from 283.5 to 325.0 kHz in steps of 0.5 kHz. If set to 0, no signal is generated. The default is 000.0.

Component	Function
MOD	Turns the RTCM data carrier modulation ON or OFF or sets to FILL. Fill modulates the carrier with the FILL type. The default is ON for channel 1, OFF for channel 2.
FILL TYPE	Selects SPACE, MARK, ALTER, or PARK to modulate the carrier if there is no RTCM data to send. Default is SPACE.
SPEED	Selects bit rate of RTCM data issued from the MSK port: 25, 50, 100, or 200 bits per second. The default is 100.

Table 3.7: MSK Setup Menu (continued)

Reference Station or Base Mode

On the differential mode selection screen, check that the output port is correctly specified.

To set the receiver into base mode to be a reference station:

1. Highlight RTCM format on the Differential Mode Selection screen and press [1] to access the RTCM Options.

Figure 3.11: RTCM Options Menu Screen

- 2. Check that the RTCM OPTIONS Menu reads BASE. If not, highlight the mode indicator and press the [+] or [-] key to toggle it to BASE.
- 3. Check SPEED. The default setting is 100 bits per second. To use another of the available speeds, highlight it and toggle it to the desired speed.
- 4. Optionally, set STID to a number from 0 to 1023.
- 5. Optionally, set STHE to a number from 0 to 7.

Real-Time Differential 45

- Under FREQ, set the time interval for the messages to be transmitted. Set type 1 or type 9 frequency to 99 for continuous transmission of differential corrections.
- 7. When sending a message, type in the message under the submenu Type 16 (up to 32 characters).
- 8. Press [e] twice to return to the main display, Screen 4.

User Equipment or Remote Mode

To set the receiver in user mode to be the remote station:

1. With RTCM format highlighted on the Differential Mode Selection screen, press [1] to access the RTCM Options.

Figure 3.12: RTCM Options Menu

- On the RTCM Options Menu, highlight the mode indicator and toggle it to REMOTE.
- For corrections to be applied by the remote, the station ID (STID) in the remote should be the same as the base, or 0000. To change this field, highlight STID and enter the desired number. 0000 means that corrections from any reference station are accepted.
- 4. To alter MAXAGE, highlight it, set it to a number from 0 to 1199 seconds and press the [e] key to enter that value.
- 5. To change QAFREQ (communication quality), highlight it and set it to a number from 0 to 999; press the [e] key.
- 6. Press [e] twice to go back to the main display, Screen 4.

XON/XOFF Handshake

It may become necessary to stop a receiver (base mode only) from transmitting, for example, if the buffer in the transmitting equipment is nearly full.

- To stop sending data, send an XOFF (ctrl-s).
- To resume transmitting, send an XON (ctrl-q) command. The base receiver will not start sending messages again until you do this.

Real-Time Differential 47

Screen Operations

Screen 0 - Skysearch Information

Screen 0 displays the status of the satellites that the receiver finds as it performs a sky search. The number in the lower right corner identifies the screen.

Figure 4.1: Skysearch Information Screen

Screen 0 only displays information. You cannot enter data on it. To change to other screens in order, press ▶ or ◀. To jump to another screen, press a number.

Table 4.1: Skysearch Information Functions

Component	Function
SVS FOUND	Reports the number of satellites located.
02:26:44	Hours, minutes, and seconds are reported in the upper right in three stages. Before it locks on a satellite, the receiver displays time elapsed since you first turned it on. After it locates the first satellite, it reads the satellite time, sets its internal clock, and reports GPS time. After it finds several satellites and collects GPS-to-UTC parameters, it changes to GMT.
CHAN	Contains the channel numbers for the associated satellites.
PRN	PRN number of each satellite being tracked by the receiver. If the lock is not acquired on a satellite after two minutes, a new satellite is cycled into its channel. If the SV PRN number is displayed in reverse video (blue numbers in a white box), the satellite is in Z mode.

Table 4.1: Skysearch Information Functions (continued)

Component	Function
STAT •SN •LK	Shows the current status of each C/A-code channel where: When the receiver finds a trace of a satellite signal, it reports SN. It has located some kind of signal. If not a satellite signal, the receiver continues the search. When a signal proves to be a satellite signal, the receiver reports LK (locked on), and then reads the satellite's ephemeris and almanac files. Status generally changes to LK within two minutes of
	operation.
PL1	Indicates the lock status of the P1-code channels. Like the C/A-code channel, reports SN or LK.
PL2	Indicates the lock status of the P2-code channel.
Z-12 1C00-1C00	Reports the type of receiver and the software version number. When calling a service representative with problems, have this number available.

Screen 1 - Orbit Information

The Z-12-R receiver collects and displays on Screen 1 the orbit parameters from each satellite it has found. It computes and displays information such as elevation and azimuth. Screen 1 is display-only, no data can be entered.

Figure 4.2: Orbit Information Screen

Table 4.2: Orbit Information Functions

Component	Function
PRN	Is the PRN number of each satellite being tracked by the receiver. An asterisk (*) preceding it indicates it is currently locked. If the PRN number is displayed in reverse video (blue numbers in a white box), satellite is in Z mode.
CNT	Is the number of epochs of continuous data collected from this satellite. It is updated every second. It ranges from 0 to 99 and remains at 99 until a cycle slip. If there is a cycle slip or loss of lock, the receiver resets CNT to 0. If CNT often drops to 0, it indicates frequent cycle slips with this satellite. However, if the satellite is high in the sky (elevation angle 20° and above), cycle slips are rare unless obstructions exist in the line of sight to the satellite.
S/N	Is the signal-to-noise ratio, a measure of a satellite's signal strength. When it is less than 20, the signal is weak; when it is over 50, the signal is strong. A satellite at a low elevation angle displays a weaker S/N.
ELV	Is the satellite's angle above horizon, ranging from 0° to 90°.
AZM	Is the geodetic azimuth of the satellite clockwise from 0° geodetic north in units of 10° (geodetic north according to WGS-84 coordinates). When it displays 12, read it as 120°. The receiver needs its position to compute elevation and azimuth. Until it locks on to enough satellites to determine its own position, it can use an estimate of position; enter this estimate on Screen 4, Mode Control.
URA	Indicates the range accuracy of each satellite. When it is 0, the accuracy is high; when it is over 8, the accuracy is low.
HEL	Displays the satellite's health (general condition) in hexadecimal. Interpreting this code is explained in Chapter 8, System Control.
AGE	Shows how many minutes have passed since lock was lost on the satellite. For example, when ELV is 35 and AGE is 12, the satellite was at an elevation of 35° twelve minutes ago when loss of lock occurred. When the satellite is reacquired, the age resets to 00.
1	(Screen number) indicates the information on C/A code.

To see information on P1 (P-code on L1), press the ∇ key; the S/N display is updated for those parameters and the screen number is displayed as P over 1. Press ∇ again to see P2 (P-code on L2); P over 2 appears as the screen number.

Screen 2 Navigation Information

Based on information received from the GPS satellites, the Z-12-R receiver computes and displays on Screen 2 various components of position. No data can be entered in this screen. Screen 2 consists of two pages.

Screen 2, Page 1

Figure 4.3: Navigational Information Screen

When the receiver is in remote mode and AUTO DIFF is set to no, the position is updated only when differential corrections are received.

Table 4.3: Na	ivigation l	Information	Functions	(Screen 2,	Page 1))
----------------------	-------------	-------------	-----------	------------	---------	---

Component	Function
WGS-84	Indicates the datum of the displayed position. The default is WGS-84. Other datums can be selected in Screen 4, Datum.
02550	Is a position counter that increments with every half-second update. The display changes to OLD when the position data is more than 10 seconds old. When count restarts, the counter begins from last count. If a position is defined in screen 4, POS field, the counter resets to zero and restarts.
00:15:36	Displays Greenwich Mean Time (GMT).
LAT	(Latitude) is reported in degrees and minutes to four decimal places with N for north and S for south.
LON	(Longitude) is reported in degrees and minutes to four decimal places with E for east and W for west.
ALT	(Altitude) is the ellipsoidal height, in meters, of the antenna.

Table 4.3: Navigation Information Functions (Screen 2, Page 1) (continued)

Component	Function
COG	(Course over Ground) is the heading in degrees. For COG, the default unit is in true degrees (Tr). If the magnetic variation mode is selected (See Screen 6), the unit for COG is displayed in magnetic variation degrees (Mg).
SOG	(Speed over Ground) is the receiver's velocity in miles per hour (labeled MPH), kilometers per hour (KM/H), or knots (KN). The units are set on Screen 6, function 8: Unit Selection Option.
FOM	(Figure of Merit) Indicates the accuracy of the stand-alone position based upon satellite range residuals and PDOP. 1 is best. 9 indicates that a position is not being computed.
PDOP	(Position dilution of precision) depends on the relative positions of the satellites. If they are scattered around the sky, the certainty of a position is better and PDOP is lower than if they are close together. A number above 6 indicates a bad PDOP.
HDOP	(Horizontal dilution of precision) is the two-dimensional horizontal component of PDOP.
VDOP	(Vertical dilution of precision) is the height component of PDOP.
TDOP	(Time dilution of precision) is the time component. The receiver displays PDOP (three coordinates) and components of GDOP: H for HDOP (two horizontal components), V for VDOP (height only), and T for clock offset only.
SVS	Is the number of satellites currently being used for the position calculation.
AGE	Reports how many minutes since the position was computed.

Screen 2, Page 2, Navigation Information

Page 2 of Screen 2 is accessed by pressing the \triangle or ∇ keys.

Figure 4.4: Navigation Information Screen (Page 2)

Table 4.4: Navigation Information Functions (Screen 2, Page 2)

Component	Function
SPEED	Is the speed over ground (SOG) parameter displayed in its east, north, and up (ENU) components.
ТО	Represents the TO waypoint, giving its number and name. The waypoint is specified on Screen 6, Waypoint Control.
DTD	(Distance-to-destination) is the distance from your present position to the TO waypoint.
CTD	(Course-to-destination) is the course to follow from the present position to the TO waypoint displayed in either true degrees (°Tr) or magnetic.
TTD	(Time-to-destination) is given in hours and minutes (labeled H:M) to the TO waypoint, based on the present SOG.
XTE	(Cross-track error) indicates deviation from the track between the FROM waypoint and the TO waypoint where R indicates right of the track and L indicates left of it. The deviation is labeled in kilometers (KM) or miles (MI).
»»»+«««	Provides a visual representation of the direction in which to proceed in order to get back on track to the next TO waypoint.

Screen 3 Tracking Information

Screen 3 gives a visual representation of the data recorded for each tracked satellite.

Figure 4.5: Tracking Information Screen

The satellite numbers go down the left side in the order in which they are tracked. To the right are columns of dot and star symbols. Each symbol represents 5 minutes. Dark bands mark off 30-minute segments for easy reading, with a maximum display capacity of 180 minutes (3 hours).

Table 4.5: Tracking Information Symbols

Component	Function
dot	Means no data was recorded for that satellite.
star	Means data was recorded for that satellite.

Screen 3 is display only, no data can be entered.

Screen 4 Mode Control

On Screen 4, you can change several receiver control parameters and access receiver options such as Position Fix, Differential Mode, Session Programming, Receiver Mode, Serial Port Setup, Setting External Frequency, Pulse Generation, Datum Selection, Modem Setup, and Subcommands. Go to the applicable subscreen using Screen 4:

Figure 4.6: Mode Control Screen

The receiver is preset to default values for the control parameters. To change a parameter value, press [e] to shift to data-entry mode. Then use arrow keys to move the highlight to the field to be altered. Use the numbered keys to enter numbers. They are also used to enter a value such as [6] for north or [8] for yes. Press [e] again to save the values in memory.

To clear an altered value, push the [c] key. The receiver ignores all changes made since you last pushed the [e] key.

To access a receiver-option subscreen from Screen 4, press the [e] key for data-entry mode, use an arrow key until the option DIFFERNTL, SESSION, RCVR CTRL, PORT A, PORT B, PORT C, PORT D, EXT FREQ, PULSE GEN, DATUM, MODEM, or SUBCMDS is highlighted, and press the [e] key again.

Receiver Control Parameters

Table 4.6: Receiver Control Parameters Functions

Component	Function
POS	(Entire first line of display) are the coordinates of the antenna latitude, longitude, and altitude per the WGS-84 ellipsoid. Press the numbered keys, typing zero where necessary. When a field is full, the cursor automatically jumps to the next one. During routine surveying, it is not necessary to enter a position because a pseudorange position is automatically calculated and displayed on screen 2. Entering a position is necessary only when a precise position is necessary. For example, in real-time differential, POS is used for the accurate position of the antenna when you specify the receiver as base station.
INTVL	 (Recording interval) specifies how frequently to record data into memory. The default is to store data every 20.0 seconds. Press [e] to go to data entry mode, and press the ▶ key until the INTVL field is highlighted. Then press the numbered keys such as [0], [1], and [0] to enter a 10-second interval. (This is typical for a kinematic survey). • Make sure the recording interval is changed at the beginning of the survey. It should not be changed once data collection has begun. Data can be recorded at any half-second interval (0.5, 5.5, 10.5). Any other subsecond interval is not allowed.
MIN SV	Sets the minimum number of satellites with valid ephemerides that need to be locked before data recording can begin. It defaults to 3 when the receiver is first turned on.
ELV MASK	Sets the minimum elevation angle for which information from satellites is used to record data. The default is 10°. To change the angle, press [e] to go to the data entry mode, press the key until ELV MASK is highlighted, then press the numbered keys, such as [0] and [0] to enter a 0° angle. For surveying, collect everything above 10° and limit the cut-off angle only in post-processing. This mask controls only data recording. For position computation, see Screen 4, Position submenu.
RNGR	Controls how data and positions are stored. 1 Indicates geodetic mode. Stores phase data in B-files that can be post-processed differentially using carrier phase or code phase. 1 stores phase data in B-files that can be post-processed differentially using code phase only. Mode 1 can store more than twice the number of positions as mode 0. 2 stores smoothed positions in C-files only. These positions can be differentially corrected only in real time; they cannot be post-processed differentially.

Receiver Options

The following entries are Screen 4 options. They all appear on Screen 4, but some can be activated only when they have been installed in the receiver. They are described in

the order seen on the screen shown on the first page of this section, left-to-right, top-to-bottom.

Table 4.7: Receiver Options

Component	Function
POSITION	Goes to the Position Fix Parameters subscreen where you specify criteria for position computation.
DIFFERNTL	Can be accessed only if the differential option has been loaded into the receiver. When DIFFERNTL is accessed, the receiver goes to the Differential Mode Selection subscreen to specify the receiver as BASE or REMOTE.
SESSION	Calls up the Session Programming subscreen for programing up to 10 data-recording sessions.
RCVR CTRL	Sets special receiver parameters.
PORT A PORT B PORT C PORT D	Provides a subscreen to specify serial port output parameters.
EXT FREQ	Can be accessed only if the external frequency (x) option has been loaded into the receiver. When EXT FREQ is selected, the receiver presents a subscreen for setting up the external frequency parameters.
PULSE GEN	Displays the Pulse Generation Parameters subscreen.
DATUM SELECT	Displays the Datum Selection subscreen to select one of 46 possible datums. These positions are shown on Screen 2. This datum is not used for computing the position stored in memory.
MODEM SETUP	Sets a modem to port A or B.
SUBCMDS	Provides a way to enter the same system-level commands as Screen 8.

Position Fix Parameters

Position Fix Parameters specify position computation criteria (stored and displayed) such as how many satellites to use, when to hold altitude fixed, Dilution of Precision (DOP) masks, elevation mask, and use of unhealthy satellites. It also allows enables the ionospheric model or UTM coordinates for position computation.

Figure 4.7: Position Fix Parameters Screen

To set a parameter, push the [e] key and use the arrow keys to move to the desired parameter. Press the numbered keys, typing zero where necessary. When a field is full, the cursor automatically jumps to the next one. Press [e] to save the values and return to Screen 4.

Table 4.8: Position Fix Parameters

Component	Function
POS MODE	Specifies whether to compute altitude or hold it fixed. The field can contain a value ranging from 0 through 3. To be used for position computation, a satellite must be higher than the ELV MASK specified on this subscreen. O. Specifies that at least 4 satellites must be tracked before the receiver will compute position. Altitude is never held fixed (default). The following settings for POS MODE require a minimum of three satellites to compute position: 1. When three satellites are locked, it holds altitude fixed. When more than three are locked, it computes altitude. 2. Altitude is always held fixed regardless of the number of satellites tracked. 3. When three satellites are locked, it holds altitude fixed. When more than 3 are locked and HDOP is less than the specified HDOP MASK, it computes altitude. When more than three are locked and HDOP is equal to or greater than the specified HDOP MASK, it holds altitude fixed. Remember that when the receiver is first turned on, the altitude is zero. If position mode is set to a value of 1, 2, or 3, enter value for altitude in the POS field of Screen 4.
ALT MODE	Specifies which altitude to use in an altitude fixed position solution. This field can contain 0 or 1 value. Uses last entered altitude or last altitude computed if it was computed with VDOP less than the specified VDOP MASK, depending on which altitude is the most recent. Uses only the altitude entered on Screen 4.
ELV MASK	Sets the minimum elevation angle for which information from satellites will be used to compute a position.
PDOP MASK	Defines the positional dilution-of-precision parameter. The receiver will not compute position when PDOP exceeds the specified value. The default is 40.
HDOP MASK	Defines horizontal dilution-of-precision. Effective only when POSITION MODE is set to 3. The default is 4.
VDOP MASK	Defines the vertical dilution-of-precision parameter. Effective only when ALT MODE is 0. Default is 4.
UNHLTHY	Specifies whether or not to include unhealthy satellites in the position computation. If Y is specified, a satellite broadcasting an unhealthy message computes a navigation position. This parameter in no way affects data collection for an unhealthy satellite. Responding N (the default) will not stop the receiver from logging satellite data from an unhealthy satellite. The receiver is programmed to record data from all tracked satellites broadcasting valid ephemerides. (There may be times when data from an "unhealthy" satellite will not be recorded, such as when a satellite is broadcasting invalid orbit data).
ION MODEL	Enables or disables the ionospheric and tropospheric models to be used in position computation.

Table 4.8: Position Fix Parameters (continued)

Component	Function
POS COMP	Enables or disables the computation of position
UTM COORD	Position in Screen 2 is computed and displayed using UTM coordinates (east, north) instead of geodetic coordinates (lat, lon). This parameter does not affect data collection.

Differential Mode Selection

Differential mode selection puts the receiver into base mode for use as a reference station or into remote mode for use as "user equipment". It also gives access to lower-level screens to specify parameters such as RTCM format parameters. This is accessed by selecting DIFFERNTL on Screen 4 and pressing the [e] key. Without the Differential (D) option, you cannot access this subscreen.

Figure 4.8: Differential Mode Selection Screen

Table 4.9: Differential Mode Selection Functions

Component	Function
MODE	Sets the receiver to base, remote, or disabled mode. Use an arrow key to highlight the mode indicator and press the [+] or [-] key to toggle it. For a reference station, set it to base. For user equipment, set it to remote.
RTCM format	The [1] key allows access to the RTCM option menu. RTCM format has several subscreens and is described in Chapter 3, Real-Time Differential .

Table 4.9: Differential Mode Selection Functions (continued)

Component	Function
USE PORT A	Specifies which port to use for output or input in differential mode. Press the [+] or [-] key to toggle through PORT A, B, C, or D or NONE to correspond with the current one, [e] to save. Default is NONE. When the Z-12-R is transmitting corrections only with the MSK port, set the port to NONE.
C/A CODE	Switch to enable the standard C/A code RTCM differential or the L1 P-code RTCM differential. Press [+] or [-] to toggle it through C/A code or L1 P-code. When L1 P-code is selected, a type 10 message is generated for P-code differential corrections, instead of the type 1 for C/A code differential correction. Both messages have the same format.
AUTO DIFF OFF	If set to ON, the receiver automatically switches position computation from differential to stand-alone mode when the maximum of the differential corrections is exceeded, and from stand-alone to differential when corrections are resumed.
MSK SETUP	Configures the parameters for the radio beacon. Refer to Chapter 3, Real-Time Differential .

Session Program Parameters

The Session Program feature allows you to pre-set up to 10 observation sessions in the receiver. This option can be useful to normal data collection and is particularly useful when used with the Remote Monitor program in your computer. With the Remote Monitor program and a modem, you can operate a receiver that has been left in a remote location and download its data files from across the world if necessary. For details, see the REMOTE.EXE module of the GPS Post-processing System Manual.

Initial settings can be made on the receiver and it can be left running. This screen is reached using SESSION on Screen 4.

Figure 4.9: Session Program Parameters Screen

The first column on the left contains the session identifier. Ten sessions, labeled A through J, are possible.

The second column is an individual session toggle. If it is set to Y, the session programmed on this line is activated. If it is set to N, the session is not used. Use the [8] and [1] keys to toggle the Y and N. (Note that sessions are activated only when INUSE is also set to Y; see below.)

Table 4.10: Session Program Parameters

Component	Function
START	Enter the session start time in hours, minutes, and seconds. If an erroneous value is entered (like 25 hours), it either resets it to 0 or restores the last legal value that it contained.
END	Enter the session end time here. If the end time is earlier than the start time, the session runs into the following day.
INT	Enter data sampling rate in seconds. Values between 000.5 and 999.5 seconds are accepted in ½-second increments. If the ¼-second recording option is available, setting INT to 999 sets the sampling rate to ¼ second.
MASK	Enter the satellite elevation mask in degrees.
MIN	Is the minimum number of satellites above elevation mask that must be visible before the session begins to collect data. The values here for INT, MASK, and MIN override the values set in Screen 4 while this session is running. These values are displayed in Screen 4 when the session goes active and overwrite Screen 4 parameters.
TYPE	Refers to the data type to be collected. Enter 0 for normal geodetic data. See the "Receiver Control Parameters" on page 57, for definitions of data type.

 Table 4.10: Session Program Parameters (continued)

Component	Function
INUSE	Is a master switch for all sessions. If it is set to NO, no programmed session runs, regardless of its individual session setting. YES activates any sessions where the individual session toggle is set to Y. Use + and - to toggle. Whenever this switch is set to Y, the active file is closed and a new one opened, and the SESSION field flashes, indicating session programming is enabled. When a session goes active, a flashing arrow is displayed by SESSION on Screen 4, indicating data is being recorded.
REF	Is the reference day (day of the year) for the start and end times. If REF is set to 000, the session does not run. If REF is set to a day of the year later than the present, session programming does not start until REF equals today. If REF is set to a day of the year previous to the present, session programming starts in the current day, applying the offset selected with the REF day as explained in OFFSET.
OFFSET	Is the displacement of minutes and seconds from the reference day. For a day subsequent to the REF day, the start and end times are decremented by the minutes and seconds specified in OFFSET, multiplied by the day number. (For example, if the offset is 04:00, day 1 is offset 0 minutes, day 2 is offset 4 minutes.) If set to 00:00, the sessions observe during the same time every day. For example, assume a start time for session A of 02:10, an end time is 03:10, REF is day 100, and the OFFSET is 04:00 (4 minutes). If the reference day and offset are not changed on day 101, the start time for session A is 02:06 and the end time is 03:06, or 4 minutes earlier than day 100, thus the receiver can observe the same part of the window every day.

Receiver Control Subscreen

Figure 4.10: Receiver Control Screen

The RECEIVER CONTROL subscreen controls the operating mode of the receiver. When Z-mode is set to A, the receiver automatically switches from P-mode to Z-

mode when A/S is activated and back to P-mode when A/S is turned off. When set to Y it forces Z-mode for all SVs, and when set to N it forces P-mode for all SVs.

Serial Port Setting

Four RS-232 serial ports are available in the Z-12-R receiver.

Pin functions for the RS-232 cable that should be used to access the serial ports is described in Chapter 9, **Maintenance**.

All ports output real-time, NMEA, and VTS messages, accept serial port commands, hose data, and operate in differential mode. Following is a description of the screens and settings.

The Port A Parameter Selection subscreen specifies modes and rate of transmission for serial port A. It is accessed by selecting PORT A on Screen 4. Select Ports B, C, D in the same way.

After setting up the desired options, press [e] to save them.

Figure 4.11: Serial Port Setting Screen

"Press 1 for options" is displayed when the lower level screen has additional associated options. For example, with the NMEA indicator highlighted, when you press the [1] key, the receiver goes to the NMEA Option Menu specifying the NMEA message formats for Port A.

Table 4.11: Serial Port Setting

Component	Function
NMEA	Outputs the NMEA message formats. Highlight NMEA and press the [+] or [-] key to toggle it ON. For an explanation of how to set the receiver to output NMEA messages, and for a list of NMEA formats, refer to Chapter 5, Serial Port Output Options .
BAUD RATE	If the default baud rate of 9600 bits per second is not satisfactory, highlight BAUD RATE and press the [+] or [-] key to toggle through 300, 600, 1200, 2400, 4800, 9600, 19200, 38400, 57600, and 115200 to the desired baud rate.
REAL TIME	When the REAL-TIME option is set to ON, real-time data messages are sent through Port A of the receiver. MBEN and PBEN messages can be output in either ASCII or binary, while SNAV and SALM are available in binary only. Chapter 5, Serial Port Output Options defines commands and data formats, as well as how to set the receiver to output real-time data files. DBEN messages are also available (in binary only) and are described in Chapter 7, Detailed DBEN Message Structure .
VTS	Outputs position messages that are compatible with the VTS (Vehicle Tracking System) option. Toggling to .3 outputs latitude/longitude down to 1/1,000 of a minute; toggling to .4 outputs latitude/longitude down to 1/10,000 of a minute. Use the output port to which the VTS system is set.

External Frequency Setup

This option lets you input an external frequency so that you can synchronize receiver data. Its installation disables the internal oscillator. To configure the external frequency, go to Screen 4 and select EXT FREQ. The subscreen shown on Figure 4.12.

Figure 4.12: External Frequency Setup Screen

Press [e] to save the parameters. If you do not have the External Frequency option, you cannot access this subscreen.

Table 4.12: External Frequency Setup Functions

Component	Function
EXTERNAL FREQUENCY	May be changed from 1 to 21 MHz in 10-Khz steps. The default is 0 MHz. To disable the external reference, enter 00.00. When the external reference is switched off, the TXCO stability is fully retained.
SAVE THROUGH POWER CYCLE	To save the frequency so that, after a power cycle the receiver will come on again in the same mode, enter [Y] here. To disable this feature, enter [N] here. When the external reference is switched off, the TXCO stability is fully retained.
AUTO- SWITCH	Determines if the receiver will automatically revert to the internal oscillator if external frequency lock is lost. With AUTO-SWITCH set to N, if lock to the external source is lost, the unit beeps, and a status screen is displayed on the receiver. This indicates that the reference frequency is either unlocked, or is out of range. The receiver will not switch back to the internal oscillator. Lock range and other specifications are listed in the following table. If AUTO-SWITCH is set to Y, the receiver automatically resets and uses the internal oscillator if it loses lock to the external reference source. When external reference is locked and the receiver loses the power, the receiver still uses the external frequency source when the power returns; similarly when the external frequency source loses power.

 Table 4.13: External Frequency Setup Parameters & Specifications

Parameter	Specification	
Input Z	50 ohms	
Freq range	1 MHz to 21 MHz in 10-kHz steps	
Lock range	± 5 ppm	
Amplitude	0.7 to 3 V RMS into 50 ohms	
Loop bw	≈ 10 Hz	
Power	$<100 \text{ mW}$, $\approx 60 \text{ mW}$ standby	

Pulse Generation Parameters

A one-pulse-per-second (PPS) output option is available. The signal is synchronized with GPS time. The screen is reached by selecting PULSE GEN on Screen 4.

Figure 4.13: Pulse Generation Parameters Screen

Period

The period of the PPS option may be changed from a half second up to a maximum of 60 seconds. The default is 1 second.

The PPS signal is a TTL signal with a 75-ohm impedance.

The signal is normally low and goes high 1 to 2 ms before the falling edge. The rising edge is synchronized with GPS time.

If receiver command 990 is issued, the falling edge of the pulse is synchronized with GPS time. If command 991 is issued, the rising edge is synchronized with GPS time.

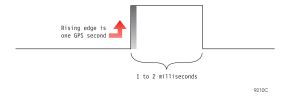


Figure 4.14: Pulse Generation

Offset

PPS may be advanced or delayed up to 500 ms in 100-nanosecond steps; + to advance, - to retard. After specifying the period and offset, press [e] to save it.

PPS accuracy is listed in the following table.

Table 4.14: PPS Accuracy

Mode	SA On	SA Off
Stand-alone	300-1000 ns	100 ns
Differential	50 ns	50 ns

Output Time on A:N B:N C:N D:N:

Output a time message every second synchronized with GPS time (rising edge of pulse is also synchronized with GPS time) through serial port A. Message format is:

\$PASHR,PPS,dddddd

where *dddddd* is the time in seconds of the week.

Datum Select Subscreen

This option lets you specify the datum of the receiver calculated pseudo-range option, or input the parameters for a user-defined datum; the default is WGS-84. The datum selected in this screen is only used to compute the position displayed in Screen 2. The position stored in memory is always computed using datum WGS-84.

The first datum subscreen is reached by selecting DATUM on Screen 4. The following subscreen appears:

Figure 4.15: Datum Select Screen

To select a datum, use the arrow keys to highlight the desired datum and press the [e] key; this captures the selection and exits to Screen 4. Check the selection by returning to Screen 2; the selected datum appears in the upper left corner.

If the desired datum does not appear on this subscreen, highlight more and press the [e] key. When ARF-M is highlighted, press ◀ to jump the cursor to MORE. This displays the rest of the datums that are available:

Figure 4.16: DATUM Select Screen - More Datums

Forty-nine datum selections are available with this option.

User

This screen allows you to input your own datum parameters. After selecting the USER datum, the following subscreen appears:

Figure 4.17: User Datum Entry Screen

The procedure for entering a user datum is:

- 1. On Screen 4, press the [e] key to shift to data-entry mode.
- 2. Highlight DATUM and press [e].
- 3. Highlight the MORE option and press [e].
- 4. Highlight the USER option and press [e].

- 5. Use the number keys to enter values in each field. Define the following:
 - Delta axis or delta flattening parameters that are available.
 - Delta -x, y, or z parameters that are available.
- 6. To log the values and return to Screen 4, press [e].

Check the selection by returning to Screen 2; the label USER is visible in the title line. Positions output in this configuration will now align to your datum.

Modem Setup Subscreen

This option selects the port through which data will be transmitted, and the modem type, when operating in remote mode. Select MODEM on Screen 4 and press the [e] key.

Figure 4.18: Modem Setup Screen

Table 4.15: Modem Setup Subscreen

Component	Function
PORT	Outputs through the specified port. Press the [+] or [-] key to toggle to A or B. Serial ports C and D are not set to initialize a modem.
TYPE	Selects the type of modem. The types of modem currently supported are Telebit® Worldblazer, Trailblazer, Cellblazer, and user-defined. To input the initialization string for the user-defined modem, select type: USER DEFINED, push the down arrow key to enter the initialization string, and use the up arrow key to enable other characters. To save the selection, press [e]. The receiver will transmit from the specified port and displays Screen 4.

Subcommands Subscreen

The SUBCMDS option allows entering of system-level commands; this can also be done through Screen 8, Figure 4.38. To enter a command, go to Screen 4 and select the SUBCMDS option.

Figure 4.19: Subcommands Screen

To enter system-level commands, press [e] for data-entry mode and use the numbered keys. For example, enter the numeric command [5], [5], [5] into the data-entry field and press [e] again. The receiver executes the command and returns to Screen 4.

The following table lists the available commands:

Table 4.16: Available System-Level Commands

Component	Function
100	Turn off backlighting after two minutes since last key press. (Default)
101	Keep backlighting on. Warning: if backlighting is left on, the receiver draws significantly more power.
123	Close a file.
191	Initialize the modem.
550	Resets the receiver to the original default values.
555	Save user parameters.
737	Initialize (reset) RTCM.
888	Display configuration identification (information such as serial number, list of installed options, nav board, channel board).
990	Falling edge of one PPS pulse is synchronized with GPS time.
991	Rising edge of one PPS pulse is synchronized with GPS time.

For a detailed explanation of each of the commands, refer to Screen 8.

Screen 5 Differential Information and Range Residuals/Position Error

Two different displays are available in this screen: Page 1 displays differential information, and Page 2 displays range residuals and position error information. To toggle between the pages, press the \triangle or ∇ keys.

The mode (BASE or REMOTE) set on the Differential Selection screen (DIFFERNTL submenu of Screen 4) determines the information shown on Page 1 of Screen 5. Therefore interpreting it depends on whether the receiver is in **base** or **remote** mode.

Page 2, the range residual and position error screen, displays each satellite range residual (difference between the measured and the calculated range), along with the horizontal and vertical position errors.

RTCM Information

The RTCM information displayed on Screen 5, Figure 4.20 depends on whether the unit is set as a base or remote station. In base mode, it displays information about transmitted messages; in remote mode, data from received messages.

Figure 4.20: RTCM Information Screen

Table 4.17: RTCM Screen

Component	Function
TYPE	Indicates the type of message to be generated or that is being received.
STID	Is the reference station identification, set on the RTCM Options screen (base mode) or received from the base station.

 Table 4.17: RTCM Screen (continued)

Component	Function	
STHE	Is the reference station health, set on the RTCM Options screen or computed based on UDRE values or ones received from the base station. Refer to Chapter 3, Real-Time Differential .	
SYNC	Indicates the receiver is synchronous with a message. It has decoded a message, captured its sequence number (SQNU), and found that its parity was good. The receiver displays a question mark (?) when a given message does not carry the next sequential number expected by the receiver. The question mark may be displayed for the first message since there is no previous message with which to be in sequence.	
SQNU	Is the RTCM, message sequence number, generated by the base or received by the remote receiver.	
ZCNT	Is the RTCM message Z-count.	
FLEN	Contains the RTCM message frame length.	
PRN	Is the satellite PRN number.	
PRC	Is the pseudo-range correction in meters. Negative numbers are shown in inverse video.	
RRC	Is the range-rate correction in centimeters per second. Negative numbers are shown in inverse video.	
IODE	Is the issue of the data.	
S/UD	Is the scale factor and user-differential range error.	
AGE	For remote mode, shows the age of received messages in seconds for each satellite. In base mode, gives the time elapsed in seconds since the beginning of the transmission of a type 1 or 9 message until a new type 1 or 9 message is generated.	
QA	Is the communication-quality factor, defined as: (number of good messages/total number of messages) x 100	
OFFSET	Is the number of bits from the beginning of the RTCM byte in case of bit slippage.	

Range Residuals

Page 2 of Screen 5 displays the range residuals and position errors determined during position computation. To toggle between pages, press the \triangle or ∇ keys.

Figure 4.21: Range Residuals and Position Errors Screen

Component	Function
PRN	PRN number of satellites being tracked.
RES	Range residual associated with each satellite.
HORIZONTAL/VERTICAL POSITION ERROR	Horizontal/vertical RMS position error in meters.

Table 4.18: Range Residuals and Position Errors Keys

Screen 6 Waypoint Control

The Navigation Option defines a navigation route and provides a way to enter the latitude and longitude of each waypoint included in the route. Knowing the route information and the coordinates of each point, the receiver can compute the distance between the present position and the next destination point (DTD), the course to follow to reach the next destination point (CTD), the time it will take to reach this point (TTD) based on the present speed over ground, and the cross-track error (XTE) which is the deviation from the track between the present position and the next destination waypoint. All this navigation information is displayed in screen 2.

The first line of Screen 6 shows the route information, in terms of waypoint numbers, where the leg currently being followed will be highlighted. The remaining screen displays a list of records showing the current and next waypoints in the route. Each waypoint record consists of a two-digit waypoint number, a seven character name, a latitude, and a longitude. Coordinates are entered in degrees, minutes, decimal

minutes. Up to 99 waypoints can be stored and a route can be composed of up to 20 waypoints.

Figure 4.22: Waypoint Control Screen

If no information has yet been defined, Screen 6 shows the route with only waypoint 01, and the list of records shows waypoint 01 with no name and coordinates.

Within Screen 6 there is a menu of functions that allows you to enter the information required for this option to be active. To access these functions, go to Screen 6 and press [e]. The following display appears:

Figure 4.23: Submenu Screen

To activate all functions, press the corresponding number and the screen changes for that function. Alternatively, highlight the function and press [e].

To see the options associated with functions 2, 5, and 6, highlight the function and press [0].

The two main functions within this menu are: 4:EDIT ROUTE and 3:EDIT WAYPOINT. EDIT ROUTE creates or edits a route, and adds or deletes points from the route. EDIT WAYPOINT defines a list of waypoint records (associated or not with the route) where the name and coordinates of each waypoint have to be included.

LOG Present POS

This function saves the present location as a waypoint. When you select 1: LOG PRESENT POS, the receiver records its current latitude and longitude in the next available waypoint in the list and names it HERE_XX, where XX is the next sequential number starting with 01. Up to 99 positions (HERE_01 to HERE_99) can be logged this way. The logged position is momentarily displayed in Screen 6, in the first waypoint line, acknowledging it was stored. The next time screen 6 is accessed, the first waypoint line shows the first waypoint of the route.

Figure 4.24: First Waypoint of Route Screen

Set Display

This function specifies whether the list of records displayed in Screen 6 are the list of waypoints that make the route, or a specific set of selected waypoints.

To access this function highlight "SET DISPLAY" and press [0]. The following screen appears:

Figure 4.25: Display Update Mode Screen

Press [+] or [-] to toggle between MANUAL and AUTOMATIC. When the AUTOMATIC option is selected, the receiver automatically displays the list of records of the current and next waypoints in the route. By default the receiver is set to AUTOMATIC. If instead, MANUAL is selected, the receiver displays a specific set of selected waypoints. To save this selection and return to the main menu, press [e]. To define the set of waypoints displayed in MANUAL mode, proceed as follows:

1. Highlight the function "SET DISPLAY" and press [e]. A simulation of Screen 6 without the route appears.

Figure 4.26: Without Route Screen

- The entry number of the first record is highlighted. Using the ▼ and the ▲ keys, scroll through the list until the desired waypoint is found. Or, using the numbered keys, enter the waypoint number, and the name and coordinates of that waypoint are displayed.
- 3. Using the ▶ key, select the next waypoint.
- 4. Continue selecting until satisfied.
- 5. Press [e] and the set of selected waypoints are displayed in Screen 6.

To return Screen 6 to the waypoints list, select AUTOMATIC.

Edit Waypoint

This function creates, edits and/or clears a waypoint, and copies the information of one waypoint to another.

To access this function highlight EDIT WAYPOINT, and press [e]. The following screen appears:

Figure 4.27: Edit Waypoint Screen

To edit a waypoint perform the following steps:

- With the waypoint number highlighted, cycle through the list of waypoints, using the ▼ and ▲ keys until the desired waypoint is displayed.
 Alternatively, using the numbered keys, enter the waypoint number.
- Press the ► key to move the cursor to the name field and to bring up the alphanumeric conversion table at the bottom of the screen. Enter the waypoint name.
- 3. Using the ▼ key, move to the next field and overwrite the latitude (including N or S) and the longitude (including E or W). From the data field, press [e] to save the waypoint information. The ▼ and ▲ keys allow you to move from one field to the other, while the ▶ and ◄ keys allow you to move from one character to the other.

The EDIT WAYPOINT option has three additional functions available: CLEAR, HERE, and COPY FROM.

The CLEAR function clears the information of a waypoint. To use this function, do the following:

- Select a waypoint with the waypoint number highlighted and using the ▼ and ▲ keys, or the numbered keys.
- 2. Using the cursor, highlight the CLEAR field and press the [e] key. The name of the waypoint is cleared and the latitude and longitude reset to zero.
- 3. From the data field, press the [e] key to save the changes. If desired, you can edit a new waypoint.
- 4. Press [e] to return to the main screen.

The HERE function logs the current position into a selected waypoint (similar to the LOG POSITION option).

- Select a waypoint with the waypoint number highlighted and using the ▼ and ▲ keys, or the numbered keys.
- Using the cursor, highlight the HERE field and press the [e] key. The current
 position is logged to that waypoint position and the information displayed.
 The waypoint is renamed HERE_XX, where XX is the next sequential
 number assigned to a logged position beginning from 01.
- 3. From the data field, press the [e] key to save the changes. If desired, edit a new waypoint.
- 4. Press [e] to return to the main screen.

The COPY FROM function copies the information of one waypoint to another.

- Using the ▲ and ▼ keys, or the numbered keys, select the waypoint to be copied TO.
- 2. Using the cursor keys, highlight COPY FROM. A waypoint is displayed by the COPY FROM field and its coordinates will be displayed at the bottom of the screen. Using the ▲ and ▼ keys, or the numbered keys, select the waypoint to be copied FROM.

Figure 4.28: "Copy From" Screen

- 3. Press [e] and the FROM waypoint information is copied to the TO waypoint. Edit the copied information if necessary.
- 4. From the data field, press [e] to save the waypoint.
- 5. If desired, edit a new point. If not, press [e] to return to Screen 6.

Edit Route

This option creates or modifies a route. You can edit, add or remove waypoints from the route, and also reverse the order of the waypoints in the route. To select this option, highlight EDIT ROUTE and press [e]. The following screen appears:

Figure 4.29: Edit Route Screen

The screen shows the current route and, at the bottom of the screen, the information associated with the highlighted waypoint. To edit the route, highlight the point to be edited and modify it as necessary. Use the \blacktriangleleft and \blacktriangleright keys to move the cursor from one waypoint to the other. Use the \blacktriangle key to scroll through the waypoint list and modify a waypoint number. Alternatively, use the numbered keys to modify the waypoint number.

The EDIT ROUTE option has three additional functions: DELETE, INSERT, and FLIP.

The DELETE function allows you to delete a waypoint from the route.

- 1. Use ▶ and ◀ to highlight the waypoint to be deleted.
- 2. Using the ▼ key and the ▶ or ◀ key, highlight DELETE. The selected waypoint blinks.
- 3. Press [e] and the waypoint is deleted.
- 4. Move the cursor up to the route field and press [e] to save the changes.
- 5. Press [e] or [c] to go back to screen 6.

The INSERT function allows you to add waypoints.

- 1. Using the ▶ and ◀ keys, highlight the position in the route where you want to add the new waypoint.
- 2. Using the ▼ key, and the ▶ or ◀ key, highlight INSERT. The selected waypoint blinks.
- 3. Press [e] and waypoint 01 is added. The waypoint previously in that position is moved one location to the right and the added way point blinks.

- 4. Move the cursor up to the route field to edit the newly entered waypoint and press [e] to save.
- 5. Press [e] or [c] to go back to screen 6.

The FLIP function reverses the order of the waypoints in the route.

- 1. Using the ∇ and the \triangleright or \triangleleft keys, highlight FLIP.
- 2. Press [e] and the order of the waypoints in the route is reversed. The last point is the first destination point of the previous route.
- 3. Move the cursor to route field and press [e] to save the changes.
- 4. Press [e] or [c] to go back to Screen 6.

Restart Route

This function instructs the receiver to modify the route according to two options available: restart the route from the beginning or restart the route from the nearest waypoint to the present position.

To select this function do the following:

1. Select RESTART ROUTE and press [0]. The following screen appears:

Figure 4.30: Restart Route Screen

- 2. Using the [+] or [-] keys, toggle between "Start at beginning" and "Start at nearest" and select one.
- 3. Press [e] and the receiver restarts the route. If "Start at beginning" was selected, the receiver points TO the first waypoint and uses the current position at that time to navigate FROM. The first waypoint is highlighted. If "Start at nearest" was selected, the receiver computes the closest leg and uses this leg as the navigation reference. This leg in the route is highlighted.

Waypoint Switch

This function advances manually or automatically to the next leg of the route.

1. To access the options of this function highlight "WAYPT. SWITCH" and press [0]. The following screen appears:

Figure 4.31: Advancement Criteria Screen

2. Press [+] or [-] to toggle between MANUAL and AUTOMATIC, and press [e] to save the selection.

When the AUTOMATIC option is selected, the receiver automatically advances to the next leg of the route every time an imaginary angular bisector line (line divides the angle between the present and next leg of the route in two) under the TO waypoint or a perpendicular line over the TO waypoint, is crossed.

When the MANUAL option is selected, whenever the WAYPT. SWITCH function is activated (highlight WAYPT. SWITCH and press [e]), the receiver advances to the next leg of the route, as shown below.

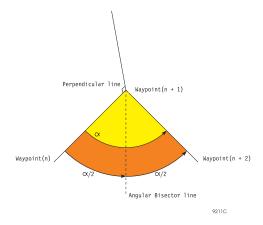


Figure 4.32: Waypoint Switch

Range/Bearing

This function calculates the range and bearing between any two consecutive waypoints in the route.

To use this function, highlight RANGE/BEARING and press [e]. The following screen appears:

Figure 4.33: Route Display Screen

The display shows the route being followed. One of the legs is highlighted and the coordinates of the waypoints associated with this leg are displayed in the next two lines. The last line shows the bearing and range values for that leg. To display the

range and bearing for a different leg, use the \triangleleft and \triangleright keys to move the cursor, and the information is automatically displayed at the bottom of the screen. Press [e] or [c] to go back to the main screen.

Unit Selection

This function specifies the units (miles, knots, kilometers) used to display the ALT (altitude), SOG (speed over ground), DTD (distance to destination), and XTE (cross-track error) values in Screen 2, Table 4.3.

To select this function, highlight UNIT SELECTION and press [e]. The unit selection screen appears:

Figure 4.34: Unit Selection Menu Screen

Press [+] or [-] to toggle to MILES, KM, or KNOTS. Then press [e] to save the change and return to the main menu.

When MILES or KNOTS are specified, the altitude (ALT on screen 2) is displayed in feet.

MAGVAR Mode

This function defines the magnetic variation mode used when displaying the COG and CTD values in Screen 2, Table 4.4 and VTG NMEA message, and the bearing value displayed in 7: RANGE/BEARING (Figure 4.33), and the APA and BWC NMEA messages.

To select this function, highlight 9:MAGVAR MODE and press [e]. The magnetic variation mode screen appears:

Figure 4.35: MAGVAR Mode Screen

With the magnetic variation field highlighted, press + or - to toggle between the three modes available: TRUE, AUTOMATIC, or MANUAL.

When the TRUE mode is selected, the COG, CTD, and bearing values are displayed using true degrees (°T).

When the AUTOMATIC mode is selected, the magnetic variation used to display the COG, CTD, and bearing values appear on the screen, in the AUTO field. This value is based on the current latitude and longitude from the magnetic variation table. The COG, CTD, and bearing values are displayed in magnetic degrees (°Mg).

When the MANUAL mode is selected, the magnetic variation used to compute the COG, CTD, and bearing values is the one entered in the MANUAL field. These values are displayed in magnetic degrees (°Mg). When this mode is selected, the following screen appears:

Figure 4.36: MAGVAR Mode (Manual) Screen

Highlight the field by MANUAL and enter the magnetic variation to be used. The value displayed in the AUTO field is the value used when the AUTOMATIC mode is selected and is displayed for reference.

To save the selection, press the [e] key. To exit without saving, press the [c] key.

Screen 7 Satellite Selection Control

Screen 7 specifies whether to include or omit specific satellites for tracking. Y indicates that the associated satellite will be used; N means that it will not be used.

Figure 4.37: Auto Selection Screen

Also on this screen, the receiver can be set in AUTOMATIC selection or in MANUAL mode by entering either a Y or an N in the AUTO SELECTION field. In automatic mode, all satellites flagged Y are considered for tracking. Of these, satellites that the receiver cannot lock on are replaced with other ones. Specifying Y for a satellite instructs the receiver to try to lock on, and, if it cannot, to replace it with another Y satellite. The receiver skips over those satellites designated N.

In manual mode (AUTO SELECTION is set to N), the letter Y in a satellite instructs the receiver to select that satellite even when it is not visible. The receiver does not replace it with any other satellite. In this mode, if you specify more than 12 satellites, the receiver uses only the 12 that were displayed on the 12 channels on Screen 0 at the time you went to manual mode. If you specify fewer than 12, it tracks only the specified satellites.

To select the satellites to be used:

- 1. Press [e] to shift to data-entry mode. (A blinking cursor indicates that the screen is in data-entry mode.)
- 2. Use ▶ and ◀ to highlight the field to be changed.
- 3. Use [8] to include the satellite or use [1] to omit it.
- 4. When the flag is acceptable, press [e] to save it in memory.

Pressing [c] cancels all entries made since the first [e] was pressed.

Screen 8 System Control

Screen 8 accepts several system-level commands. It also lists the files stored in the receiver's memory. Each file is an entry in the two-column display:

Figure 4.38: System Control Screen

Table 4.19: System Control Commands

Component	Function
SITE	Contains a four-character site name, the site name in use when the last epoch of data was recorded. (It can be changed from Screen 9, Site and Session Control.)
EQHR	(Equivalent hours) is used instead of bytes or kilobytes to indicate file size. 1 EQHR is equivalent to one hour of data recorded at a 20-second record interval for five satellites.
WN	Is the GPS week number.
D	Is the day (1=Sunday; 2=Monday; 3=Tuesday; 4=Wednesday; 5=Thursday; 6=Friday; 7=Saturday).
TIME	Reports when the last epoch of data was recorded. It is in the form hhmm (for example, 1850 indicates 18:50 GMT.)
EQHR (00%) AVAIL	Indicates the available memory in equivalent hours and percent. For example, a Z-12-R receiver with one megabyte of memory displays 19.5 EQHR when empty; this is equivalent to 19.5 hours of record capability at 20 seconds record interval for five satellites.
PICS	In photogrammetry applications, displays the count of camera signals recorded. Updated each time a picture is taken or event recorded. This option is not available for the Z-12-R.
PAGE	Page of the screen where the files being displayed are stored.

File Creation

Each time the receiver is turned off and then on, a new file is assigned for data collection (assuming some data was stored in the last file). Its name is the site name that was entered last. This name is preserved when the power is turned off. The receiver can store up to 100 files.

When a sufficient number of satellites (3 is the default) is being tracked, data is recorded in the last file shown on Screen 8.

If more than ten files are in memory, files are stored on a different "page" of the screen. To scroll through the pages of files, press the \triangle and ∇ keys. When no more memory is available, the receiver stops recording. Previously recorded data is be overwritten or lost.

System-Level Commands

Several system-level commands are available.

To use these commands, press the [e] key for data-entry mode. Then use the number keys to enter the desired command. Press the [e] key again for the command to be accepted. Pressing [c] instead of the final [e], cancels the command and the unit returns to display mode.

Available commands are listed and described below.

Table 4.20: System Level Command Function

Command	Function
100	Turn off backlighting after two minutes since last key press. (Default)
101	Keep backlighting on. Warning: if backlighting is left on, the receiver uses significantly more power.
123	Close a file.
191	Initialize the modem.
456	Delete a file.
550	Reset the receiver to the original default values.
555	Save user parameters.
737	Initialize (reset) RTCM
888	Display configuration ID (information such as serial number, list of installed options, nav board, channel board).
990	Falling edge of 1 PPS pulse is synchronized with GPS time.
991	Rising edge of 1 PPS pulse is synchronized with GPS time.

Closing a File

During data recording, close a file and open a new one without turning off the power as follows:

- 1. Press [e] to shift to data-entry mode. Use the number keys and enter [1] [2] [3].
- 2. Pressing [e] again closes the file and opens a new one. If no data has been logged to the current file, a new file cannot be opened.

Deleting a File

A file can be deleted at any time. However, before deleting a file, check that it is not needed or the information has already been transferred to the post-processing computer.

Each time the receiver is turned on, a new empty file is opened. If this file is deleted before closing it, any data collected will be appended to the last file in the list.

To delete a file,

- If there are more than ten files in the receiver, use the ▲ and ▼ keys to scroll
 to the page with the desired file.
- 2. Press [e] to shift to data-entry mode.
- 3. Highlight the site (file) you want to delete.
- 4. Use the number keys and enter [4] [5] [6].
- 5. Press [e] again and wait until the end of the current cycle for the file to be deleted and erased from the display.

Resetting to Default, Saving User Parameters

Whenever the **internal** memory of the receiver is reset, all parameters stored in the memory are reset to their default values. When the values of **some** parameters are modified, they are saved automatically in the internal memory overriding the defaults. Those that are not can be saved by using the command 555. To use this command, press the [e] key, enter [5] [5] [5] and press [e] again. The message "user parameters saved" is displayed.

To set parameters back to their original default values, use command [5] [5] [0]. This command resets some parameters. Those not reset can be manually modified through the corresponding screen, or if necessary, with an internal reset of the receiver. To use this command, press the [e] key, enter [5] [5] [0] and press [e] again. The message "default parameters being restored" are displayed. This command updates

some parameters to their default values and does not clear the complete internal RAM.

Refer to Chapter 8, **System Control** for a list of parameters saved by command 555 and reset by command 550.

Receiver Configuration

System command 888 displays the configuration identification of the receiver. It lists information such as serial number of the unit, all installed options, the navigation firmware version and release date, the channel firmware version and release date, the sleep mode version and release date, and the number of times new options have been loaded.

To see which options have been installed in the receiver, go to Screen 8 and press [e] for data-entry mode. Then enter [8], [8], [8] and press [e] again. The receiver displays a screen similar to this:

Figure 4.39: Configuration Identification Screen

Table 4.21: Configuration Identification Screen

Component	Function	
S/N	Is the serial number of the receiver	
OPT	Is a list of option codes. The order is important. A dash (-) means the receiver does not have the corresponding option. • D = differential U = remote only • Photogrammetry • P1 • P2 • Remote monitoring • External frequency • Quarter-second recording • DNS (C/A only)	

Table 4.21: Configuration Identification Screen

Component	Function
OPT SLOT NO	Indicates how many times options have been reloaded into the receiver
SLP	Indicates the version of the sleep mode firmware, and its release date
NAV	Indicates the version of the navigation board and its release date. The next three characters indicate the receiver type (L- or M-), if the unit has a co-processor (C=yes, N=no), and if the program is loaded in flash EPROMs (F) or standard EPROMs (E). The last two numbers indicate the size of the external memory in 100-Kbyte units.
CHAN	Indicates the type of channel board and its release date.

Screen 9 Site and Session Control

On this screen, enter information about a specific survey. Site information can be entered during data collection and will not affect or interrupt the collection process. As noted previously, external memory, is required to perform these functions.

Figure 4.40: Site and Session Control Screen

Table 4.22: Site and Session Control

Component	Function	
SITE	Is the name of a site, four alphanumeric characters, tagged with the raw data to record which site was occupied during that time period. This same site identifier names the data files when transferring them to a computer. A site name can always be added during downloading if an accurate site name was not present during data logging.	
SESS	Is the identifier (letter or number) of the session. The post-processing software specifies this parameter while downloading to the PC after data collection. However, the default sessions can be overridden by entering a letter or number here.	
RCV#	Is the receiver identifier, three alphanumeric characters.	
ANT#	Is the antenna identifier, three alphanumeric characters. Entering the last three digits of the antenna and receiver serial number is good practice in case there are problems with the equipment. After processing the data, if a file has out-of-range data, you can check the equipment that gathered it.	
MMDD	Indicates the month and day of the session, four alphanumeric characters. Only use this field when to override the file time tag. HOSE calculates the day of the year from the receiver time tag. Entering MMDD overrides the default.	
OPR	Identifies the operator, three alphanumeric characters.	
CODE	Can contain up to 13 alphanumeric characters of user comment to further identify a site. The center of the display has antenna height (HI) and weather conditions, both before (BEF) and after (AFT) data collection.	
ні	Is the height of the antenna in meters. Entering it during the survey saves having to enter it during post-processing. The post-processing software automatically reads the antenna height and uses it in computing the correct station position. Make sure the values are entered in metric values. If not, a correction must be made during post processing. Dry temperature, wet temperature, relative humidity and barometric pressure can be entered on Screen 9. As with the HI measurements, the post-processing software reads and uses the meteorologic data in its computations. Most surveys do not need this information and Ashtech recommends not to enter values here. All zeroes cause the software to use the defaults of 20° C, 50% humidity, and 1010 millibars. When entering values, use the correct units (Celsius and millibars) and enter measurements in all fields.	
T-DRY	Contains a record of the dry temperature, in degrees Celsius.	
T-WET	Contains a record of the wet temperature, in degrees Celsius.	
RH	Records the percent of relative humidity.	
BP	Is the barometric pressure in millibars. Fields to the right are used to modify receiver tracking and recording procedures.	

Table 4.22: Site and Session Control (continued)

Component	Function
MIN SV	Sets an alarm that sounds a continuous beep when the number of satellites being tracked above the elevation mask falls below this specified minimum. To silence the alarm, press the [e] key. The parameter is automatically cleared.
RECORD	Controls whether or not to record data. Y (yes) is the normal mode; N (no) means that data will not be recorded. Use with caution.
EPOCHS	Specifies the number of measurement epochs to be tagged with the site name in a kinematic survey. It counts down after each epoch until it reached 0, at which time the site name changes to ????, signaling the receiver is moving to the next site.

To enter or change a value on Screen 9, Figure 4.40.

- 1. Press [e] to shift to data-entry mode. (A blinking cursor indicates that the screen is in data-entry mode.)
- 2. Use \triangleright and \triangleleft to highlight the field to be changed.
- Use ▼ to move the cursor down a line. This function differs from the other data entry screens.
- 4. Use ▲ to display the alphanumeric conversion table. Its use is explained in Entering Text.
- 5. Use [8] for 'yes' and use [1] for 'no' responses.
- 6. Examine the entries; they can be changed again by moving the cursor to the desired field and re-entering the information. When the values are acceptable, press [e] again to save them in memory.

Pressing [c] cancels all entries. Pressing [e] or [c] after data entry returns the screen to display mode.

In display mode, pressing \triangleright or \triangleleft changes to other screens. Pressing a number calls up that screen directly.

Screen 10 All-in-View Information

Screen 10 shows a polar plot of the currently available satellites and their orbital paths.

The display is reliable once the receiver has a complete almanac and a valid position in Screen 2, Figure 4.3. From cleared internal memory, it takes about 12 minutes after lock to get a full almanac and display correct information. With an almanac

present (power cycle) it takes approximately 12 seconds to obtain a full up-to-date screen. Screen 10 is reached in either of two ways:

- Press the [9] key then press the ▶ key
- Press the [0] key, then press the ◀ key three times.

Figure 4.41: All-In-View Information Screen

The All-in-View screen shows the satellites' overhead position graphically on an azimuth where 0° (north) is located at the top center of the plot and 180° (south) is at the plot's bottom center. East and west are labeled on the plot.

- Indicates a satellite that is visible, but not locked.
- **H** Indicates a satellite that is locked.

The circles represent varying satellite elevations: the outer circle is 0° elevation, the middle is 30° , and the innermost is 60° . The center of the axis is 90° .

Table 4.23: All-In-View Information

Component	Function	
AVAIL SVS	Reports how many satellites are visible.	
LOCKED	Reports how many satellites are locked.	
DOPS	Displays DOP values computed using satellites with elevation equal to or greater than position elevation mask. Current DOPs of locked satellites are updated every second. The graphic display updates every 12 minutes. To isolate the orbital track of a single available satellite (locked or not), press the ▲ or ▼ key. ▲ displays the orbital track of the next available satellite, in ascending order, starting with the lowest PRN number. ▼ displays the orbital track of the next available satellite, in descending order, starting with the highest PRN number.	

Single Track

The orbital track of a satellite is displayed on the same polar plot. (This is displayed by pressing the ∇ or \triangle key on the All-in-View screen.)

The track starts at the satellite's rising elevation and azimuth and ends at the satellite's current position. This display is updated every ten minutes.

Figure 4.42: Single Track Screen

PRN: 12 Locked

Displays the current satellite number, its current elevation (EL) and its azimuth (AZ). It reports status as LOCKED or AVAILABLE. (PRN 12 is an example.)

When you press the **\(\)** key, the receiver displays the orbital track of the next higher number available/locked satellite. Pressing it when the highest numbered PRN is displayed returns to All-in-View display.

The ∇ key goes down the list, showing the path of the next lower number satellite.

Screen 11 Visibility Information

Screen 11 shows the time when each satellite is visible. The display is fully reliable once the receiver has a complete almanac and a valid position which can be entered on Screen 4 by the user or be computed. From cleared memory without an almanac present, it takes about 12 minutes after lock to get full almanac and display complete information. With an almanac present, it takes approximately 12 seconds. As with screen 10, if the receiver has not been used for some time, the screen will display old almanac information.

This screen is reached in two ways:

- Press [9], then press the ▶ key twice.
- Press [0] and the

 key until Screen 11 is displayed.

This bar graph displays the availability periods of satellites over 24 hours, showing you two to four hours before and 20 to 22 hours after the current time.

Figure 4.43: Visibility Screen

Table 4.24: Visibility Functions

Component	Function
HORIZONTAL LINES	Represent the satellites' availability windows. They are shown in ascending order with PRN 01 at the bottom and PRN 32 at the top. The start/end times are accurate to 10 minutes.
GMT:03:25:23	Marks GMT time
PRN 11	In the upper right corner, contains the number of the PRN whose window is currently marked by the dotted reader-line. Pressing the ▲ or ▼ key raises or lowers the reader-line.
VERTICAL LINES	Are the two-hour time marks. The current time is stated as GMT and is rounded to the nearest hour. Each time the screen is entered, the time marks are recalculated to show the previous, nearest two hours of availability; 12 and 12 GMT are the times for the first and last vertical lines.

Screen 12 Bar Code Control

Screen 12 inputs bar code or keyboard data to be used to mark a survey site or GIS data point. This method lets you enter more descriptive names for post-processing with the software. In addition, Screen 9, Figure 4.40 can also be entered using the bar code reader.

You must specify 9600 baud to be able to scan bar codes.

Only port A is available for bar code scanning.

Screen 12 is displayed in any of three ways:

- From Screen 9 press the ▶ key 3 times
- From Screen 0 press the ◀ key
- Read a bar code. (If the bar code screen is accessed by reading a bar code, the top level of the previous screen is displayed upon exit.)

Figure 4.44: Bar Code Control Screen

Enter a maximum of 80 characters, combining a bar code reader and keyboard. A successful scan is signalled by a short beep from both the bar code reader and receiver. If you try to enter more, the receiver rejects the last scan, displays an error message, and issues a long beep. Error messages are cleared when an entry is made within the 80-character limit.

Each entry is displayed in reverse video. If an error occurs in the entry, it can be deleted by scanning the backspace (BKSP) bar code or pressing the ∇ key. To clear an entire entry sequence, scan the CLEAR ALL bar code or press the [c] key.

The keyboard can also be used to enter characters into a field. Once data has been entered using the bar code reader, keyboard entry can begin immediately. If the bar code reader has not been used, the [e] key must be pressed first. Enter data as described under Entering Text.

The format used for storing each data entry sequence is:

FieldBytesID = 62Length of entered data2

Table 4.25: Data Entry Storing Format

Table 4.25: Data Entry Storing Format (continued)

Field	Bytes
Time tag	8
Entered data	80 (max.)
Checksum	2

To store the entered data and a time tag in an internal file, read the ENTER bar code or press the [e] key. This records the data sequence, emits two short beeps, and exits to Screen 12, Figure 4.44.

To clear the entered data, do one of the following:

- Read the CLEAR ALL bar code or press the [c] key. This clears the entire data sequence and exits to screen 12.
- Read the backspace (BKSP) bar code or press the ▼ key. When only one data entry remains the system goes to Screen 12.

Once the data entered has been stored or cleared, press a numbered key to access the corresponding screen.

BARCODER is an Ashtech program which creates bar codes that can be printed and carried to the field. This allows field personnel to readily enter data into an Ashtech Z-12-R GPS receiver. Using the bar code reader to enter Screen 9, Figure 4.40 data is described in the BARCODER program reference document.

When entering individual characters for Screen 9 data fields, the bar code screen appears and shows these characters as they are read. The appropriate data entry code must then be read to place the entry into the Screen 9 field.

When using the epoch counter in kinematic surveying, enter the site name and then the number of epochs to be counted down. When the name is acceptable, press [e] to save it in memory and return to display mode.

Serial Port Output Options

This chapter describes two output options always available on Ashtech Z-12-R receivers: the Real-Time Data output option and the NMEA output option.

Real-Time Data Output

This section explains the Real-Time Data output option. It tells how to access the appropriate screens and enable the various file types. In addition, it explains each file type format.

This option allows the receiver to send real-time data through serial ports A, B, C, or D and specify the type and format of the outgoing data. The following types and formats are currently available:

Message Type	ASCII Format	Binary Format
MBEN	yes	yes
PBEN	yes	yes
SNAV	not available	yes
SALM	not available	yes
DBEN	not available	yes

Table 5.1: Serial Port Message Type and Formats

An MBEN message contains measurement data. A PBEN message contains position data. An SNAV message contains ephemeris data and is output every 15 minutes; it can be triggered for immediate output any time. SALM messages contain proprietary almanac data. DBEN messages are described in Chapter 7, **Detailed DBEN Message Structure**.

In binary format, the information is output the way it is stored in memory; only a header is added ("\$PASHR,MBN,"; "\$PASHR,PBN,"; or "\$PASHR,SNV,").

The messages can be output through Port A, B, C, or D. Any combination of these files can be output from the same data port.

The transmission protocol defaults are 8 data bits and 1 stop bit, no parity.

The default value for the receiver to output data is every 20 seconds. This value is set in screen 4 by the field INTVL.

Setting Up the Receiver

To set up the receiver for real-time data file transmission, connect it to a computer. Connect the RS-232 cable to Port A on the receiver and COM1 on the computer. If COM1 on the computer is not available, use COM2.

Next set up the port by following the directions below. Use the same procedure to set up each port. This procedure describes only Port A setup with the real-time data output option:

1. On Screen 4, press [e] to shift to data-entry mode:

Figure 5.1: Mode Control Screen

2. With PORT A highlighted, press [e] to go to the Port A Parameter Selection screen:

Figure 5.2: Port A Parameter Selection Screen

- 3. If the baud rate is not satisfactory, highlight it and press [+] or [-] to toggle through the available speeds.
- 4. Highlight the REAL TIME indicator and press the [+] or [-] key to toggle it ON.

With REAL TIME highlighted, press [1] to go to the Measurements Output on Port A screen:

Figure 5.3: Measurement Output on Port A

- 6. On the Measurements Output on Port A screen, highlight a data type and press the [+] or [-] key to toggle it ON.
- 7. Highlight the next data type and toggle it to the desired state. Continue until all desired data types are turned ON.
- Highlight the format indicator and press the [+] key to toggle it so it reads ASCII or BINARY format.
- 9. Press [e] to save the settings and return to the Port A Parameter screen.
- 10. Press [e] once again to return to Screen 4.

If desired, repeat this sequence for Ports B, C, and D. You can send different data types from each port, for example, send PBEN data through Port A and SNAV data through Port B.

If SNAV, SALM, and ASCII formats are selected, only an ASCII header for those messages is displayed. These two messages are not available in ASCII.

Commands

Certain parameters can be set through the serial port of a computer. Each command must be followed by a carriage-return/linefeed. The commands fall into two categories: the setting commands and the query commands. All ports of the receiver are set to decode these commands.

Setting Commands

In the following formats, d indicates a digit, str is a string of characters, and x is a single character.

\$PASHS,RCI,ddd.d

Sets the update rate to the specified value.

\$PASHS,ELM,dd

Sets the elevation mask.

\$PASHS,MSV,dd

Sets the minimum number of satellites to record.

\$PASHS,SIT,xxxx

Provides a site name.

\$PASHS,SPD,x,d

Sets serial port (where x is A, B, C, or D) baud rate to d:

Code	Baud Rate	Code	Baud Rate
0	300	5	9600
1	600	6	19200
2	1200	7	38400
3	2400	8	57600
4	4800	9	115200

Table 5.2: Baud Rate Codes

\$PASHS,RST

Resets all values to their defaults.

\$PASHS,POS,ddmm.mmmm,X,dddmm.mmmm,Y,Sxxxxx.xx

Sets the position of the antenna, where ddmm.mmmm is the latitude in degrees (dd) and minutes (mm.mmmm), X is N (north) or S (south), dddmm.mmmm is the longitude, Y is E (east) or W (west), and Sxxxxx.xx is the altitude where S is the sign (+ or -).

\$PASHS,LAT,ddmm.mmm,X

Sets the latitude of the antenna (Screen 4), where ddmm.mmmm is the latitude in degrees (dd) and minutes (mm.mmmm), and X is N (north) or S (south).

\$PASHS,LON,dddmm.mmm,Y

Sets the longitude of the antenna (Screen 4), where dddmm.mmmm is the longitude in degrees (ddd) and minutes (mm.mmmm), and Y is E (east) or W (west).

\$PASHS,ALT,Sxxxxx.xx

Sets the altitude of the antenna, where Sxxxxx.xx is the altitude and S is the sign (+ or -).

\$PASHS,ZMD,switch

sets the mode of the receiver, where switch is A for auto switching, Y for Z-mode, and N for P-mode.

\$PASHS,INI,u,v,x,y,z,w

Resets the receiver, where u is port A baud rate code, v is port B baud rate code, x is port C baud rate code, and y is port D baud rate code, according to the table in the \$PASHS,SPD command, to which the unit is initialized.

z is the reset memory code according to Table 5.3.

Table 5.3: "z" Codes

z	Action
0	No memory reset
1	Reset internal memory
2	Reset external memory
3	Reset internal and external memory

w is the modem initializing code according to Table 5.4.

Table 5.4: "w" Codes

w	Action
0	No modem initialization

Table 5.4: "w" Codes (continued)

w	Action
A	Modem initialization in port A
В	Modem initialization in port B

\$PASHS,USE,dd,x

Enables or disables a satellite where dd is the satellite PRN number and x is uppercase Y (enable) or N (disable). For example, to disable satellite 8, enter:

\$PASHS,USE,08,N

\$PASHS,FIL,C

Closes the current file.

\$PASHS,FIL,D,dd

Deletes file number dd from receiver memory

\$PASHS,FIL,D,999

Deletes all files from the receiver external memory

\$PASHS,PJT,str

Specifies the project information, up to 24 characters, set in screen 9. The 24 characters are as follows:

- character 1 = SESS
- character 2,3,4 = RCV#
- character 5,6,7 = ANT#
- character 8,9,10,11 = MMDD
- character 12,13,14 = OPR
- remaining characters = code

\$PASHS,OUT,x

Turns off any previously specified types of output (see next command), where x, the port, is set to A, B, C, or D.

\$PASHS,OUT,x,str1,str2,str3,...

Turns on the specified output type, where x, the port, is set to A B, C, or D. Str can be: NMEA, VTS3, VTS4, MBN, PBN, DBN, SNV, or BIN. For example, to send MBEN

and PBEN in ASCII format: \$PASHS,OUT,A,MBN,PBN. To cancel an output, repeat the command excluding the str associated with that output type.

\$PASHS,NME,str,x,switch

Sets individual NMEA messages where str is GLL, GXP, GGA, VTG, GSN, APA, ALM, MSG, XTE, BWC, DAL, GSA, GSV, TTT, RRE, GRS, UTM. x is port A, B, C, or D; and switch is ON or OFF.

\$PASHS,NME,PER,ddd.d

Sets the send interval time in NMEA messages.

\$PASHS,WPL,ddmm.mmmm,x,dddmm.mmmm,y,wp#,name

Uploads waypoints to the receiver, where ddmm.mmmm is the latitude of the point in degrees (dd) and minutes (mm.mmmm), X is N (north) or S (south), dddmm.mmmm is the longitude, Y is E (east) or W (west), wp# is the way point number, and name is the waypoint name of up to 7 characters.

\$PASHS,RTE,WP#,WP#,...

Uploads the route information, where wp# are waypoint numbers up to a maximum of 20.

\$PASHS,RTC,str,x

Sets a receiver to handle RTCM format where str is BAS for base or REM for remote. x is the port and can be A, B, C, or D.

\$PASHS,RTC,OFF

Turns off differential mode.

\$PASHS,RTC,AUT,switch

Enables or disables RTCM auto differential mode, where switch is ON or OFF.

\$PASHS,RTC,COD,str

Sets the receiver to use C/A or L1P code for differential corrections, where str is CA or L1P

\$PASHS,RTC,SPD,d

Sets the receiver's transmission speed when handling RTCM format where d is a code

for the output rate in seconds:

Table 5.5: "d" Code Output Rate

d	Rate
0	25
1	50
2	100
3	110
4	150
5	200
6	250
7	300
8	1500
9	0

\$PASHS,RTC,STH,d

Sets the station health when handling RTCM format where d ranges from 0 to 7.

\$PASHS,RTC,STI,d

Sets the station ID when handling RTCM format where d ranges from 0 to 1023.

\$PASHS,RTC,MAX,d

Sets the maximum age for messages when handling RTCM format where d ranges from 0 to 1199 seconds.

\$PASHS,RTC,QAF,d

Sets the communication quality when handling RTCM format where d ranges from 0 to 999.

\$PASHS,RTC,MSG,str

Contains an RTCM message to send from the base station where str is up to 32 characters.

\$PASHS,RTC,TYP,str,d

Specifies the type of RTCM format to generate where str is type 1, 3, 5, 6, 7, 9-3, 15,

or 16; d is the corresponding period/frequency, ranging from 0 to 99. For types 1, 9, and 15, the period is in seconds; all other message type periods are in minutes.

Query Commands

Issue these instructions from the computer, commanding that the receiver send the specified structure. Follow each command with a carriage-return/linefeed.

\$PASHQ,MBN

Requests a MBEN structure

\$PASHQ,PBN

Asks for a PBEN structure

\$PASHQ,SNV,PRN

Requests a SNAV structure for a specific PRN. If no PRN number is entered, it outputs SNAV messages for all PRNs.

\$PASHQ,PRT

Asks for the port being used and its baud rate.

\$PASHQ,RID

Requests the receiver identification. The format of the response message is:

\$PASHR,RID,ZM,30,1011,C05,1C00

where ZM = receiver type (Z-12)

= channel options (P1, P2)

1C11 = nav firmware version

C05 = loaded options

1C00 = channel firmware version

The format of the MBEN, PBEN, and SNAV structure sent by the receiver is the one set in the measurements output menu. SNAV is not available in ASCII, so if this format is selected, the receiver outputs an empty message with an ASCII header.

Real-Time Data Files in ASCII

Only MBEN (measurement) and PBEN files can be output in ASCII format. For each satellite and at each epoch (recording time interval), a record is output containing fields in the following order. Each field is separated by a comma. A carriage return/linefeed separates each satellite record.

MBEN Files in ASCII

The format for MBEN in ASCII is:

Table 5.6: MBEN Format in ASCII

Component	Function
Header	Indicates the type of data sent and allows a resynchronization with the data stream in case some bits were lost in transmission. It reports the receiver configuration. C/A-only contains: \$PASHR,MCA, P code L1 and L2 contains: \$PASHR,MPC,
Structure Identification	 Sequence tag. Is the time tag used to associate all structures with one epoch. It is in units of 50 ms and modulo 30 minutes (one count = 50 ms and it is reset every 30 minutes). Number of remaining MBEN structures. There is one structure per locked satellite on every epoch. This parameter tells how many structures remain to be sent for that epoch.
Satellite data	 Satellite PRN number. Elevation: Satellite elevation angle in degrees. Values range from 0 to 90 degrees. Azimuth: Satellite azimuth angle in degrees. Values range from 0 to 360 degrees. Channel index: Receiver channel (1 to 12) to which satellite was locked.
Measurement data for C/A, P-L1, or P-L2	 Warning flag: Flag displaying status of receiver clock, carrier phase signal, and loss of lock. bit 1 set = see note below bit 2 set = see note below bit 3 set = carrier phase questionable bit 4 set = code phase questionable bit 5 set = code phase integration not stable bit 6 set = Z tracking mode bit 7 set = possible loss of lock bit 8 set = loss of lock counter reset

The interpretation of bits 1 and 2 is as follows:

- bit 1 = 0 and bit 2 = 0: same as 22 in good/bad flag (see next field)
- bit 1 = 1 and bit 2 = 0: same as 23 in good/bad flag
- bit 1 = 0 and bit 2 = 1: same as 24 in good/bad flag

More than one bit may be set at the same time. For example, if bits 1, 3, and 6 are set at the same time, the warning flag will be 37 (1 + 4 + 32).

- Measurement quality (Good/bad flag) indicates the quality in the measurement of position.
 - 0 = measurement not available and no additional data will be sent
 - 22 = code and/or carrier phase measured
 - 23 = code and/or carrier phase measured, and navigation message was obtained but measurement was not used to compute position.
 - 24 = code and/or carrier phase measured, navigation message was obtained, and measurement was used to compute position.
- Empty field
- Signal to noise ratio (signal/noise): high signal level with low noise level indicates good quality signal. Typical range 15 to 130.
- Phase quality indicator (%): to obtain this value, an equation using carrier phase and integrated doppler is computed. The result should be a value close to an integer. Values from 0 to 5 or 95 to 100 indicate good quality.
- Full carrier phase (in cycles): total number of cycles plus fraction of the range between the antenna and the satellite.
- Code transmit time (ms): length of time of code transmission (Dt or pseudorange). The satellite clock offset correction from GPS time is not included.
- Doppler (10⁻⁴ Hz): doppler measurement. To get doppler in units of Hz, divide this number by 10,000. Doppler is positive when the satellite is moving away from the antenna, negative if it is moving toward.
- Range smoothing correction (in meters): raw range minus smoothed range.
 The smoothed range is obtained by filtering the raw range with the integrated doppler.
- Range smoothing quality: indicates how long the raw range has been smoothed. Increments from 0 to 200 in steps of 2 every ½ second, which is the receiver cycle time.

Footer

- Checksum (displayed in decimal) a bytewise exclusive OR (XOR) on all bytes from the sequence tag to the checksum.
- Carriage return, line feed.

PBEN Files in ASCII

The format for PBEN in ASCII is:

- "\$PASHR,PBN," header string.
- Receive time: GPS time in seconds of week when code was received.
- Station position: ECEF-X (meters).
- Station position: ECEF-Y (meters).
- Station position: ECEF-Z (meters).
- Latitude ("-" before latitude indicates south.)
- Longitude ("-" before longitude indicates west.)
- Altitude (meters).
- Velocity in ECEF-X (m/sec).
- Velocity in ECEF-Y (m/sec).
- Velocity in ECEF-Z (m/sec).
- Number of satellites used for position computation.
- Site name. 4 characters (operator entered.)
- PDOP
- HDOP
- VDOP
- TDOP

Real-Time Data Files in Binary

MBEN Files in Binary

This section describes the binary MBEN (measurement) file. Its length varies depending on the receiver configuration. The table of file lengths shows the total number of bytes sent.

Table 5.7: Total number of bytes sent

Receiver Configuration	Blocks of Code Data in MBEN binary file	Number of bytes in file
C/A only	C/A	50
P code on L1 and L2	C/A, P-L1, P-L2	108

Table 5.8 describes the binary format of the MBEN file:

Table 5.8: MBEN file in Binary

Field	Bytes	Description
header	11	Indicates the type of data sent and allows a resynchronization with the data stream in case some bits were lost in transmission. Header reports the receiver configuration. C/A-only is: \$PASHR,MCA P code L1 and L2 is: \$PASHR,MPC,
		Block identification, 3 bytes:
unsigned short	2	Sequence id number in units of 50 ms, modulo 30 minutes (sequence tag).
unsigned char left	1	Number of remaining MBEN structures to be sent for current epoch.
		Satellite data, 4 bytes:
unsigned char svprn	1	Satellite PRN number.
unsigned char elevation	1	Satellite elevation angle (degree).
unsigned char azimuth	1	Satellite azimuth angle (degrees).
unsigned char chnind	1	channel ID (1 to 12).
		C/A code data block, 29 bytes:
unsigned char warning	1	Warning flag
unsigned char goodbad	1	Indicates quality of the position measurement.
spare	1	
unsigned char ireg	1	Signal to noise of satellite observation.
unsigned char qa_phase	1	Phase quality indicator: 0 to 5 and 95 to 100 are normal.
double full_phase	8	Full carrier phase measurements in cycles.
double raw_range	8	Raw range to SV (in seconds), i.e., receive_time - raw_range = transmit time
long doppler	4	Doppler (10 ⁻⁴ Hz).

Table 5.8: MBEN file in Binary (continued)

Field	Bytes	Description
long smoothing	4	32 bits where 31-24 are the <i>smooth_count</i> , unsigned and normalized, representing the amount of smoothing where: • 1 is least smoothed • 200 is most smoothed • 0 is unsmoothed. Bits 23-0 are smooth_corr, where bit 23 (MSB) is the sign and the LSBs (22-0) are the magnitude of correction (centimeters).
	(29)	P code on L1 block, in the same format as the C/A code data block.
	(29)	P code on L2 block, in the same format as the C/A code data block.
spare	2	
		Footer, 3 bytes:
unsigned char checksum	1	Checksum, a bytewise exclusive OR (XOR) on all bytes from sequence_tag (just after header) to the byte before checksum.
char	1	Carriage return.
char	1	Line feed.

For details on warning flag and good/bad flag, refer to Table 5.8.

PBEN Files in Binary

The PBEN (position data) file corresponds to one epoch. Its format in binary is:

Table 5.9: PBEN File in Binary

Field	Bytes	Contents
\$PASHR,PBN,	11	Header
long pbentime;	4	GPS time in 10-3 seconds of the week when data was received.
char sitename [4];	4	4-character site name (operator entered).
double navx;	8	Station position: ECEF-X (meters).
double navy;	8	Station position: ECEF-Y (meters).
double navz;	8	Station position: ECEF-Z (meters).
float navt	4	Clock offset (meters).
float navxdot;	4	Velocity in ECEF-X (m/sec)

Table 5.9: PBEN File in Binary (continued)

Field	Bytes	Contents
float navydot;	4	Velocity in ECEF-Y (m/sec)
float navzdot;	4	Velocity in ECEF-Z (m/sec)
float navtdot;	4	Clock drift (m/sec)
uns. short pdop;	2	PDOP.
unsigned short checksum;	2	Checksum word (sum of words from pbentime to PDOP).
char	1	Carriage return.
char	1	Linefeed.
Total bytes	69	

SNAV Files

The SNAV file (ephemeris data) is output only in binary. Its record definitions and the units for orbit data conform to the GPS-ICD-200 standard. This structure has 32 records.

Table 5.10: SNAV Files

Field	Bytes	Contents
\$PASHR,SNV	11	Header.
short wn;	2	GPS week number.
long tow;	4	Seconds of GPS week.
float tgd;	4	Group delay (sec).
long aodc;	4	Clock data issue.
long toc;	4	(sec).
float af2;	4	Clock:(sec/sec2)
float af1;	4	(sec/sec)
float af0;	4	(sec).
long aode;	4	Orbit data issue.
float deltan;	4	Mean anomaly correction (semi-circle/sec).
double m0;	8	Mean anomaly at reference time (semi-circle).

Table 5.10: SNAV Files (continued)

Field	Bytes	Contents
double e;	8	Eccentricity.
double roota;	8	Square root of semi-major axis (meters ½).
long toe;	4	Reference time for orbit (sec).
float cic;	4	Harmonic correction term (radians).
float crc;	4	Harmonic correction term (meters).
float cis;	4	Harmonic correction term (radians).
float crs;	4	Harmonic correction term (meters).
float cuc;	4	Harmonic correction term (radians).
float cus;	4	Harmonic correction term (radians).
double omega0;	8	Lon of Asc. node (semi-circles).
double omega;	8	Arg. of Perigee (semi-circles).
double i0;	8	Inclination angle at reference time (semi-circles).
float omegadot;	4	Rate of right Asc. (semi-circles per sec).
float idot;	4	Rate of inclination (semi-circles per sec).
short accuracy;	2	(coded).
short health;	2	(coded).
short fit;	2	Curve fit interval (coded).
char prnnum;	1	(SV PRN number -1)
char res;	1	Reserved byte.
unsigned short checksum;	2	Checksum word (sum of words from wn to res).
char	1	Carriage return.
char	1	Linefeed.
Total bytes	145	

NMEA Output Option

This section describes the NMEA option installed on Ashtech Z-12 receivers. It tells how to set up the receiver and enable the various output formats. In addition, it includes each NMEA message format.

The NMEA message formats can be output through Port A, B, C, or D. Any combination of these formats can be output from the same RS-232 data port. The output rate is set on the NMEA OPTIONS screen to any value between 0.5 and 999.5 seconds.

The transmission protocol default is: 8 data bits and 1 stop bit, no parity.

Setting Up the Receiver

To use the receiver with NMEA format messages, you must set up output specifications such as port and baud rate. Any combination of ports A, B, C, or D can be used for output. Use the same procedure to set up each one. This procedure describes only Port A setup.

1. On Screen 4, press [e] to shift to data-entry mode:

Figure 5.4: Screen 4, Setup

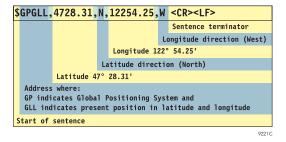
2. Highlight the PORT A indicator and press [e] to go to the Port A Parameter Selection screen:

Figure 5.5: Screen 4, Port A Parameter Selection

- 3. On the Port A Parameter Selection screen, highlight the NMEA indicator and press the [+] or [-] key and toggle it so that it reads ON. Press [e] to save this specification.
- 4. To change the baud rate, highlight the BAUD RATE indicator and, using the [+] or [-] key, toggle it the desired baud rate. Press [e] to save this specification.
- To specify message formats, highlight the NMEA indicator again and press[1] to go to the NMEA OPTIONS Menu--Port A screen:

Figure 5.6: NMEA Options Menu Port A

- 6. On the NMEA Option Menu--Port A screen, ON or OFF is flashing by a message format. Using the [+] or [-] key, toggle to ON for the desired message format. Continue until all the formats needed have been turned on.
- 7. Messages are sent every five seconds (default), but the interval can be changed to a value from 000.5 to 999.5 seconds. To change the value,


- highlight the numeric field next to Send Interval and press the numbered keys.
- 8. Press [e] to save the settings and return to the PORT A PARAMETER SELECTION screen.
- 9. Press [e] again to return to Screen 4.

If desired, repeat this sequence for Port B. Different types of NMEA messages can be sent from each port, for example, send GLL messages through Port A and GXP through Port B. However, the same Send Interval applies to both ports. The same procedure applies to Ports C and D.

NMEA Message Types

The NMEA sentence that is output is a string of ASCII characters with comma delimiters. The length of the fields varies depending on its precision. When information is not available or output, it is indicated as ",," (a null argument).

The following is an example of an NMEA sentence.

Figure 5.7: NMEA Sentence (Example)

The message formats are shown on the following pages according to their order on the NMEA Option Menu. Each starts with the talker identifier and three-character message-type identifier (that is, GPGLL). The data fields are numbered left to right; x is a decimal digit; \pm is a plus or minus sign; and E flags exponential notation.

Refer to the NMEA 0183 Standard for Interfacing Marine Electronic Navigational Devices for more details on sentence format protocols.

Latitude/Longitude for Position

Format:

\$GPGLL,xxxx.xxxx,N,xxxxx.xxxx,W,hhmmss.ss,A<CR><LF>

 Table 5.11: Latitude/Longitude Field Descriptions

Fields	Significance
1	Latitude in degrees, decimal minutes
2	N = north, S = south
3	Longitude in degrees, decimal minutes
4	W = west, E = east
5	UTC of position (hours, minutes, seconds, tenth of seconds)
6	Status, A = valid, V = invalid

Example:

\$GPGLL,3723.28101,N,12202.24101,W,180236.14,A<CR><LF>

Present Position Fix with Time of Fix

Format:

\$GPGXP,hhmmss.ss,xxxx.xxxxx,N,xxxxxx.xxxx,W<CR><LF>

Table 5.12: Present Position Field Descriptions

Fields	Description
1	UTC of fix (hours, minutes, seconds, tenths of second)
2	Latitude (in degrees, decimal minutes)
3	North or South
4	Longitude (in degrees, decimal minutes)
5	East or West

Example:

\$GPGXP,015324.00,3723.28332,N,12202.24301,W <CR><LF>

Global Positioning System Position

Format:

 $GPGGA,hhmmss.ss,xxxx.xxxxx,N,xxxxx.xxxx,W,x,xx,xx.x,\pm xxxxx,M,\\ \pm xxxx.x,M,xx,xxxx< CR>< LF>$

Table 5.13: GPS Field Descriptions

Fields	Significance
1	UTC of position (hours, minutes, seconds, tenth of a second)
2	GPS latitude (degrees, decimal minutes)
3	Latitude north (N) or south (S)
4	GPS longitude (degrees, decimal minutes)
5	Longitude east (E) or west (W)
6	GPS quality indicator (where 1 = GPS Available, 2 = DGPS available)
7	Number of GPS satellites being used
8	Horizontal dilution of precision (HDOP)
9,10	Antenna height in meters and M for meters
11,12	Geoidal height in meters and M for meters
13	Age of differential GPS data
14	Differential reference station ID

Example:

\$GPGGA,015454.00,3723.28513,N,12202.23851,W,1,4,03.8,+00012,M, +0000.0,M,14,1010 < CR > < LF >

COG/SOG

Format:

\$GPVTG,xxx.xx,T,xxx.xx,M,xxx.xx,N,xxx.xx,K<CR><LF>

Table 5.14: COG/SOG Field Descriptions

Fields	Significance
1,2	COG (Course Over Ground) and T for true
3,4	COG and M for magnetic variation

Table 5.14: COG/SOG Field Descriptions

Fields	Significance
5,6	SOG (Speed Over Ground) and N for knots
7,8	SOG (Speed Over Ground) and K for km/hr

\$GPVTG,329.01,T,346.31,M,000.07,N,000.13,K <CR><LF>

SNR of GPS Satellites Being Tracked

Format:

\$GPGSN,xx,xx,xxx,xxx,xxx,xxx,xxx <CR><LF>

Table 5.15: SNR of GPS Field Descriptions

Fields	Description
1	Number of svs currently being tracked. When 0, message terminates after this field. For a nonzero count, the subsequent fields give each satellite number and its SNR.
2	Satellite number
3	Signal-to-noise ratio for satellite
4,5	Two fields for each tracked satellite, similar to fields 2 and 3
Last field	Age of differential data. 999 when in stand-alone mode.

Example:

\$GPGSN,04,19,038,14,136,18,117,15,036,999 <CR><LF>

Autopilot Format

Format:

\$GPAPA,A,A,x.xxx,L,N,A,A,xxx,T,xxx <CR><LF>

Table 5.16: Autopilot Format Field Descriptions

Fields	Description
1	Suspect or ambiguous (where A = valid, V = invalid)
2	Cycle lock (where A = valid, V = invalid)

Table 5.16: Autopilot Format Field Descriptions

Fields	Description
3	Cross-track error
4	Sense (where L = left, R = right)
5	N for nautical miles
6	Arrival circle (A = valid, V = invalid)
7	A for arrival perpendicular (crossing the line which is perpendicular to the course line and which passes through the destination waypoint)
8	Bearing to destination from origin
9	M for magnetic, T for true north
10	Destination waypoint identifier

\$GPAPA,A,A,9.999,R,N,A,A,069,M,001<CR><LF>

Almanac Message

Each sentence contains an almanac for each satellite in the GPS constellation.

Format:

 Table 5.17: Almanac Messages Field Descriptions

Field	Description
1	Total number of messages
2	Message number
3	Satellite PRN number
4	GPS week
5	SV health
6	Eccentricity
7	Almanac reference time (seconds)
8	Inclination angle (semicircles)
9	Rate of ascension (semicircles/sec)
10	Root of semimajor axis

Table 5.17: Almanac Messages Field Descriptions

Field	Description
11	Argument of perigee (semicircle)
12	Longitude of ascension mode (semicircle)
13	Mean anomaly (semicircle)
14	Clock parameter (seconds)
15	Clock parameter (sec/sec)

\$GPALM,20,01,28,674,00,5C1E,1D,09BC,FD30,A10D27,BBD4EB, 8CB47B,E35E03,FFA,000<CR>><LF>

RTCM Message

Outputs RTCM Types 1,3,5,7,9,15, and 16. The first 7 fields of this message are the same for every RTCM type.

\$GPMSG,xx,xxxx,xxxx.x,x,xxx,hhmmss

Table 5.18: RTCM Messages Field Descriptions (1-7)

Field	Description
1	RTCM message type
2	Station identifier
3	Z count in seconds and tenths
4	Sequence number
5	Station health
6	Total number of characters after the time item
7	UTC time in hours, minutes, seconds

The other fields are defined below for each specific RTCM message type.

Message Type 1, or 9 Format: RTCM Corrections

\$GPMSG,xx,xxxx,xxxx.x,x,x,xxx,hhmmss,x,xx,+/-xxxx.xx, +/-x.xxx,xxx,...<CR><LF>

Table 5.19: RTCM Messages Field Descriptions (8-17)

Field	Description
8	User differential range error (UDRE)
9	Satellite PRN number
10	Pseudo-range correction (PRC) in meters
11	Range rate correction (RRE) in meters/second
12	Issue of data (IODE)
13-17	Same as fields 8-12 but for next satellite

Example:

\$GPMSG,09,0001,2220.0,1,0,127,213702,1,12,-0081.30,+0.026,235,1, 26,-0053.42,-0.070,155,2,02,+0003.56,+0.040,120 <CR><LF>

Message Type 3 Format: Reference Station Coordinates

\$GPMSG,xx,xxxx,xxxx.xx,x,x,xxx,hhmmss,+/-xxxxxxx.xx, +/-xxxxxxx.xx,+/-xxxxxxx.xx < CR > < LF >

Table 5.20: Message Type 3 Format Field Descriptions

Field	Description
8	Reference station ECEF X component
9	Reference station ECEF Y component
10	Reference station ECEF Z component

Example:

\$GPMSG,03,0001,2220.0,1,0,127,213702,-2691561.37, -4301271.02,+3851650.89<CR>><LF>

Message Type 5 Format: Satellite Health Status

\$GPMSG,xx,xxxx,xxxx.x,x,x,xxx,hhmmss,xx,x,x,xx,xx,xx,xx,xx...<CR><LF>

Table 5.21: Message Type 5 Field Descriptions

Field	Description
8	Satellite PRN number
9	IOD link
10	Data health
11	Satellite SNR, dB-Hz
12	Health enable
13	New navigation data
14	Loss of satellite warning
15	Time to unhealthy. Scale factor is 5 minutes with a range between 0 and 75.
16-23	Same as fields 8-15 but for next satellite

Example:

\$GPMSG,05,0001,2220.0,1,0,127,213702,23,0,0,41,0,0,1,35<CR><LF>

Message Type 7 Format: Radio Beacon Station Almanac

\$GPMSG,xx,xxxx,xxxx,x,x,x,xxx,hhmmss,ddmm.mm,a,dddmm.mm,a,xxxx,xxxx,xxxx,xxxx,x,x,x<CR><LF>

Table 5.22: Message Type 7 Field Descriptions

Field	Description
8	Latitude in degrees, minutes, decimal minutes
9	Direction of latitude
10	Longitude in degrees, minutes, decimal minutes
11	Direction of longitude
12	Radio beacon range, km
13	Radio beacon frequency, kHz
14	Radio beacon health
15	Broadcast station ID

Table 5.22: Message Type 7 Field Descriptions

Field	Description
16	Broadcast bit rate, bits/second
17	Modulation mode
18	Synchronization type
19	Broadcast code

\$GPMSG,07,0001,2220.0,1,0,127,213702,3722.4,N,12159.85,W,100, 293.5,0,0001,200,0,0,0<CR><LF>

Message Type 15 Format: Ionospheric Corrections

Note that this message may contain information for one or two satellites.

\$GPMSG,xx,xxxx,xxxx.x,x,x,xxx,hhmmss,xx,xxx.xx, +/-xxxx.x,xxx,xxx.xx,+/-xxxx.x<CR><LF>

Table 5.23: Message Type 15 Field Descriptions

Field	Description
8	Satellite ID #1
9	Ionospheric measurement #1, meters
10	Ionospheric rate measurement #1, cm/min
11	Satellite ID #2
12	Ionospheric measurement #2, meters
13	Ionospheric rate measurement #2, cm/min

Example:

\$GPMSG,15,0001,2220.0,1,0,127,213702,04,035.44,-0012.6, 24,062.13,+0086.2<CR>><LF>

Message Type 16 Format:

\$GPMSG,xx,xxxx,xxxx,x,x,x,xxx,hhmmss,aaaaaa...<CR><LF>

Table 5.24: Message Type 16 Field Descriptions

Field	Significance
8	Message in ASCII text

Cross-Track Error

Format:

\$GPXTE,A,A,xxx.xxx,L,N<CR><LF>

Table 5.25: Cross Track Error Field Description

Fields	Description
1	SNR (where $A = valid$, $V = invalid$).
2	Cycle lock (where A = valid, V = invalid)
3	Cross-track error
4	Steer left or right (where $L = left$, $R = right$)
5	Units (nautical miles)

Example:

\$GPXTE,A,A,019.999,R,N <CR><LF>

Bearing and Distance

Great Circle Format:

\$GPBWC,hhmmss.ss,xxxx.xxxx,N,xxxxx.xxxx,W,xxx.xx,T,xxx.xx,M, xxx.xxx,N,xxx < CR > < LF >

Table 5.26: Bearing and Distance Field Descriptions

Field	Description
1	UTC of bearing (hours, minutes, seconds, tenth of a second)
2	Latitude of waypoint (degrees, decimal minutes)
3	North (N) or south (S)
4	Longitude of waypoint (degrees, decimal minutes)
5	East (E) or west (W)
6,7	True bearing and T for true

 Table 5.26: Bearing and Distance Field Descriptions (continued)

Field	Description
8,9	Magnetic bearing and M for magnetic
10,11	Distance and N for nautical miles
12	Waypoint identifier

\$GPBWC,015454.00,0000.0000,N,00000.0000,E,069.00,T,84.73,M, 999.999,N,001<CR><LF>

Almanac

In the DAL format, the + sign is suppressed for a positive value in the power of e. The spaces are for readability.

Format:

\$PASHR,DAL,xx,xx,x.xxxxxxE±xx,xxxxxxxxE±xx, ±x.xxxxxxE±xx,x.xxxxxxE±xx,±x.xxxxxxE±xx,±x.xxxxxxE±xx, ±x.xxxxxxxE±xx,±x.xxxxxxxE±xx, x.xxxxxxxE±xx,xxx <CR><LF>

Table 5.27: Almanac Field Descriptions

Fields	Description
1	Satellite PRN number
2	Satellite health
3	Eccentricity
4	toe, reference time for orbit (in seconds)
5	i0, inclination angle at reference time (semicircles)
6	omegadot, the rate of right ascension (semicircles/sec)
7	roota, the square root of semi-major axis (meters 1/2)
8	omega0, the longitude of the ascension node (semicircle)
9	omega, the argument of perigee (semicircle)
10	m0, the mean anomaly at reference time (semicircle)
11	af0, clock parameter (in seconds)
12	af1, clock parameter (sec/sec)
13	wn, GPS almanac week number

\$GPDAL,14,00,5.2795410E-03,032768,3.0565721E-01, -2.4811015E-09,5.1536948E03,5.8827317E-01,8.8243234E-01, -8.8568139E-01,8.2015991E-05,7.2759576E-12,571<CR><LF>

DOP and Active Satellites

Format:

Table 5.28: DOP and Active Satellites Field Descriptions

Field	Description
1	Mode: M=manual, A=automatic
2	Mode:1=fix not available, 2=2D, 3=3D
3,4,5,6,7, 8,9,10,11, 12,13,14	Satellites used in solution (null for unused fields)
15	PDOP
16	HDOP
17	VDOP

Example:

\$GPGSA,M,3,,23,28,11,,,17,,,,21,,3.4,2.0,2.8 <CR><LF>

Satellites in View

Gives the number of satellites in view, PRN numbers, elevation, azimuth, and SNR. There are four satellites maximum per transmission, and additional satellite data is sent in 2nd or 3rd messages. The total number of messages being transmitted and the number of message are indicated in first two fields.

Format:

Table 5.29: Satellites in View Field Descriptions

Field	Description
1	Total number of messages (1 to 3)
2	Message number (1 to 3)
3	Total number of satellites in view
4	Satellite PRN number
5	Elevation (degrees)
6	Azimuth (degrees)
7	SNR (0 to 99 dB)
8,9,10,11	Same as 4,5,6,7 but for second satellite
12,13,14,15	Same as 4,5,6,7 but for third satellite
16,17,18,19	Same as 4,5,6,7 but for fourth satellite

Example:

\$GPGSV,2,1,06,23,53,041,99,28,55,273,99,11,24,326,55,17,36,101,68 <CR><LF>

Trigger Time Tag Serial Output Message

This trigger signal is generated through the camera in input located on the backpanel of the receiver. The following message is output on the selected port on each trigger epoch being generated

Format:

\$PASHR,TTT,x,hh:mm:ss.ssssss <CR><LF>

Table 5.30: Trigger Time Tag Field Descriptions

Field	Description
1	Day of the week, with 1 being Sunday and 7 being Saturday
2	GPS time tag in hours, minutes, decimal seconds

\$PASHR,TTT,3,18:01:33.1200417 < CR>< LF>

Satellite Range Residuals and Position Errors

This message displays the satellite residuals and horizontal and vertical position errors displayed in menu 5.

Format:

Table 5.31: Satellite Range Residuals Field Descriptions

Field	Description
1	Number of satellites used to compute position
2,3	Two fields for each tracked satellite with satellite number and range residual
Last 2 fields	Horizontal position error and vertical position error, respectively

Example:

GPS Satellite Range Residuals

This message displays the range residual for each of the satellites being used to compute position.

Format:

 Table 5.32: GPS Satellite Range Field Descriptions

Field	Description
1	Current UTC time of GGA position (hours, minutes, decimal seconds)
2	Mode m used to compute range residuals 0 = residuals were used to calculate the position given in the matching GGA line 1 = residuals were recomputed after the GGA position was computed
3	Range residuals for each satellite used in position computation. The order of the residuals matches the order of the satellites in the GSV message, where empty fields indicate that SV is not being used to compute position.

The range residuals are recomputed after the GGA position is computed, therefore the mode m is always 1.

Position Using UTM Coordinates

Format:

Table 5.33: Position Using UTM Field Descriptions

Field	Description
1	UTC of position (hours, minutes, decimal seconds)
2	Zone for coordinates
3	East UTM coordinate (meters)
4	North UTM coordinate (meters)
5	GPS quality indicator where 1 = GPS available, 2 = DGPS available
6	Number of GPS satellites being used
7	Horizontal dilution of precision (HDOP)
8,9	Antenna height in meters and M for meters
10,11	Geoidal height in meters and M for meters
12	Age of differential data
13	Differential reference station ID

Example:

\$PASHR,UTM,015454.00,10S,588757.62,4136720.05,1,04,03.8, +00012,M,,M,14,1010 <CR><LF>

RSIM Messages

RSIM Messages

Reference Station/Integrity Monitor (RSIM) messages provide standard equipment input/output data formats, in order to facilitate the flow of information between the Reference Station (RS), Integrity Monitor (IM), and Control Station (CS) of a DGPS. The number of message definitions is minimized to reduce equipment complexity, however, this constraint requires that the same message be reusable for various functions; the usage can be determined from the context of its transmission, as indicated in the first paragraph of each of the RSIM message definitions.

RSIM messages 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 20, 21, 22, and 23 are implemented for the Reference Station (RS). The other RSIM messages are used along with the Control Station to communicate between other devices such as the Integrity Monitor. Refer to Table 6.1

The firmware has been implemented such that RSIM messages can be output to ports A (the RS-232 Special Test port), B (the Control Station port), or D (the Data Logger port). The same RSIM message can be output in more than one port at a time. For example, a user can have RSIM 13 messages output to both ports B and D at the same time.

Conventions

The following conventions apply to the RSIM message definitions.

Message Designations

A limited number of RSIM messages are oriented towards marine radiobeacon (RBN) applications. However, they have been designed so as to not preclude use in other applications. RSIM message types are referred to as "RSIM#". RTCM SC104 message types are referred to as "RTCM#".

NMEA0183/IEC1182 Common Conventions

RSIM formats make use of many of the same conventions used for proprietary sentences in the National Marine Electronics Association (NMEA) 0183 Standard for Interfacing Marine Electronics Devices, Version 2.00. This standard is identical to IEC 1162. NMEA 0183 is generally applicable to user equipment, not service provider equipment. Its style was adapted to facilitate the interoperability of RSIM equipment. Per paragraph 5.2.1.3 of that standard, the three-character mnemonic code "RCM" is assumed for RTCM, so the

RSIM Messages 135

proprietary "\$PRCM" address field begins each RSIM message. Each RSIM message ends with a delimiter, checksum, and end-of-sentence delimiter (*hh<CR><LF>). In the RSIM Messages, UTC Time and the Lat. and Long. fields follow the format in Table 6.1 of NMEA 0183. Any field can be left null when not required. Also, the multiple line message scheme used in the NMEA 'ALM' message is used by RSIM. Exceptions of note to NMEA data format protocols include:

Maximum Number of Characters

Maximum number of characters in a sentence may exceed 82, contrary to NMEA paragraph 5.3. This will simplify future growth and eliminate barriers to field size, thereby allowing variations in the precision within fields.

Repeating Fields

Repeating fields used in RSIM#1, #22, and #23 are not seen in NMEA; this feature of RSIM means the number of fields in the sentence may not be specified from the message type, contrary to NMEA paragraph 5.3. Note that it may not be possible to add additional fields and still be backward compatible.

Checksum

The checksum used in the RSIM messages is required, not optional as in the NMEA standard.

Hardware Interface Protocol

NMEA hardware and data transmission specifications are not data format protocols, and are not required; for example, use of EIA-422 and 4800 baud are not considered essential features for equipment to be in compliance with the RSIM recommended standards.

Null Fields

Null fields are delineated by a comma at the beginning and at the end of a null field. This is especially important when optional fields are involved. When the remainder of a message would contain only null fields, the message is terminated.

Floating Point Numbers

Zeroes, as opposed to blanks, are required before or after decimal points (for example, 0.25 and not .25, 15.0 and not 15.).

RSIM Message Grouping

In messages which require data to be sent in groups of three, the last message may contain data for one or two satellites. For example, if data were being sent on 8 satellites the last message of the composite message would contain data on two satellites.

Illustration of Use

The following scenarios illustrate the general use of the RSIM Messages.

Typical Transaction

Figure 6.1, shows a typical transaction between the CS and the RS. In this example, the CS checks the status of the data link parameters by sending RSIM#1 requesting RSIM#10 which is denoted by the notation 1(10) and appears as an actual message which looks like (\$PRCM,1,10,1,,,*0D<CR><LF>). After the RS sends the requested messages, the CS processes the data. If the CS wanted to perform a reset it would send RSIM#3 in order to accomplish this. Resetting the RS triggers a self-test routine in the RS, which then generates a RSIM#5.

Figure 6.1: Control Station & Reference Station

Normal Operating Condition

During normal operations, the CS will receive periodic status reports from the broadcast sites under its control. A typical set of RSIM Messages that would serve as a status report would consist of RSIM#15 and #18. As an example, these messages could be sent every two minutes, with the reporting times for the different sites being

RSIM Messages 137

offset. RSIM#1 would be used to set the output interval and the synchronization start time for each set. This would result in a low rate of message traffic over the communications network.

Alarm Recovery Mode

When a CS needs to reset a broadcast site following an alarm, it needs all of the requisite information to determine the proper corrective action in the shortest period of time. The operator may request several types of data encompassing multiple RSIM Messages so that various parameters can be simultaneously evaluated.

Guidelines

The following paragraphs describe some of the issues that must be addressed, and provide additional information about the RSIM messages.

Satellite Health

Satellite health is indicated in subframe 1 of the navigation message for the satellite in view. It may differ from values in subframe 4 and 5 of other satellites; see ICD-GPS-200: 20.3.3.3.1.4 and 20.3.3.5.1.3 (TABLE 20-VII). Paragraph 3.2.6 of the RTCM SC104 Version 2.1 document describes satellite health assessment. A decision by a service provider to force a satellite healthy reflects confidence in DGPS to correct an error deemed excessive by the GPS control segment. If a PRN is forced healthy by the RS, the IM will automatically resume use of that PRN. Forcing a satellite unhealthy removes from consideration signals that may be out of specification before the GPS control segment has uploaded a new health message. In the RSIM messages, "Force Healthy" is equivalent to "Health Enable" in RTCM#5.

Satellite health status can be forced healthy or unhealthy for DGPS users with RSIM#8. More detailed information on satellite health can be queried via RSIM#7 and #9. RSIM#7 indicates the health status broadcast by the satellite in the navigation message. Indications of trouble with a particular PRN may also be noted by the RS in unreasonably high PRC or RRC and reported in RSIM#12. Trouble with a PRN after application of the DGPS correction may be detected at the IM and reported in RSIM#17.

Timing

Setting the intervals for reporting messages, archiving data, and scheduling broadcasts must be compatible with system capabilities. It may not be possible to

report or archive all the data generated. If recording all the data is required, then the system hardware must operate at sufficient speeds and have enough memory.

For outgoing message origination, timing must be sufficiently precise to eliminate the potential for two consecutive outgoing alarms to have the same time. Likewise, for broadcasting, when there is a contention between two scheduled messages, the later message must be transmitted as soon as possible thereafter. The service provider must consider data link capacity and schedule the broadcast mix so that collisions are infrequent.

RSIM Message Definitions

The RSIM message titles are listed in Table 6.1, which is followed by the definitions of the RSIM messages, which follows the discussion of RSIM#23, lists the variables used in the RSIM messages.

Table 6.1: RTCM SC104 RSIM Message Types

RSIM#	Title	Page
1	RSIM MESSAGE# QUERY/REPORTING INTERVAL	140
2	RSIM UNRECOGNIZED MESSAGE ALARM	141
3	RSIM CONTROL COMMANDS	142
4	RSIM DATA ARCHIVE CONTROL	143
5	RSIM DIAGNOSTIC REPORT/ALARM	144
6	GPS RECEIVER PARAMETERS	145
7	GPS RECEIVER SATELLITES STATUS	146
8	SATELLITE HEALTH CONTROL	148
9	SATELLITE HEALTH STATUS	149
10	REFERENCE STATION DATA LINK PARAMETERS	150
11	REFERENCE STATION ALARM THRESHOLDS	152
12	REFERENCE STATION ALARMS	152
13	REFERENCE STATION CORRECTION DATA	153
20	INTEGRITY MONITOR SYSTEM FEEDBACK	154
21	RTCM BROADCAST ALMANAC PARAMETERS	156
22	RTCM BROADCAST SCHEDULING	157
23	RTCM UNIVERSAL MESSAGE	158

RSIM Messages 139

RSIM#1: RSIM Message# Query/Reporting Interval

Implemented queries/reporting intervals for RSIM's 1, 4, 5, 6, 7, 9, 10, 11, 12, 13, 21, 22, and 23.

When the RSIM Message Type is specified as 13 (or 23) and a 0 is entered for the Output Interval, RSIM 13 (or 23) messages will be sent every time new corrections are broadcast from the RS.

When querying RSIM 13 (\$PRCM,1,13,1) or RSIM23 (\$PRCM,1,23,1), the latest corrections computed by the RS (not necessarily transmitted) will be output. Note that the RS computes new corrections every 0.5 second and transmits them every 2 to 10 seconds, depending on the format of the corrections specified (that is, RTCM Type 1, Type 9-3, or Type 9-1).

Usage:

- 1. CS sends to RS to request a RSIM message report or to set up RSIM message reporting intervals.
- 2. RS sends to CS in response to query for RSIM#1 settings currently in effect.

```
FIELD # 1 2 3 4 5 6

^ ^ ^ ^ ^ ^ 
$PRCM,1,x.x,x,x,x.x,x.x,...*hh<CR><LF>
```

Where:

- 1 RSIM Message Type Desired
- 2 Destination Port

RS

$$1 = CS$$
 (Port B)
 $2 = Data Recorder$ (Port D)
 $3 = Reserved$ (Port A)

- 3 Enable
 - 0 = Off
 - 1 = On
- 4 Output Interval
- 5 Synchronization Start Time (seconds into first hour)
- 6 Additional message types, destination port, enable, interval, & synch fields as required

- CS requests a single message of a particular type by specifying the RSIM# and the destination
 port, and leaving fields 3-5 null. This will generate the desired response, but will not change the
 state of reporting requirements.
- Setting interval to "0" means that RSIM# is to be generated any time it has new data to transmit. Therefore, to enable messages only upon alarm status change, set enable on with an interval of zero.
- 3. The Synchronization Start Time sets the time into the hour when the enabled message should first be output. It allows for simultaneous observations when desired, or to avoid contention for communications at CS.
- 4. To get a readout of reporting intervals set at the RS, RSIM#1 request is used to elicit a RSIM#1 response; RS responds by sending one set of fields 1-5 for every type it has set Enable=on.
- CS may set reporting intervals for RSIM#23 to request RS forwarding of RTCM broadcast messages digitally.
- When an alarm message (including RSIM#20) is enabled with a set interval, a change of state will still generate an immediate alarm.
- 7. There are two methods that can be used with RSIM#23 to get specific RTCM Message Types. If the Output Interval in field 4 is set to a non-zero value, then several RSIM#23's will be sent, one for each RTCM Message Type being broadcast, with the most recent broadcast information for each type. If the Output Interval is set to zero, then an RSIM#23 will be sent for each new broadcast RTCM Message. This second method can be used to check scheduled RTCM broadcasts by enabling RSIM#23 with an interval of zero for a short time period including the scheduled broadcast time.

RSIM#2: RSIM Unrecognized Message Alarm

The RS provides this message when an unrecognized RSIM command is given through any of the serial ports. If any out-of-range or illegal values are entered in any of the RSIM message fields, an RSIM 2 will be given indicating that the input command/query was rejected.

Usage:

RSIM Messages 141

RS or IM send to CS; typically, would indicate system communications trouble, or incoming message originator software incompatibility.

Where:

- 1. UTC Time of Alarm
- 2. Incoming Unrecognized Message RSIM#

- 1. Any "\$PRCM" messages received without a usable RSIM#, are reported using this message, with field 2 null.
- 2. No action is taken on faulty messages, including those with parity errors, other than to report with RSIM#2.
- 3. "\$PRCM" messages with field type/range errors will be trapped and will prompt generation of this report (unless handled by a special case of RSIM#5).

RSIM#3: RSIM Control Commands

When a DGPS computational reset is given ("PRCM,3,D"), all of the RS's pseudorange and range rate corrections are reset for every satellite tracked.

When a partial reset is given ("PRCM,3,P"), SV tracking is reset but all setup parameters are retained and the almanac is saved. This is equivalent to a power cycle.

When a full reset is given ("PRCM,3,F"), all setup parameters are reset to their default values and the almanac data is cleared. See Table 7 for the ranges and default values of the RSIM setup parameters.

Usage:

CS sends to execute various degrees of reset at the RS or IM.

Where:

1. Reset Command

D = DGPS computation reset

P = Partial reset

F = Full reset

Partial/Full reset causes self-test routine to execute. Receiving unit will generate a RSIM#5
Diagnostic Report message with the results.

RSIM#4: RSIM Data Archive Control

This message allows for "raw" data logging capability to port D (the "DL" port). The raw data includes the MBN (pseudorange, carrier phase, and Doppler measurements), PBN (position, velocity, and time), and SNV (satellite ephemeris data) messages in binary format. The structures of these data messages are given in chapter 5 of the Z-12-R Operating Manual.

Entering a "non-null" Logging Interval starts the data output ("\$PRCM,4,x"), while entering a null for Logging Interval will stop the data output ("\$PRCM,4,").

For test purposes, the DATALOGR program may only be run successfully on Port D when RSIM 4 is not "on". This is because DATALOGR cannot establish a good communications link to the receiver on the same port that the receiver is sending data.

DATALOGR captures the raw data in the B-file and E-file, which are binary. The B-file and E-file can then be converted to RINEX format by running the ASHTORIN program.

The data recording interval cannot be set by DATALOGR. To set the proper recording interval, first run DATALOGR and start collecting the data. Then issue RSIM 4 with the desired recording interval (that is, "\$PRCM,4,1.0" for a one second interval).

Usage:

- 1. CS uses to control RS outputs to data logging device port. Archived data format is not RSIM#-defined; any proprietary stream able to be converted to provide key fields required is acceptable.
- 2. RS sends in response to CS queries.

Where:

1. Logging Interval

1. If field 1 is null, data is not to be archived. If zero, all available archive data is to be output, at the lowest available interval (½ second). If different from null or 0, all available archive data is to be output at the specified interval.

RSIM Messages 143

RSIM#5: RSIM Diagnostic Report/Alarm

When the RS is operating normally and computing position, the "NORMAL" message will be sent to the CS (Port B). When turning on the receiver or performing a partial or full reset function, a "RECEIVER INITIALIZATION COMPLETE" message will be sent. Other messages (which indicate receiver warnings not covered in the RSIM messages) will be sent automatically to the CS. They are implemented as described below:

"POSITION DID NOT CONVERGE (PDOP MAY BE HIGH)"

"POSITION OLD (CHECK NUMBER OF SVS TRACKED)"

"EXTERNAL FREQUENCY NOT LOCKED (CHECK EXTERNAL CLOCK)"

"EXTERNAL FREQUENCY NOT LOCKED (SWITCHED TO INTERNAL)"

"SV xx: BAD C/A RANGE SMOOTHING"

"SV xx: BAD PL1 RANGE SMOOTHING"

"SV xx: BAD PL2 RANGE SMOOTHING"

"WARNING: 0.5 MS TASK OVERLOAD"

"WARNING: 10 MS TASK OVERLOAD"

"WARNING: 100 MS TASK OVERLOAD"

"WARNING: 0.5 SECOND TASK OVERLOAD"

"WARNING: 1 SECOND TASK OVERLOAD"

"WARNING: 5 SECOND TASK OVERLOAD"

"WARNING: CHANNEL xx MISALIGNMENT"

The first two messages occur when position is not computed. The message "NORMAL" will also automatically be sent to the CS (Port B) when these problems clear. If any "BAD RANGE SMOOTHING" occurs, the raw range measurements will be used instead for that epoch. All the "WARNING"-type messages are indications of problems that occurred and have been instantaneously corrected. It is recommended to perform a full reset if any of the above warning messages occur frequently.

Usage:

RS uses to provide manufacturer-defined system status in the form of ASCII strings. May be initiated by the RS upon detecting a fault condition (i.e., alarm). Also used for reporting diagnostic self-test results (in response to RSIM#3). If RS queried for this

message, upper case "NORMAL" will be the typical response, unless unresolved fault conditions remain.

Where:

- 1. UTC Time of Alarm
- ASCII Diagnostic Text (<=56 chars)
 "NORMAL" = No system malfunctions detected.

- Other than "NORMAL" diagnostic codes as appropriate to equipment and service provider policy.
- 2. For multiple failures, multiple messages are sent.

RSIM#6: GPS Receiver Parameters

The RS's identification number (RS ID) and precise GPS antenna location is set through this message. Note that the Altitude field expects ellipsoidal height and a "-" sign for negative values and no sign for positive values. Also, a variable external frequency field has been implemented to allow the user to input any frequency between 1.00 Mhz and 21.00 Mhz (to the nearest 10 kHz).

The Mask Angle for Broadcast (default is 10 degrees) corresponds to the "position" mask angle - see the POSITION sub-screen of Screen 4. The RS will generate corrections only for those satellites above this mask angle. When a satellite drops below the mask angle, "DO NOT USE" corrections will be sent by the RS for a set period of time (see below).

The Maximum Age of RTCM Corrections (default is 30 seconds) has three uses in the RS:

- 1. When a previously healthy satellite is forced unhealthy or starts broadcasting unhealthy, its RTCM corrections will be set to the "do not use" values for this period of time and then no more corrections will be sent for this particular satellite.
- 2. When an RSIM 20 is received by the RS with a satellite's PR Residual flag set (indicating that the IM detected bad corrections from that satellite), the RS will broadcast "DO NOT USE" values for the satellite's corrections for this period of time. The RS will then reset the correction smoothing for this particular satellite and start broadcasting its corrections again.

3. When a satellite with elevation over elevation mask drops below the mask, its RTCM corrections will be set to the "do not use" values for this period of time and then no more corrections will be sent for this particular satellite.

Usage:

- 1. CS uses to set DGPS receiver mode of operation at RS.
- 2. RS sends in response to CS queries.

Where:

- 1. RS ID
- 2. Frequency Source

I = Internal

E = External

- 3. External Source Frequency
- 4. Reference Position Latitude in degrees, minutes
- 5. N or S
- 6. Reference Position Longitude in degrees, minutes
- 7. W or E
- 8. Altitude Ellipsoidal
- Mask Angle for Broadcast
- 10. Maximum Age of RTCM Correction

RSIM#7: GPS Receiver Satellites Status

Reports all satellites above the horizon, whether tracked or not, based on almanac data. The elevation mask angle is not used in this message to determine which SVs are sent. If the satellite is not tracked, the C/No, URA, and health fields are reported as nulls.

1. Note that after performing a full reset, complete almanac data is not available for 12.5 minutes.

Usage:

Used by RS or IM to report observations of GPS satellites.

FIELD # 1 2 3 4 5 6 7 8 9 a

ocdefghijkl

Where:

- 1. Total Number of Messages
- 2. Message #
- 3. UTC Time Observed
- 4. PRN#
- 5. Azimuth
- 6. Elevation
- 7. C/No
- 8. URA
- 9. SV Health
- a. PRN#
- b. Azimuth
- c. Elevation
- d. C/No
- e. URA
- f. SV Health
- g. PRN#
- h. Azimuth
- i. Elevation
- j. C/No
- k. URA
- SV Health

- 1. Composite message, in groups of 3 PRN's.
- 2. Report all PRN's that are tracked, (whether declared healthy or not in GPS Ephemeris), and that are visible.

- 3. Azimuth and elevation are computed at receiver. If a PRN is visible (based on this almanac-based computation) but isn't tracked, the C/No, URA, and health fields are reported as null.
- 4. SV Health field is reported by the ephemeris.

RSIM#8: Satellite Health Control

Satellites can be forced healthy so that corrections will be generated even if the satellite is broadcasting unhealthy; or forced unhealthy so that corrections will never be generated for that satellite.

If a valid "Loss of Satellite Warning Time" is entered in RSIM 8 for an SV, an RTCM 5 message will automatically be generated and broadcast at the next available time for that SV. The Interval of RTCM 5 messages (set using RSIM 22) does not come into play - the RTCM 5 message will still be output even if its Interval is set to "0".

Usage:

CS uses to control RS operation; this RSIM type is never queried.

Where:

1. PRN#

99 is a special code to perform the function indicated in field 2, for all 32 PRNs

2. Health Control Code

0 = Use GPS Broadcast Health

1 = Force Healthy

2 = Force Unhealthy

3. Loss of Satellite Warning Time (UTC)

- Use RSIM#7 or #9 to get satellite health status. RSIM #7 will display health as broadcast in almanac data. RSIM #9 will display health as broadcast in almanac data and as set by RSIM #8.
- 2. Loss of Satellite Warning Time is used by RS for generation of RTCM#5, if used by service provider. If no warning or if not implemented, leave null.

RSIM#9: Satellite Health Status

Reports health and tracking status of all the satellites.

Usage:

RS sends upon CS request.

Where:

- 1. UTC Time
- 2. Status of PRN 1
- 3. Status of PRN 2
- 4. Through x Status of PRN 3 through PRN 32

Status:

- 0 = Not Tracked
- 1 = Healthy/Tracked
- 2 = Unhealthy/Tracked
- 3 = Forced Healthy/GPS Ephemeris Unhealthy
- 4 = Forced Healthy/GPS Ephemeris Healthy
- 5 = Forced Healthy/Not Tracked
- 6 = Forced Unhealthy/GPS Broadcast Healthy
- 7 = Forced Unhealthy/GPS Broadcast Unhealthy
- 8 = Forced Unhealthy/Not Tracked

1. Status 0, 1, and 2 indicate satellite health is to be determined from the GPS broadcast health transmitted by the satellite ephemeris in question.

RSIM#10: Reference Station Data Link Parameters

Controls the parameters which will generate the MSK modulation of the RTCM corrections over the radio beacon. When queried ("\$PRCM,1,10,1"), the parameters for two channels will be output. Below is a description of how the fields in this message relate to the MSK Setup Menu in the DIFFERENTIAL subscreen of Screen 4:

Table 6.2: Differential Subscreen of Screen 4

Field	Description
Channel	Only Channel 1 has been implemented for this version of the RS.
Frequency	The range is from 283.5 KHz to 325.0 KHz.
Operating Mode:	0: MOD = "ON", FILL TYPE = "SPACE" 1: MOD = "FILL", FILL TYPE = "ALTER" 2: MOD = "OFF" 3: FREQ = "0.0"
Broadcast Bit Rate	Can be set to 25, 50, 100, or 200 bits per second.
Modulation Mode:	0: MOD = "ON", MSK = "ON" 1: not implemented. 2: not implemented. 3: MOD = "OFF"
Synchronization Type	Not implemented.
Broadcast Coding	Not implemented.
Beacon Identifier	4 alpha-numeric character field and is not always related to the RSID.

Usage:

- 1. CS uses to set parameters that determine mode of operation of the RS in generating the DGPS broadcast.
- 2. RS uses to respond to queries for this message.

Where:

1. Channel

- 2. Frequency
- 3. Operating Mode
 - 0 = Normal DGPS Data Link Operation
 - 1 = Alternating 1 and 0
 - 2 = Carrier Only
 - 3 = No Signal
- 4. Broadcast Bit Rate
- 5. Modulation Mode
 - 0 = MSK
 - 1 = FSK
 - 2 = ID Morse Keying
 - 3 = No Modulation
- 6. Synchronization Type
 - 0 = Synchronous
 - 1 = Asynchronous
- 7. Broadcast Coding
 - 0 = No Added Coding
 - 1 = Forward Error Correction Added
- 8. Beacon Identifier

- 1. Service provider broadcast standard will determine which fields are required in a given implementation.
- 2. Assumes that broadcast power (and thus range) is not adjustable through the RS modulator, but frequency is.
- 3. This message doesn't affect information disseminated in the RBN Almanac, RTCM#7. RSIM#21 performs that function.
- 4. Fields 1 and 8 provide the capability to use a two channel modulator for generating the Radiobeacon Morse Code Identifier along with the DGPS data modulation.

RSIM#11: Reference Station Alarm Thresholds

Sets up the RS alarm thresholds for number of satellites tracked, the pseudorange and range rate corrections (PRC and RRC), and the IM system feedback time. The default values are:

- Minimum Number of SVs = 3
- PRC Limit = 655.34 meters (same as the RTCM PRC scale factor limit)
- RRC Limit = 1.0 meters / second
- IM Feedback Time Limit = 3.0 seconds

Usage:

- 1. CS uses to set RS alarm thresholds.
- 2. RS uses to report parameters in use when queried by CS.

Where:

- 1. Quantity Satellites Alarm Minimum
- 2. PRC Alarm Threshold
- 3. RRC Alarm Threshold
- 4. IM System Feedback Time Threshold

1. If threshold is exceeded, or if minimum is not met, alarm is raised to CS using RSIM#12.

RSIM#12: Reference Station Alarms

Provides alarms when any of the alarm thresholds, set up in RSIM 11, are exceeded. These alarms are generated within 0.5 seconds. By default, this message has been set to output upon any alarm status change (that is, "\$PRCM,1,12,1,1,0").

Usage:

RS uses to send CS notification of alarms when they occur or cease, or when queried.

Where:

1. UTC Time

- 2. Insufficient Satellites Alarm
 - I = Insufficient Satellites
 - S = Sufficient Satellites, Clear Alarm
- 3. Unmonitored Alarm
 - F = Unmonitored, no IM System Feedback message
 - W = Unmonitored, wrong RS ID
 - U = Unmonitored, other
 - M = Monitored, Clear Alarm
- 4. High PRC Alarm
 - H = High PRC
 - N = Normal PRC, Clear Alarm
- 5. High RRC Alarm
 - H = High RRC
 - N = Normal RRC, Clear Alarm

1. If RS queried for this, parameters within normal ranges are indicated with the "Clear" state.

RSIM#13: Reference Station Correction Data

Reports the RTCM correction data for every satellite, including the raw computed UDRE values (not the broadcast UDRE range representations). The PR Acceleration is not computed by the RS and its field will be null.

Usage:

RS uses to report most recent DGPS computations at time message is originated.

FIEL	D #	1	2 3			4	5	6	7	8	9	a	b	C
		^	^ ^			^	^	^	^	^	^	^	^	^
\$PRC	CM,13	8,x,	x,hh	mmss	.ss	, x . x	,x.x	,x.x	,x.x	,x.x	,x.x	,x.x	, x . x	,x.x
d	е	f	g	h	i	j	k	1	m	n	0			
^	^	^	^	^	^	^	^	^	^	^	^			
х.х,	x.x,	x.x	, x.x	, x.x	, x . 2	ζ,χ.:	x,x.	x,x.	x,x.:	x,x.	x,x.	x*hh	<cr></cr>	<lf></lf>

Where:

- 1. Total Number of Messages
- 2. Message #

- 3. UTC Time of Message
- 4. PRN#
- 5. PRC
- 6. RRC
- 7. PR Acceleration
- 8. UDRE
- 9. RTCM Modified Z-Count
- a. IOD
- b. PRN#
- c. PRC
- d. RRC
- e. PR Acceleration
- f. UDRE
- g. RTCM Modified Z-Count
- h. IOD
- i. PRN#
- j. PRC
- k. RRC
- 1. PR Acceleration
- m. UDRE
- n. RTCM Modified Z-Count
- o. IOD

1. Composite message, in groups of 3 PRN's.

RSIM#20: Integrity Monitor System Feedback

The RS can handle RSIM 20 messages coming in at any rate through Port C from the IM.

Usage:

IM uses to provide frequent positive feedback to RS to independently validate proper system performance.

Where:

- 1. RS ID
- 2. Position Flag
 - 0 = Position Inside Threshold
 - 1 = Position Outside Threshold
 - 2 = Unable to Check DGPS Integrity: Indicate "Unmonitored"
- PR Residual
 - 0 = All Inside Threshold
 - 1...32 = PRN# Outside Threshold

- RS ID is determined from the data link broadcast. This makes it possible for the RS to know whether or not its own corrections are being checked by the IM.
- 2. Gives individual PR trouble information, which may enable the RS to take corrective action. Only one PRN can be flagged bad at a time. Corrective action includes broadcasting "DO NOT USE" corrections for a period set by the Maximum Age of RTCM Corrections (RSIM 6) for the bad satellite. The RS then resets the correction smoothing for the bad satellite, and resumes broadcasting its corrections.
- 3. If computed position is outside threshold defined in RSIM#16, Position Flag will be raised and RS sets its station health to "7" to indicate unhealthy until this flag clears.
- 4. If RS doesn't receive this message before time threshold specified in RSIM#11 is exceeded, RS must alarm to CS using RSIM#12, and set broadcast "Unmonitored" in RTCM message headers.
- Under high IM HDOP conditions, this system feedback message will be sent with position flag indicating "unmonitored."
- 6. No null fields should ever be sent in an RSIM#20 Message.

RSIM#21: RTCM Broadcast Almanac Parameters

The parameters describing up to four different radio beacon reference stations may be input through this message.

Usage:

- CS sends to RS to set RBN almanac information stored at that RS. Setting these parameters does not affect functional operation of equipment; affects promulgation of information to users in RTCM#7.
- 2. RS sends in response to CS queries. Provides the current status; can be multiple lines.

Where:

- 1. Total Number of Messages
- 2. Message #
- 3. Latitude in degrees, minutes
- 4. N or S
- 5. Longitude in degrees, minutes
- 6. W or E
- 7. Radiobeacon Range
- 8. Frequency
- 9. Health
 - 0 = Radiobeacon Operation Normal
 - 1 = Unmonitored
 - 2 = No information available
 - 3 = Don't use this Radiobeacon
- a. RS ID
- b. Broadcast Bit Rate

- c. Modulation Mode
 - 0 = MSK
 - 1 = FSK
- d. Synchronization Type
 - 0 = Synchronous
 - 1 = Asynchronous
- e. Broadcast Coding
 - 0 = No Added Coding
 - 1 = Forward Error Correction Added

- 1. Lat/Long is position of broadcast site.
- 2. Recommended RS broadcast for itself, to advise current listeners of service range; along with two adjacent sites.

RSIM#22: RTCM Broadcast Scheduling

By default (after a full reset or cold start), the Correction Generation Method is set to null to indicate that no corrections are being transmitted. It is recommended that a valid RS position be entered (RSIM 6) before setting up a Correction Generation Method. This will ensure that proper corrections are generated.

For all RTCM message types, the RS will accept Interval values in seconds. The corrections messages, RTCM 1, 9, and 15, allows any Interval value. But for RTCM 3, 5, 7, and 16, the Interval value must be an even multiple of 60 seconds. The Z-12-R schedules these messages in minutes.

For example: The command "\$PRCM,22,2,5,120.0,7,600.0,16,60.0" schedules RTCM 5 every two minutes, RTCM 7 every ten minutes, and RTCM 16 every one minute.

Usage:

- 1. CS sends to RS to schedule RTCM message broadcast content.
- 2. RS sends in response to CS queries. RS shall respond with all message types in use and their broadcast intervals.

Where:

- Correction Generation Method
 - 1 = RTCM#1's
 - 2 = RTCM#9's in groups of 3 PRN's
 - 3 = RTCM#9's for individual PRN's
- 2. RTCM Message Type #
- 3. Interval
- 4. Synchronization Start Time
- 5. Additional RTCM#, Interval, & Synch fields {2-4} as required.

- At RS, one RTCM# should be set to an interval of zero; RS will transmit that type whenever other
 types aren't due. This should not conflict with the broadcasts of corrections, which are sent
 continuously unless an interval other than zero is specified in field 3.
- 2. If interval value is null, that RTCM# won't be broadcast.
- 3. Refer to RSIM#8 and service provider broadcast standard in scheduling RTCM#5 messages

RSIM#23: RTCM Universal Message

This message has two purposes. First, it provides the RTCM messages in Universal format. It can be output every time a new RTCM correction message is generated by the RS or at a regular interval. When queried during an epoch when corrections were not sent by the RS, the response will only give the current time and nulls for the rest of the fields.

Second, RSIM 23 allows a user to enter a message to be sent by RTCM Type 16. For example, if a user wanted the RS to broadcast the message "MARK", the command: PRCM,23,16,...,5062994,4923424" should be given. All fields in this command are null except for the RTCM# to be Transmitted and the RTCM Words that represent the message string. These RTCM words are formed as follows: break up the message string in groups of three characters (add spaces when necessary) - "MAR" and "K<sp><sp>". Determine the hex values for each character - "M" = 4d, "A" = 41, "R" = 52, "K" = 4b, "<sp>" = 20. Convert the hex values of the 3-character strings to decimal values -2dec("4d4152") = 5062994, hex2dec("4b2020") = 4923424. These are the RTCM words.

An RSIM 22 will also need to be given to set up an interval for the RTCM 16 message.

Usage:

CS uses to convey a RTCM#16 to the RS for transmission.

RS uses to convey RTCM broadcast data in digital format, if needed by the application.

FIELD # 1 2 3 4 5 6 7 8 9

\$PRCM, 23, hhmmss.ss, x.x, x.x, x.x, x.x, x.x, x.x, ... *hh<CR><LF>

Where:

- 1. UTC Time
- 2. RTCM# To Be Transmitted
- 3. RS ID
- 4. Modified Z-Count
- 5. RTCM Sequence #
- 6. RTCM Frame Length
- RTCM Station Health
 - 0-5: Defined by service provider
 - 6: Unmonitored
 - 7: Unhealthy
- 8. RTCM Word
- 9. Additional Field 8 RTCM Words as required.

- 1. CS sends desired information to RS as follows: required RTCM header information in RSIM fields 1-7, leaving fields to be assigned at the RS "null"; text for the body of the RTCM message follows as a series of base ten integer representations of the RTCM words without parity. Each repetition of RSIM Field 8 is to be converted into the actual binary values of the 24 bits of RTCM data, and then parity is added for each word at the RS.
- 2. When sent by the CS, for example, UTC Time could be converted (by the RS) from a decimal value (provided by the CS) to binary for transmission as Modified Z-Count. Likewise, the CS could leave the UTC Time field null and the RS would assign the Modified Z-Count when the RTCM message is generated for broadcast.
- 3. A RTCM#16 sent by the CS will be broadcast one time, unless scheduled by RSIM#22 for periodic transmission.

Table 6.3: List of RSIM Variables

Name	Units	Range	Туре	RSIM#	Default Font
RSIM Message Type Desired		1-23	Variable Length Integer	1	
Destination Port		1-3	Fixed Length Integer	1	
Enable		0-1	Fixed Length Integer	1	
Output Interval	seconds	0-99999	Variable Length Integer	1	
Synchronization Start Time	UTC seconds	0-3599	Variable Length Integer	1	
UTC Time of Alarm	hours, minutes, seconds	000000.0- 235959.9	Fixed/ Variable Length Time	2,5,17	
Incoming Unrecognized Message RSIM#	RSIM#	1-23	Variable Length Integer	2	
Reset Command		D/P/F	Fixed Alpha	3	
Logging Interval	seconds	0-99999.0	Variable Length Float	4	20.0
ASCII Diagnostic Text	To be determined		Variable Length Text	5	
RS ID	ID number	0-1023	Variable Length Integer	6,20,21,23	
Frequency Source		I/E	Fixed Alpha	6	I
External Source Frequency	MHz	1.00-21.00	Floating Numeric	6	0.0
Reference Position- Latitude	degrees, minutes	0000.0 - 8959.0	Fixed/ Variable Length Latitude	6	0.000.0
North/South		N/S	Fixed Alpha	6	N
Reference Position- Longitude	degrees, minutes	00000.0- 17959.0	Fixed/ Variable Length Longitude	6	6
West/East		W/E	Fixed Alpha	6	Е
Altitude	meters		Floating Numeric	6	0.0
Mask Angle for Broadcast	degrees	0.0-90.0	Floating Numeric	6	10.0
Maximum Age of RTCM Correction	seconds		Floating Numeric	6	60.0
Total Number of Messages		1-4	Fixed Length Integer	7,13, 21	

 Table 6.3: List of RSIM Variables (continued)

Name	Units	Range	Туре	RSIM#	Default Font
Message #		1-4	Fixed Length Integer	7,13, 21	
UTC Time Observed	hours, minutes, seconds	000000.0- 235959.9	Fixed/ Variable Length Time	7	
PRN #		1-32 or 99	Variable Length Integer	7,8,13	
Azimuth	degrees	0.0-360.0	Floating Numeric	7	
Elevation	degrees	0.0-90.0	Floating Numeric	7	
C/No	decibel Hertz		Floating Numeric	7	
URA	meters		Floating Numeric	7	
SV Health		0-63	Variable Length Integer		
Health Control Code		0-2	Fixed Length Integer	8	0
Loss of Satellite Warning Time (UTC)	hour, minutes, seconds	000000.0- 235959.9	Fixed/Variable Length Time	9,12,23	
UTC Time	hours, minutes, seconds	000000.0 - 235959.9	Fixed/Variable Length Time	9,12, 23	
Status of PRN		0-8	Fixed Length Integer	9	0
Channel		1-2	Fixed Length Integer	10	
Frequency	kHz	283.5- 325.0	Floating Numeric	10	
Operating Mode		0-3	Fixed Length Integer	10	0
Broadcast Bit Rate	bits per second		Variable Length Integer	10,21	100
Modulation Mode		0-3	Fixed Length Integer	0	0
Synchronization Type		0-1	Fixed Length Integer	10,21	N/A
Broadcast Coding		0-1	Fixed Length Integer	10,21	N/A
Beacon Identifier			4 alpha numeric characters	10	0
Quantity Satellites Alarm Minimum			Fixed Length Integer	11	3

 Table 6.3: List of RSIM Variables (continued)

Name	Units	Range	Туре	RSIM#	Default Font
PRC Alarm Threshold	meters		Floating Numeric	11	655.34
RRC Alarm Threshold	meters/ second		Floating Numeric		1.0
IM System Feedback Time Threshold	seconds		Floating Numeric	11	3.0
Insufficient Satellites Alarm		I/S	Fixed Alpha	12	
Unmonitored Alarm		F/W/U/M	Fixed Alpha	12	
High PRC Alarm		H/N	Fixed Alpha	12	
High RRC Alarm		H/N	Fixed Alpha	12	
UTC Time of Message	hours, minutes, seconds	000000.0- 235959.9	Fixed/ Variable Length Time	13	
RRC	meters/ second		Floating Numeric	13	
PR Acceleration	meters/ second2		Floating Numeric	13	
UDRE	meters		Floating Numeric	13	
RTCM Modified Z-Count	GPS seconds	0.0-3599.4	Floating Numeric	13,23	
IOD		0-255	Variable Length Integer	13	
Position Flag		0-2	Fixed Length Integer	20	
PR Trouble Indicator		0-32	Variable Length Integer	20	
Latitude	degrees, minutes	0000.0 - 8959.0	Fixed/ Variable Length Latitude		
North/South		N/S	Fixed Alpha	21	N
Longitude	degrees, minutes	00000.0 - 17959.0	Fixed/ Variable Length Integer	21	0.0000.0
West/East		W/E	Fixed Alpha	21	Е
Radiobeacon Range	kilometers		Variable Length Integer	21	0
Frequency	kHz		Floating Numeric	21	0.0

LM Message

 Table 6.3: List of RSIM Variables (continued)

Name	Units	Range	Туре	RSIM#	Default Font
Health		0-3	Fixed Length Integer	21	0
Correction Generation Method		1-3	Fixed Length Integer	22	"Null"
RTCM Message Type #		1-64	Variable Length Integer	22	
Interval	seconds		Floating Numeric	22	
Synchronization Start Time	UTC seconds into first hour	0-3599	Variable Length Integer	22	

Detailed DBEN Message Structure

General

DBEN is a binary message which contains the message header, receiver time, receiver site ID, GPS pseudo-range and carrier phase measurements, checksum and message tail. It is similar to an MBEN message but it is bitwise compressed and the decoding program must perform bitwise manipulation in order to decode it properly.

DBEN Message Structure

A complete DBEN message can be divided into three parts:

Message Header

Message Data

Message Tail

More fine division is as follows:

0\$XXYYR,TZZ

[DML]

[Data]

[ChkSum]

<CR><LF>

Number of bits and detailed explanation of each part are listed as follows:

Message Header Part

Table 7.1: Message Header

Num. of bits	Symbol	Content
8	\$	To mark the beginning of a message.
8x2	XX	The message sender ID. This is what you would have entered in receiver at field Receiver is: of RECEIVER IDENTIFICATION sub-screen in receiver menu 4/SubCommand

Table 7.1: Message Header (continued)

Num. of bits	Symbol	Content
8x2	YY	The message designator ID. This is what you would have entered in receiver at field Remote is: of RECEIVER IDENTIFICATION sub-screen in receiver menu 4/SubCommand
8x2	R,	To indicate it is a responding message (always be "R,").
8	Т	To identify if the message is in compressed form (P for PACKED) or uncompressed form (R for UNPACKED)
8x3	ZZ,	Is the message type, This is what you would have selected in the receiver's DBEN DATA FORMAT SELECTION sub-screen.
16	DML	Length of Message Data Part [Data], after DML and before ChkSum, in units of bytes

Total bits: 104

Message Data Part

Table 7.2: Message Data

Number of Bits	Symbol	Content
30	RTime	Receiver time in units of GPS milliseconds of week
8x4	Site ID	Receiver four-character site ID
32	PRN	SVPRN for the satellites which have data to be followed. It is a bitwise indication. Starting from least significant bit, bit 1 corresponds to SVPRN #1, bit 2 corresponds to SVPRN #2, and so on. If a given bit is 1, it means that SVPRN has data, 0 otherwise.

The following repeats for each data slot and each SV.

31	PR	Pseudorange in units of 1.0e-10 seconds (or 0.1 nanoseconds). Multiply this value by 1.0e-10 to pseudo-range in seconds. A zero value may be sent for bad pseudo-range.
1	WN	Warning bit (1- bad carrier phase, 0 - good carrier phase)
1	SIGN	Sign bit (1 - negative carrier phase value, 0 - positive carrier phase value)

28	PH_I	Integer part of the carrier phase measurement in cycles
11	PH_F	Fractional part of the carrier phase measurement in units of 5e-4 cycles. Multiply this number by 5e-4 to get fractional carrier phase in cycles. Whole carrier phase measurement = PH_I + PH_F*5.0e-4

Zeros are padded so that all of above part are a module of 16 bits

Total bits: ceil $((94 + 72*N_{slot}*N_{sys})/16) * 16$,

ceil (a) means truncates to +Inf, e.g., ceil (3.1) = 4, ceil (3.5) = 4, ceil (3.95) = 4.

 N_{slot} is number of data slot in given message type, see following table DBEN Message Definition for number of slot in each message type.

N_{svs} is number of SVs.

For Z-XII with firmware version ALSO (04/14/94 14:05) This is one bit flag right after WN to indicate widelane cycle-slip (for RWL type only, not implemented for other DBEN message type yet). This is interpreted in PNAV software as Type 1 DBEN message (in PNAV version 3.0.00T release Alpha0#, Menu ALT-R/F5). Without this flag is interpreted as Type 0 DBEN message.

Message Tail:

Table 7.3: Message Tail

Number of Bits	Symbol	Content
16	[Chk Sum]	The word-wise (16 bits) sum of the [Data] message. It is a cumulative unsigned short sum of the [Data message], after DML, before this ChkSum.
8x2	<cr><lf></lf></cr>	To mark the end of message.

Total bits: 32

DBEN Message Types

Five types of DBEN messages are implemented for real-time PNAV, as listed in Table 7.4. Each type of message can be in the form of PACKED or UNPACKED.

The pseudo-range can be raw pseudo-range (UNSMOOTHED) or smoothed pseudo-range with internal carrier phase smoothing (SMOOTHED).

Table 7.4: DBEN Message Definition

Message ID	Message type in receiver screen	Observables	num. of slots
RCA	C/A CODE:	C/A code + CAL1 carrier phase	1
RWL	WIDE LANE:	(PL1 code + PL2 code)/2 + (L1 carrier phase - L2 carrier phase)	1
RP1	L1 P CODE:	C/A code + CAL1 carrier phase + PL1 code + PL1 carrier phase	1
RP2	L2 P CODE:	C/A code + CAL1 carrier phase + PL2 code + PL2 carrier phase	2
RPC	FULL P CODE:	PL1 code + PL1 carrier phase + PL2 code + PL2 carrier phase or CA code + CAL1 carrier phase + PL2 code + PL2 carrier phase	2

Currently, Doppler is not included in the DBEN message.

One epoch message size of each type of DBEN message is listed in Table 7.5

Table 7.5: DBEN Message Size (bits)

Number of satellites									
Message Type	4	5	6	7	8	9	10	11	12
RCA, RWL	520	600	664	744	808	888	952	1032	1096
RP1, RP2, RPC	808	952	1096	1240	1384	1528	1672	1816	1960

With Doppler

Table 7.6: Doppler Message Size (bits)

Number of Satellites									
RCA, RWL	632	728	824	920	1016	1112	1208	1304	1400
RP1, RP2, RPC	1016	1208	1400	1592	1784	1976	2184	2376	2568

Use this table to determine the data link rate requirement. For example, for a typical application tracking at most eight satellites, if a once-per-second update rate is required, there are 1384 bits of data in the DBEN message. The minimum requirement for a modem would be: 2400 BAUD with nearly 100% duty cycle.

Message Compression

The message is in UNPACKED format. In a future implementation, a PACKED format will reduce the message length by 50%.

Pseudo Range Smoothing

Normally, the raw pseudo-range is output UNSMOOTHED. In a future implementation, the pseudo-range (code) is modified with receiver internal carrier phase smoothing corrections (SMOOTHED).

System Control

This chapter describes the self-test messages, unhealthy GPS codes, and default parameters. In addition, it contains procedures for clearing the internal and external memory.

Self-Test Messages

At power-up, the Z-12-R receiver performs internal tests to check various components and circuits. As the self-test is completed, the respective self-test messages are displayed:

EPROM checksum test pass

XRAM installed

Mag var checksum OK

Downloading Channel

If all tests pass, the screen will display the message "downloading channel" and go to Screen 0. If any test fails, the program halts with the corresponding self-test message.

Unhealthy Codes

The unhealthy code used with GPS satellite identification consists of two hexadecimal digits. They represent four bits each and need to be converted to a single 8-bit binary number. The binary number is then broken so the three most significant bits represent the health of the data (Table 8.1). The second grouping (five bits) reflects the health of the signal (Table 8.2). For example, to translate the code 3C (as displayed on the receiver):

- 1. First, write it as two 4-bit groups: 0 0 1 1 and 1 1 0 0
- 2. Then write as one 8-bit number: 0 0 1 1 1 1 0 0
- 3. Regroup to three and five digits: 0 0 1 and 1 1 1 0 0
- 4. Read 001 from Table 8.1 and 11100 from Table 8.2. 001 reports a parity error; 11100 indicates the satellite is temporarily out of range.

System Control 171

Table 8.1: NAV Data Health (Bits 0 through 2)

Bit 0	Bit 1	Bit 2	NAV Data Health
0	0	0	All data okay
0	0	1	Parity failure
0	1	0	TLM/HOW format problem
0	1	1	Z count in HOW is bad
1	0	0	Subframes 1, 2, 3: One or more elements in words 3 through 10 of one or more subframes are bad
1	0	1	Subframes 4, 5: One or more elements in words 3 through 10 of one or more subframes are bad
1	1	0	All uploaded data is bad
1	1	1	All data is bad. TLM word and/or HOW and 1 or more elements in any one or more subframes are bad

Table 8.2: NAV Data Health (Bits 3 through 7)

Bit 3	Bit 4	Bit 5	Bit 6	Bit 7	NAV Data Health
0	0	0	0	0	All signals okay
0	0	0	0	1	All signals weak
0	0	0	1	0	All signals dead
0	0	0	1	1	All signals - no data modulation
0	0	1	0	0	L1P signal weak
0	0	1	0	1	L1P signal dead
0	0	1	1	0	L1P signal - no data modulation
0	0	1	1	1	L2P signal weak
0	1	0	0	0	L2P signal dead
0	1	0	0	1	L2P signal - no data modulation
0	1	0	1	0	L1C signal weak
0	1	0	1	1	L1C signal dead
0	1	1	0	0	L1C signal - no data modulation
0	1	1	0	1	L2C signal weak
0	1	1	1	0	L2C signal dead
0	1	1	1	1	L2C signal - no data modulation

	Table 8.2: NAV Data Health (Bits 3 through 7) (continued)							
Bit 3	Bit 4	Bit 5	Bit 6	Bit 7	NAV Data Health			
1	0	0	0	0	L1P and L2P signals weak			
1	0	0	0	1	L1P and L2P signals dead			
1	0	0	1	0	L1P and L2P signals - no data modulation			
1	0	0	1	1	L1C and L2C signals weak			
1	0	1	0	0	L1C and L2C signals dead			
1	0	1	0	1	L1C and L2C signals - no data modulation			
1	0	1	1	0	L1 signal weak			
1	0	1	1	1	L1 signal dead			
1	1	0	0	0	L1 signal - no data modulation			
1	1	0	0	1	L2 signal weak			
1	1	0	1	0	L2 signal dead			
1	1	0	1	1	L2 signal - no data modulation			
1	1	1	0	0	SV is temporarily out; do not use during current pass.			
1	1	1	0	1	Satellite will be temporarily out. Use with caution.			
1	1	1	1	0	Spare			

Table 8.2: NAV Data Health (Bits 3 through 7) (continued)

Resetting Memory

A reset of the internal memory of the receiver clears the receiver to the factory defaults, including almanac data. To complete this reset, proceed as follows:

- 1. Turn the receiver off.
- 2. While pressing the \triangle key, turn the receiver on.
- 3. Keep holding the ▲ key down until the message "Test of internal RAM. Will clear all data. Press yes within 10 seconds to continue" is displayed.
- 4. Press [8] (yes) and a message appears: "Push any key to continue." Press any key to continue with the receiver normal operation.

More than one combination would be required to describe the anomalies found.

System Control 173

A reset of the external memory of the receiver erases all data files displayed on Screen 8 and stores them in the memory RAM board. To complete this reset, proceed as follows:

- 1. Turn the receiver off.
- 2. While pressing the ▶ key, turn the receiver on.
- 3. Keep holding the ▶ key down until the message "Test of external RAM. Will clear all data. Press yes within 10 seconds to continue" is displayed.
- 4. Press [8] (yes) and the message "Push any key to continue" appears. Press any key. The receiver is now ready for use.

Receiver User Parameters

Receiver user parameters are stored in the internal memory of the receiver. Initially, they are set to their default values, but can be overridden in two different ways, depending on the parameter. Some are overridden automatically when their values are modified through their corresponding screens, and others are saved in memory when issuing the command 555 in Screen 8. Once parameters are saved in the internal memory, powering the receiver off does not change their values.

Some of these parameters can be set back to their default values by issuing the command 550. To set all parameters back to their default values, do an internal memory reset of the receiver.

The following table lists all receiver user parameters, showing their default values. It also lists which parameters are saved automatically when their values are modified through their corresponding screen, which are saved with command 555 and which are set to their defaults with command 550.

 Table 8.3: Receiver User Parameters

Parameters	Default	Saved Autom	Saved By 555	Reset By 550
SCREEN 4				
POS	0	Yes	No	No
REC INT	20.0	Yes	Yes	Yes
MIN SV	3	No	Yes	Yes
ELEV MASK	10	Yes	Yes	Yes
RNGR	0	No	Yes	Yes
POSITION				
POS MODE	0	Yes	No	No

Table 8.3: Receiver User Parameters (continued)

Parameters	Default	Saved Autom	Saved By 555	Reset By 550
ALT MODE	0	Yes	No	No
ELV MASK	10	No	Yes	Yes
UNHEALTHY	N	No	Yes	Yes
PDOP MASK	40	No	Yes	Yes
HDOP MASK	04	No	Yes	Yes
VDOP MASK	04	No	Yes	Yes
COMP POS	Y	No	Yes	Yes
ION MODEL	N	No	Yes	Yes
UTM COORD	N	No	Yes	Yes
DATUM	WGS84	No	No	No
SESSION				
START, END	0	Yes	No	No
INT	20.0	Yes	No	No
MASK, MIN, TYPE	10,3,0	Yes	No	No
INUSE	N	Yes	No	No
REF	000	Yes	No	No
OFFSET	00:00	Yes	No	No
DIFFERNTL				
MODE	Disabled	No	Yes	Yes
AUTO DIFF	Disabled	No	Yes	Yes
OUTPUT PORT	A	No	Yes	Yes
CODE	C/A	No	Yes	Yes
RTCM				
SPD	0100	Yes	No	Yes
STID	0000	Yes	No	No
STHE	0	Yes	No	No
FREQ (TYPE 1)	00	Yes	No	Yes
FREQ (TYPE 2)	00	Yes	No	Yes
FREQ (TYPE 3)	00	Yes	No	Yes

System Control 175

 Table 8.3: Receiver User Parameters (continued)

Parameters	Default	Saved Autom	Saved By 555	Reset By 550
FREQ (TYPE 5)	00	Yes	No	Yes
FREQ (TYPE 7)	00	Yes	No	Yes
FREQ (TYPE 9)	99	Yes	No	Yes
FREQ (TYPE 15)	00	Yes	No	Yes
TYPE 9 GROUP	9-3	Yes	No	Yes
FREQ (TYPE 16)	00	Yes	No	Yes
TYPE 6	On	Yes	No	Yes
SEQ	N	Yes	No	Yes
MAXAGE	0030	Yes	No	No
QAFREQ	100	No	No	No
MESSAGE	Empty	Yes	No	Yes
MSK				l
MSK	Off	Yes	No	No
CH1 FREQ & MOD	000.0/Off	Yes	No	No
CH2 FREQ & MOD	000.0/Off	Yes	No	No
FILL TYPE	Space	Yes	No	No
SPEED	100	Yes	No	No
PORT A, B, C OR D	•	•	•	
NMEA	Off	No	Yes	Yes
All NMEA Messages	Off	Yes	No	No
Send Interval	005	Yes	No	Yes
Real Time	Off	No	Yes	Yes
MBEN	Off	No	Yes	Yes
PBEN	Off	No	Yes	Yes
SNAV	Off	No	Yes	Yes
SALM	Off	No	Yes	Yes
FORMAT	ASCII	No	Yes	Yes
VTS	Off	No	Yes	Yes
BAUD RATE	9600	Yes	No	Yes

 Table 8.3: Receiver User Parameters (continued)

Parameters	Default	Saved Autom	Saved By 555	Reset By 550
PULSE GEN				
PERIOD	01.00	No	Yes	Yes
OFFSET	+000.0000	No	Yes	Yes
OUTPUT ON A	N	No	No	No
OUTPUT ON B	N	No	No	No
EXT FREQ	•	•	•	•
FREQUENCY	00.00	No	Yes	Yes
SAVE	N	No	Yes	Yes
MODEM				l
PORT	A	No	Yes	Yes
ТҮРЕ	Telebit World Blazer	No	Yes	Yes
RCVR CTRL				
Z MODE	A	Yes	No	No
SCREEN 7				l
AUTO SELECTION	Y	No	Yes	Yes
ALL SATELLITES	Y	No	Yes	Yes
SCREEN 9	•	•	•	•
SITE	????	Yes	No	Yes
SESS		Yes	No	Yes
RCV#		Yes	No	Yes
ANT#		Yes	No	Yes
MMDD		Yes	No	Yes
OPR		Yes	No	Yes
CODE		Yes	No	Yes
НІ	0.0000	No	No	No
T-DRY	+00	No	No	No
WET	+00	No	No	No
RH	00	No	No	No
BP	0000	No	No	No

System Control 177

 Table 8.3: Receiver User Parameters (continued)

Parameters	Default	Saved Autom	Saved By 555	Reset By 550
MIN SV	0	No	No	No
RECORD	Y	No	No	No
EPOCHS	000	No	No	No

Maintenance

This chapter provides information about antenna and power cables used with the Z-12-R receiver, information about radio interference, and various maintenance procedures.

General

1. DC Input Power

12 VDC. 3A Use only with Class 2 Power source

CAUTION

Disconnect the power cord before servicing

2. Rack Mounting Instructions

The unit is to be mounted in a standard 19" rack utilizing the four 12-24 x 1/2" Truss steel screws provided. Ashtech part number 103649.

WARNING

DO NOT BLOCK THE VENTS OR FANS OF THE RACK MOUNT CABINET OR ANY OTHER EQUIPMENT THAT IS MOUNTED IN THE CAB INET

3. Temperature Ranges

Operating Range -20 to +55 C Storage Range -30 to +75 C

Antenna Cables

The antenna cable shown in Figure 9.1, may be up to 30 meters long. A line amplifier is available for greater distances. Other technical specifications are shown in Figure 9.2. The supplied cable is a 30-meter Belden 8214 (RG-8/U-type, but with better loss specifications).

The cable uses type-N male connectors at both ends which are center captured. If a non-Ashtech cable is to be used, it must be the same type and have the same connectors as noted above.

Maintenance 179

Type 8214 RG-8 cable meets these specifications, but other RG-58/U and RG-8/U cables may not. Make sure any substitute cables satisfy Ashtech electrical requirements or the GPS receiver may not perform properly.

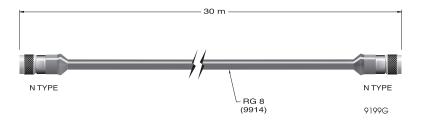


Figure 9.1: Antenna Cable

Table 9.2: Antenna Cable Electrical Specifications

Component	Function			
Insertion loss	12 db max. (at 1.5 GHz)			
Characteristic impedance	50 ohm (nominal)			
DC resistance	0.5 ohm ground braid and center conductor			

Power Cables

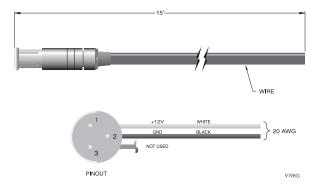


Figure 9.3: Power Cable

The power cable, shown in Figure 9.3, mates with a three-pin connector on the rear panel. If a substitute cable is used, use 20 AWG wire or larger.

RS-232 Pinout

The RS-232 DB9 connector pinout is shown in Figure 9.4. To communicate with external equipment, standard RS-232 full handshaking should be implemented with pins 4 and 5,6, and 9 tied together.

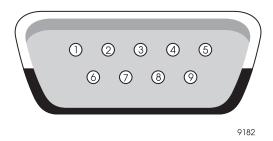


Figure 9.4: RS-232 Pinout

Maintenance 181

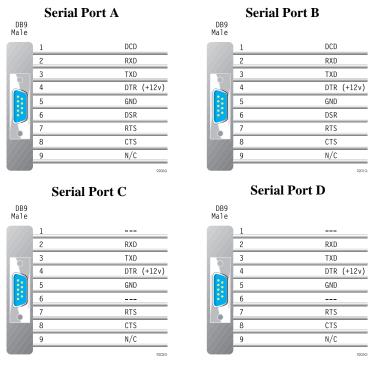


Figure 9.5: Connector Pin Assignment

Figure 9.5 shows Reference Station RS-232 connector pin assignments.

Radio Interference

Ashtech recommends that the user verify that the broadcast frequencies of any hand-held or mobile communications devices do not interrupt or obstruct GPS receivers during data collection.

WARNING Some radio transmitters and receivers (such as FM radios) can interfere with the operation of GPS receivers if operated in close proximity.

Power Consumption

The maximum power consumption of the Z-12-R receiver with backlighting on is 18 watts when operating from DC, 32 watts when operating from AC.

Internal Batteries

Two lithium batteries maintain saved parameter data. The batteries are rated at 1.8 AH and have an operating life of ten years in this application. The batteries should be monitored after nine years of use, and replaced after ten years.

If the batteries need to be replaced, the unit must be returned to Ashtech.

Lithium Battery Disposal Instructions

WARNING

DANGER OF EXPLOSION. IF BATTERY IS INCORRECTLY REPLACED. DISPOSE OF USED BATTERIES ACCORDING TO MANUFACTURER'S INSTRUCTIONS.

Sleep Mode

If internal voltage drops below 10.4 VDC, the receiver goes into the sleep mode. After voltage is restored, the next power cycle resumes normal operation. Memory and stored parameters are protected.

AC to DC Power Conversion

The AC-to-DC power converter converts AC power to 15 VDC, which in turn drives an internal regulated power supply. The internal regulated power supply can operate from any voltage input between 11 and 16 VDC. It is extremely unlikely that severe external transients can propagate through the converter and disrupt normal operation of the receiver.

Fuse Replacement

The receiver contains both AC and DC fuses. This section explains how to replace each of these.

Maintenance 183

DC Fuse

The DC fuse is located on the lower left-hand side of the rear panel, shown in Figure 9.6.

Figure 9.6: Fuse Location

Replace this fuse as follows:

- 1. Grasp the fuse knob firmly and turn it one-half turn to the left and remove it.
- 2. Remove the old fuse.
- 3. Put a new fuse (3A, 250v) into the receptacle.
- 4. Replace the fuse knob and turn it on-half turn to the right to secure it.

AC Fuse

The AC fuse is located in the power module on the rear of the unit as shown in Figure 9.7.

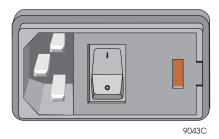


Figure 9.7: Power Module

Replace the fuse as follows:

1. Using a flat-bladed screwdriver, open the fuse latch shown in Figure 9.8.

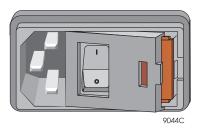


Figure 9.8: Fuse Latch

- 2. Open the latch as far as possible.
- 3. Slide out the fuse container as shown in Figure 9.9.

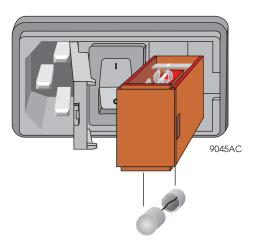


Figure 9.9: Fuse Container

- 4. Remove the old fuse from the **bottom** of the the fuse container and replace it with a new one (1.5A, 250v). DO NOT PUT THE FUSE IN THE TOP. Make sure the metal clip on the top of the container remains in place.
- 5. Slide the fuse container back into the power module.
- 6. Close the fuse latch.

Maintenance 185

Upgrading Firmware

General

The Z-12-R receiver contains flash EPROMs that can be upgraded with new firmware without opening the unit. Updates are obtained through the Ashtech customer support group, and can be loaded into the receiver with a personal computer.

PLZ is the Ashtech program that updates the firmware in Z-12 receivers. PLZ uses the following program files:

- NAV.DAT binary data file containing the Nav firmware
- BIN.DAT binary data file containing the channel firmware

These files are found on the distribution disk along with PLZ.EXE, the loading program which uploads NAV.DAT and BIN.DAT into the receiver.

Program Execution

- Before executing PLZ, either copy PLZ.EXE and the program files from the distribution disk to your computer hard disk, or execute PLZ from the distribution disk. If you execute PLZ from the distribution disk, more execution time is required to read the data file and send it to each receiver.
- Before executing PLZ, have power supplied to the receiver and the RS-232
 communications cable attached to the computer and the receiver. Either
 COM1 or COM2 on the computer can be used. Only Port A on the receiver
 can be used.
- 3. With the receiver powered on, start PLZ by typing the following command at the DOS prompt:

PLZ <ENTER>

The program defaults for PLZ.EXE are set to run a main program load from PC serial port COM1 at 115200 baud on an VGA/EGA screen. Different options can be set by using the following format:

PLZ -x -yy +z

where

-x is the PC serial port (-2 for COM2)

-yy can be either:

-bt boots load instead of a main program load

-mn sets the display for monochrome screen

+z sets baud rate where y is an integer from 5-9:

+5 sets the baud rate to 9600

+6 sets the baud rate to 19200

+7 sets the baud rate to 38400

+8 sets the baud rate to 57600

+9 sets the baud rate to 115200

Multiple options may be selected, separated by a space. For example:

PLZ -mn -2 +5

Selects COM2 at a baud rate of 38400 and sets the display for monochrome.

WARNING

DO NOT disconnect the cable from the receiver or turn off the receiver until the program completes execution.

Once the program has begun execution, the following information is displayed on the monitor screen:

ASHTECH Z-XII PROGRAM LOADER CSC 1.1

>> SETTING UP INTERFACE TO THE RECEIVER

SENDING PROGRAM TO THE RECEIVER

1ST MEMORY LOADING

2ND MEMORY LOADING

The display shows the program loading status. The symbol >> points to the current process step, and the step is highlighted.

Maintenance 187

The transmission status consists of two execution steps:

- The interface setup step where an RS-232 connection is established between the receiver and the computer and the receiver is prepared to receive the program data
- The program transfer step where the program data is transferred to the receiver.

The receiver reprogram status consists of two stages, represented by two separate lines

1ST MEMORY LOADING 2ND MEMORY LOADING.

When each stage is in execution, a percentage complete for that stage is displayed. The stage is complete when the percentage indication is 100.

- 4. After the program has finished execution and returns to the operating system prompt, disconnect the communications cable from the serial port and turn off the receiver using the power switch.
- 5. Reset the receiver internal and external memory as described in Chapter 8, **System Control**.
- 6. The receiver firmware program has now been properly updated. To confirm the new version, turn on the receiver. The new version appears in the lower right corner of menu 0.

Warning Messages

Warning messages are displayed by the PLZ program to inform the user of potential problems during the program execution.

When the receiver is in the reprogramming stages, the following message appears at the bottom of the screen:

Do not turn off the receiver or disconnect the cable from the receiver until the completion of PLZ program execution. The receiver's main program will be corrupted, and a boot load will be necessary.

Error Messages and Abnormal Termination

When errors are detected during program execution, PLZ displays an appropriate error message and terminate the loading process.

1. When the program data files are not found in the default directory, the following message appears:

ERROR: FAILED TO FIND NAV.DAT FILE

Correct this error by loading the NAV.DAT and BIN.DAT files into the default directory and restarting the execution of PLZ.

2. If PLZ fails to establish communication with the receiver, the following message appears:

ERROR: RS232 TRANSMIT PROBLEM PROGRAM LOADING FAILED

If this problem occurs, make sure that each of the program execution steps above has been followed and both the power supply and cables are working. Also ensure that the receiver is powered on and the cable is plugged into the correct port. Restart the receiver and repeat the steps above. If the problem recurs, call Ashtech customer support.

3. When invalid program data is transferred to the receiver, the message

INVALID CHECKSUM

may appear at the bottom of the screen.

This can occur for either of two reasons:

- The baud rate is too fast for the computer serial port. Set a lower baud rate (9600 suggested) as described in step 3 of the Program Execution section.
- One of the .DAT files has become corrupted. Either recopy the files from the disk or re-download the files from the Ashtech Bulletin Board.

In either case, a boot load is necessary. See below for instructions on boot loading.

If this problem continues, call Ashtech customer support.

4. If the program abnormally aborts at the SENDING PROGRAM TO THE RECEIVER stage and does not load the program at all, it is likely that the baud rate is too high for the computer. If this happens, the main program is now corrupted and a boot load will be necessary.

Exit the program using the ESC key and follow the boot procedure described below, then run the PLZ program at a lower baud rate.

Maintenance 189

Boot Loading

Once the program has started sending program data to the receiver, any abnormal termination (power failure, program hang up, checksum errors) corrupts the main program, and a normal main program load is no longer possible. In these cases, a boot load is necessary. Perform this as follows:

- 1. Exit the PLZ program by using the ESC key on the computer.
- 2. Turn the receiver off, then on while pressing the [0] key. The receiver indicates that the main program has been corrupted by displaying the following message

SERIAL PORT A HAS BEEN SELECTED. WAITING FOR MAIN PROGRAM LOAD

If the hose cable is connected to receiver Port B, press and hold the [9] key when you turn the receiver back on. The first part of the message should now read

SERIAL PORT B HAS BEEN SELECTED

3. At the DOS prompt, enter:

PLZ -bt <ENTER>

4. To reduce the baud rate, use one of the baud rate options described in step 3 of Program Execution, for example:

PLZ -bt +7

runs the boot load at a baud rate of 38400.

5. The PLZ program should run normally at this point.

Ashtech-to-RINEX Conversion

Ashtech's ASHTORIN software converts Ashtech B-files, E-files, optional S-files, and optional D-files into the RINEX (Receiver INdependent EXchange) format. This allows data collected from receivers of different manufacturers to be combined.

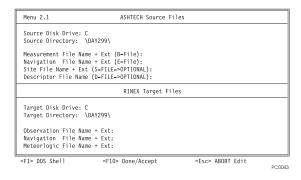
Ensure that there is enough room to create a file on the specified drive; if not, ASHTORIN will terminate with an appropriate error message.

Input Data Files

ASHTORIN uses the Ashtech B-files, E-files, optional S-files, and optional D-files as input data.

Output Data Files

ASHTORIN can generate three different files, an Observation file, a Navigation file, and a Meteorological file. Some applications require one Observation file and one Meteorological file for each site per session; others require only the Observation file. Only one Navigation file must be generated per session, as long as the converted E-file spans the entire session.


Program Execution

Change to the directory containing the receiver files to be converted.

At the DOS prompt, type

ASHTORIN<ENTER>

to bring up the standard version screen followed by ASHTECH Source Files/RINEX Target Files Menu 2.1, (Figure A.2):

Figure A.1: Ashtech Source File Screen

Ashtech Source Files

The top section, defines the Ashtech files that you want to convert. This section contains the data entry fields:

Source Disk Drive: and Source Directory

Initially, the volume and path from which ASHTORIN was executed (in this case, C:\DAY299). Move the cursor to the field to be change, and type in the desired file location.

File Name + Ext: B-File, E-File, S-FILE (OPTIONAL), and D-FILE (OPTIONAL).

RINEX Target Files

The bottom section, defines the RINEX files that will be created. This section contains the following data entry fields:

Target Disk Drive: and Target Directory

Initially, the volume and path from which ASHTORIN executed (in this case, C:\DAY299). Move the cursor to the field to be changed, and type in the desired file location:

File Name + Ext: Observation, Navigation and Meteorological.

When typing in an **ASHTECH Source** measurement file name (for example, the sample B-file, BMAPRA90.299), ASHTORIN automatically fills in the corresponding E-file and S-file name in its appropriate field and suggests a set of RINEX file names in the **RINEX Target Files** section; observe, typically:

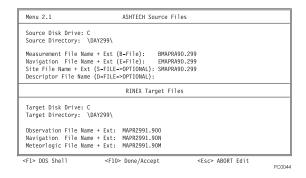


Figure A.2: Menu 2.1 ASHTECH Source Files / RINEX Target Files

Ashtech recommends naming the RINEX output files with the O-suffix for the observation filename, N-suffix for the navigation filename, and M-suffix for the meteorological filename. This format follows the standard RINEX naming convention for output files:

```
ssssdddf.yyt
```

where:

is a 4-character station name designator.

ddd is the day of the year of the first record.

f is the file sequence number to within a day.

yy is the year.

is the file type where **O** indicates observation file, **N** indicates navigation file, and **M** indicates meteorological data file.

After the source files and the target files have been entered and the correct drive and directory established, press <F10> to access the Program Options Menu 2.0 (Figure A.3):

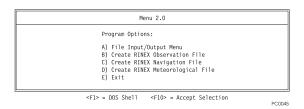


Figure A.3: Menu 2.0 Program Options

This menu provides the options of:

- a. Return to the File Input/Output Menu,
- b. Create Observation File,
- c. Create Navigation File, or
- d. Create Meteorological file.

To choose the desired option, use the arrow keys followed by **<ENTER>** or the **<F10>** key, or press the letter for the desired action.

- 1. To create an Observation file a valid B-file and E-file must be found.
- 2. To create a Navigation file a valid E-file must be found.
- 3. To create a Meteorological file no input files are required.
- 4. ASHTORIN creates an output file using the name you specify on Menu 2.1 (Figure A.2).
- 5. If the output file already exists, it is overwritten and the original file data is destroyed. In addition, a valid output filename must be entered to access the appropriate option.
- 6. If the above input file requirements are not met for a particular output file, ASHTORIN will not allow you to enter that menu screen.

Option A: File Input/Output Menu

When selecting this option, the software returns to the ASHTECH Source Files/RINEX Target Files menu screen (Figure A.2), typically after an Ashtech-to-RINEX conversion is completed.

Option B: Create RINEX Observation File

1. Select Program Option B; observe, typically:

```
Menu 2.2 - Rinex Observation File
Station Name:
Station Number:
Observers Name: SDH
Observing Agency:
Agency Creating Current File:
Comments:
Receiver Type (ie: L-XII, M-XII, etc.): RANGER
Receiver Serial Number (last 4 digits): 696
Antenna Type (ie:Sensor Microstrip):
Antenna Serial Number (last 4 digits):
Type of Data 1 = L1, 2 = L2:
Antenna Offsets: North 0.0000 (m)
                                        Slant Distance
                                                          1.7390 (m)
                  East 0.0000 (m)
                                                          0.0000 (m)
                                        Delta Vertical
                                                          0.0000 (m)
All Optional Headers: N
<F1> DOS Shell
                  <F5> Accept/Return
                                          <F10> Process
                                                                   <Esc> ABORT Edit
```

Figure A.4: Menu 2.2 Information Screen

In this screen:

- ASHTORIN automatically extracts from the B-file and displays the current site identifier in the **Station Name** data field and the **Type of Data** in the corresponding field.
- 3. If the current directory contains a valid S-file associated with the B-file selected, ASHTORIN automatically extracts from the S-file and displays, in the corresponding field the **Observers Name**, the receiver type, the receiver serial number, and the slant distance.
- 4. Menu 2.2 (Figure A.4) consists of four sections:
 - Agency Information
 - Equipment and Data Information
 - Antenna Offsets Information
 - All Optional Headers selector

Any of the entries can be changed and any of the other fields completed in these sections as desired.

The most recent entry to the fields Station name, Agency Creating Current File, and Comments applies globally to the following screens:

- Menu 2.2 Rinex Observation File
- Menu 2.4 Rinex Navigation File (except **Station name**)
- Menu 2.3 RINEX Meteorological File

Agency Information (Top Section)

Station Name

Initially contains the site identifier of the first epoch from the B-file; in this case ????. It can contain up to 60 alphanumeric characters.

Observers Name

Is from the S-file (if any), in this case, SDH; ____ means that no name was entered in the receiver.

Station Number

Optionally, up to 20 alphanumeric characters.

Observing Agency

Optionally up to 40 alphanumeric characters identifying the agency that surveyed the point.

Agency Creating Current File

Optionally up to 20 alphanumeric characters identifying the organization post-processing the data.

Comments

Optionally up to 60 alphanumeric characters for other relevant and noncomputational data.

Equipment and Data Information (Second Section)

Receiver Type

Initially displays the parameter from the S-file (if any); in this case, RANGER. It identifies the equipment used in the survey.

Receiver Serial Number

Initially displays the parameter from the S-file (if any); in this case, 696. Ashtech recommends at least the last three digits of the serial number of the equipment used in the survey.

Antenna Type

Fill this optionally, as required.

Antenna Serial Number

Initially displays the parameter from the S-file (if any); in this case, **901**. Ashtech recommends at least the last three digits of the serial number.

Type of Data

Displays the parameter from the B-file; in this case, **0**. The data type affects subsequent post-processing of the RINEX Observation file. Possible values from the B-file are:

Table A.1: B-File Parameters

Field	Description			
0	Code phase only			
1	C/A L1-only data			
2	C/A L1 and codeless L2			
3	C/A and P-code on L1			
4	C/A on L1 and P-code on L2			
5	C/A, P-code on L1, and P-code on L2			

Antenna Offsets (Third Section)

North, East, Radius, and Delta Vertical

Initially default to zero meters. **Slant Distance** is initially at least 0.0001 meter because it must exceed the radius for antenna height computation. If ASHTORIN finds an S-file, **Slant Distance** is the value therein; type in accurate data to achieve valid results in post-processing.

All Optional Headers (Bottom Section)

The default is **N**o and puts the required header information in the observation file (that is, RINEX version number and type-through time of last observation). If you type **Y**es, in addition to the standard information, ASHTORIN first scans the entire B-file so that it can report the number of satellites which were recorded and, for each satellite, its PRN and number of observations of each measurement.

The Observation file will take this form where the optional header information is shaded:

		OBSI	ERVAT	CION	DATA				RINEX VERSION/TYPE
	21-MAY	-92	12:23	3 PGI	M/RUN	BY/DA	ATE		ASHTORIN COMMENT
CN1									MARKER NAME
									MARKER NUMBER
PHG									OBSERVER/AGENCY
358			L	M-XI	I2			6FP3	REC#/TYPE/VERS
									ANT#/TYPE
-2691	1570.060	00 -	4301	212.	2700	38517	25.6600		APPROX POSITION XYZ
	0.000)1		0.	0000		0.0000		ANTENNA: DELTA H/E/N
1	1								WAVELENGTH FACT L1/2
6	L1	L2	C1	P2	D1	D2			#/TYPES OF OBSERV
5									INTERVAL
1991	10	24	18	15	5.0	00000			TIME OF FIRST OBS
1991	10	24	19	20	0.0	003000			TIME OF LAST OBS
5									# OF SATELLITES
3	780	780	780	780	780	780			PRN / # OF OBS
16	780	780	780	780	780	780			PRN / # OF OBS
17	780	780	780	780	780	780			PRN / # OF OBS
20	780	759	780	759	780	759			PRN / # OF OBS
23	780	776	780	776	780	776			PRN / # OF OBS
									END OF HEADER

91	10 24 18 15 5.0	0000000 0 5	3 23 20 16 17		0.000898760
	987687.82319	769626.25517	28569964.835	21075179.767	-320.644
	-249.829				
	3057595.89416	1747946.15115	31938240.726	24443462.043	-2743.328
	-2137.674				
	-4425084.60818	-3448117.14116	29845916.732	22351133.402	3999.467
	3116.498				
	-2913737.44518	-2270439.14116	29673527.704	22178742.396	2920.611
	2275.824				
	1583846.53119	1234162.88717	28907100.551	21412313.564	-707.822
	-551.543				

Processing the Conversion

- 1. When all data is properly entered, press $\langle F10 \rangle$ to create the Observation file.
- 2. ASHTORIN indicates processing in progress by the message **WORKING** and a rotating line in the upper left corner of the screen.
- 3. To interrupt processing in progress press the **<ESC>** key; observe: Are You Sure (Y/N)?

If you type N, ASHTORIN continues to process as if no interruption occurred.

If you type **Y**, ASHTORIN aborts processing and returns you to Program Options Menu 2.0 (Figure A.3) without finishing the RINEX Observation file.

When creation is complete, the system returns to Program Options Menu 2.0.

Option C: Create RINEX Navigation File

Select Program Option C; observe:

Figure A.5: RINEX Navigation, Option C

Agency Information (Top Section)

Agency Creating Current File

Optionally up to 20 alphanumeric characters identifying the organization post-processing the data.

Comments

Optionally up to 60 alphanumeric characters for other relevant and noncomputational data.

Processing the Conversion

When all data is properly entered, press the **<F10>** key to create the Navigation File and return to Program Options Menu 2.0 (Figure A.3).

Option D: Create RINEX Meteorological File

To create a Meteorological file, no input files are required, however ASHTORIN extracts information from S-files and/or B-files (if present) as described later in this section. Select Program Option D; observe:

Station Name: Agency Creating Current File: Comment:										
PRESS	- Preasure		RHII	MD - Rei	lative Hu	midity				
	- Dry Temper						lay (for	WVR	data)	
READI		TIME		PRESS		RHUMD	ZWET			
		(UTC)								
1	1992\12\18	22:54:	2	1010.0	20.0	50.0	0.0			
2	1992\12\18	22:54:	2	0.0	0.0	0.0	0.0			
3	1992\12\18	22:54:	2	0.0	0.0	0.0	0.0			
4	1992\12\18	22:54:	2	0.0	0.0	0.0	0.0			
5	1992\12\18	22:54:	2	0.0	0.0	0.0	0.0			
6	1992\12\18	22:54:	2	0.0	0.0	0.0	0.0			
7	1992\12\18	22:54:	2	0.0	0.0	0.0	0.0			
8	1992\12\18	22:54:	2	0.0	0.0	0.0	0.0			
9	1992\12\18	22:54:	2	0.0	0.0	0.0	0.0			
10	1992\12\18	22.54.	2	0.0	0.0	0.0	0.0			

Figure A.6: RINEX Meteorological File, Option D

Station Name

Initially contains the site identifier (if present) of the first epoch from the B-file. It can contain up to 60 alphanumeric characters.

Agency Creating Current File

Optionally up to 20 alphanumeric characters identifying the organization post-processing the data.

Comments

Optionally up to 60 alphanumeric characters for other relevant and noncomputational data.

Up to 10 READINGs are tagged by DATE (year\month\day) and TIME for the defined data fields (PRESS - Pressure, etc.). The DATE and TIME columns initially display the current computer date and time, and the first READING line displays standard conditions.

If an S-file was selected in Menu 2.1, ASHTORIN extracts the meteorological conditions from the S-file into the bottom area of the menu. If an S-file was not specified, ASHTORIN uses default meteorological parameters.

Make any corrections or additions desired.

When all data is properly entered, press <F10>, to create the Meteorological file and return to Program Options Menu 2.0.

Option E: Exit

This option returns the system to DOS or the calling program.

Warning Messages

File seems to be Truncated

Means that the input file does not contain complete records (for example, a file with incorrect format).

File Cannot be opened for reading

Means that the file name does not exist in the path declared.

File Cannot be opened for writing

Means that the file could not be written to (may be write protected).

Error Messages

Invalid Drive\Dir

Means that the directory path could not be found on the drive specified. ASHTORIN will not continue until a valid "drive/dir" is specified.

Slant distance and/or radius out of range

Means that the radius input is larger than the slant distance to the antenna and the program can not calculate the correct antenna height. ASHTORIN will not continue until a smaller radius or a larger slant distance is entered.

Bendata file of incorrect format

Means the B-file was downloaded with a version of the HOSE program prior to Version 4.1.00; such a file must be run through the CONVERT program (as described in this chapter) before using ASHTORIN. If the data was downloaded from a receiver using firmware version 6A or 6B, see the discussion in the CONVERT section of this chapter. ASHTORIN will not work on data files collected using receiver firmware versions prior to 6A.

Receiver frequency entry out-of-range

Means that an illegal value is in the Type-of-Data entry.

Data Logger

Data Logger

Ashtech's DATALOGR software logs data from the GPS receiver to the computer in realtime. This module works only with those receivers which contain the real-time output option.

Input Data Files

None.

Output Data Files

DATALOGR generates two output files on the target drive of the data logging computer. These files, a B-file and E-file, are directly usable by the Ashtech post-processing software.

It should be noted that the program does not produce an S-file (or site file) which is used to expedite automatic processing. Automatic processing can still be performed without the S-file by entering antenna height data when the project file is edited.

Program Execution

In order to receive the data, the GPS receiver must be connected to the computer to which the data will be transferred. This connection is made using the **full handshake null modem cable** provided with the receiver. One end of the cable plugs into the GPS receiver via the RS-232 port and the other end of the cable plugs into the computer RS-232 port labeled **COM1** or **COM2**.

To start DATALOGR, at the DOS prompt, type:

DATALOGR <CR>

Data Logger B-1

The screen shows a display similar to following:

Figure B.1: DATALOGR Screen

The display shows three sections, each in a separate box. They are:

- 1. Communications
- 2. Target System
- 3. Status Information

In the communications section communications parameters can be selected; that is, communication port 1 or 2 (for COM1 and COM2, respectively) and communication speed. To select the communication speed, press the <PgUp> or <PgDn> keys until the desired speed appears.

The target system section allows for the selection of target disk drive, target directory path, and target file names. As in program HOSE, the template prompt allows for the entry of the "base" file name. Specifically, the information entered here will be used to generated the target B-file and E-file names according to the recommended file naming convention. At program start-up, the clock of the target computer is used to generate the session, year, and day fields of the template; that is, only the 4-character site name is not supplied.

The status information section is used to provide status information during communication with the receiver, and is blank for this example.

After the target file names have been entered, press <F10> to begin data logging. At this time, DATALOGR checks that the named files exist and asks permission to overwrite them if they do exist, as shown below:

Figure B.2: DATALOGR Status

After the target files have been opened successfully, DATALOGR tries to establish the data link. If the data link has not been established properly, the following message appears in the status section:

ERROR: While attempting to initialize the communications port, an RS232 line status check indicates one of the following conditions:

- 1. Cables not connected properly (e.g., wrong receiver port);
- 2. Cables not fastened securely; and/or
- 3. Receiver power not "ON".

Ensure cables are connected (with FULL NULL MODEM) and receiver power is on.

Press any key when ready to try again. . . .

For proper operation of DATALOGR when connected to serial ports C or D of the Z-12-R receiver, include the "-i" option (for example, type "DATALOGR -i").

Once the data link is established, you'll see a screen similar to:

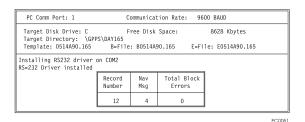


Figure B.3: DATALOGR, Option "i"

If either the record number or the number of navigation messages do not increase, one of the following conditions exists:

- 1. Not enough satellites are being tracked by the receiver.
- An epoch interval has not transpired since the time the connection was established.
- 3. The communication cable is not properly connected.

To end a data logging session press **<Esc>**. The output files will then be closed and the data link will be terminated.

Data Logger B-3

Command Line Options

If desired, you can execute DATALOG specifying the following command line parameters:

Table B.1: Command Line Options

Command	Description
- ?	Lists options.
- a	Downloads an almanac file real time.
- b	Specifies the communication rate (BAUD).
- c	Sets the communications port.
- f	Updates FAT of the b, c file at t (seconds) interval.
- I	Ignores the RS-232 status lines.
- p	Logs position data only.
- n	Do not poll COMM speed.
- y	Specifies the template name to be used for B & E files.

These parameters can exist in any order, but their related parameters must follow them in the same order, as shown in the following examples:

Table B.2: Command Parameters

Command	Function
DATALOGR -?	The (-?) lists the command line options and provides a brief description of what the command does.
DATALOGR -a	The (-a) option downloads an almanac file in real time. This command is typically used on receivers that don't have internal memory.
DATALOGR -b	The (-b) option sets the communication baud rate. To initialize DATALOGR to 9600 baud, enter the following command: • DATALOGR -b 9600 <cr></cr>
DATALOGR -c	The (-c) sets the communication port to either COM1 or COM2. To start DATALOGR on COM2, enter the following command: • DATALOGR -c 2 <cr></cr>

ita Logger

 Table B.2: Command Parameters (continued)

Command	Function
DATALOGR -f	The (-f) option allows you to set a time interval to write the EOF marker. This causes the file to be closed every "N" seconds in order to protect against power outages that typically cause data loss. To set the time interval to 10 seconds, enter the following command: • DATALGR -f 10 <cr></cr>
DATALOGR -I	The (-I) options causes the status information coming through the RS-232 connection to be ignored. Use this command with caution.
DATALOGR -p	The (-p) option causes the logging of only the position data when the data is viewed using the filetool program the code observables are not seen

Data Logger B-5

HOSE

HOSE

HOSE extracts (or downloads) data from Ashtech GPS receivers. After the receivers have collected the field measurement data, the receivers are connected to the computer using a cable, and the data is extracted from the GPS receivers into the computer for post-processing.

Input Data Files

There are no input data files. HOSE extracts the data stored in the GPS receiver internal memory.

Output Data Files

The extracted satellite measurement data is saved as "B-files" (BEN files), satellite ephemeris (orbit) data into the "E-files" (EPHM files), and site information into the "S-files" (SITE files). If the Ranger 2 mode is selected in the receiver, then a C-file will be downloaded instead of a B- and E-file. Optionally, a photogrammetry data file and the almanac file can be downloaded, and a waypoint file can be downloaded, edited, and uploaded back to the receiver.

Program Execution

In order to download the data, the receiver must be connected to the computer to which the data will be transferred. This connection is made using the **full handshake null modem cable** provided with the receiver. (The drawing for this cable is shown on the last page of this section). One end of the cable plugs into the receiver via the RS-232 port labeled either **Serial Port 1** or **Serial Port 2** and the other end of the cable plugs into the computer RS-232 serial port generally labeled **COM1** or **COM2**. HOSE will attempt to communicate via COM1 at 38400 baud. If either of these parameters differ for your computer, you may also specify the communications port and/or the baud rate via the command line as described later or select the option to change communication parameters.

To start HOSE, type the following command at the DOS prompt:

HOSE <CR>

HOSE C-1

The program momentarily displays the opening menu:

```
Program: HOSE Version 5.0.00 Releaser: 01/21/93

by

ASHTECH, Inc.

1170 Kifer Road

Sunnyvale, CA 94086

Copyright (c) 1988, 1989, 1990, 1991, 1992. All rights reserved.
```

Figure C.1: Menu Screen

PC0053

The opening menu is followed by status information. This status information describes the program configuration (either the default or command-line selected).

If HOSE detects a communication problem, it displays an error message:

ERROR: Cannot initialize COMM port.

If this occurs, the only main menu option which can be executed is option C as discussed below.

Main Menu and Display

The HOSE main menu is displayed below:

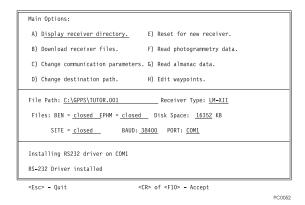


Figure C.2: HOSE Main Menu

The main menu is composed of four sections:

- 1. Option selection section
- 2. Status information section

- 3. Supplementary information section.
- 4. Quit/Execute section.

You select options by: 1) highlighting the desired option and pressing the **<CR>** key or, 2) by directly pressing the letter associated with the option. The supplementary information section (the bottom portion of the screen) displays various information depending on the option selected.

The middle section of the main menu is called the Status information section. Contained in this section of the display are the following:

- 1. Destination file path and destination file names.
- 2. Available disk space.
- 3. The current communication rate.
- 4. Receiver type.
- 5. Active communication port of the target computer.

The destination file names are entered via main menu option B. Once files have been read from the receiver, these files become closed, requiring you to open another set prior to the next read. The project subdirectory destination path may be changed via option D, and the communication speed may be changed via option C.

Option Selection Section

The option selection section of the display provides you with a list of program options:

- a. Display Receiver Directory.
- b. Download receiver files.
- c. Change communication parameters.
- d. Change destination path.
- e. Reset for new receiver.
- f. Read photogrammetry data
- g. Read almanac data
- h. Edit waypoints

To select an option, highlight it by using an arrow key, then press <CR> or <F10>. You can also select an option by typing the letter associated with it; for example, to select option A) Display Receiver Directory, type <A>.

To terminate the program, press <Esc>. This provides a proper exit from the program, ensuring that all files are properly closed.

HOSE C-3

Option A: Display Receiver Directory

Option A provides you with a listing of the files stored in the memory of the receiver. The directory information is displayed in the Supplementary information section of the main display:

Figure C.3: Main Option Menu

Included in the directory information are the following:

Table C.1: Directory Information

Component	Description
#	Session Number (use this number when selecting files to be read from the receiver).
NAME	The last site name entered by the receiver operator.
BYTES	The number of bytes the file occupies in the memory of the receiver (NOTE: This will NOT be the size of the files stored on disk - the data files on disk will typically be larger).
WEEK	GPS week of the file.
TIME	Seconds of GPS week of the file.
SES	Receiver operator entered information.
RCR	Taken from receiver menu 9; receiver serial number
ANT	Taken from receiver menu 9; antenna serial number
MMDD	Taken from receiver menu 9; month and day entered by operator
OPR	Taken from receiver menu 9; operator's initials
CODE	Taken from receiver menu 9; operator-entered comments

Option B: Download receiver files.

This option calls up a selection screen similar to the following:

```
| DOWNLOAD TEMPLATE | BEN file | EPHM file | SITE file | Y | RICKA90.009 | BRICKA90.009 | SRICKA90.009 | SRICKA90.009 | Y | HHAYB90.025 | BHHAYB90.025 | SHHAYB90.025 | Receiver files: | NAME WORDS WEEK TIME SES RCR ANT MMDD OPR CODE | RICK | 1150 | 522 | 384479 | A | 514 | 113 | RS | ASHTECH | STATIC SITE | HHAY 24413 | 524 | 388009 | B | 514 | 113 | RS | HIGHHAY | BASELINE | SESC> - ABORT OPERATION | SECOND | SPCCOST | PCCOST | PC
```

Figure C.4: Selection Screen

The bottom half of the screen shows the directory of the receiver files, while the top half shows the automatically created names for the files to be created on the computer. Each line of the top half corresponds with the bottom half.

Sessions may be selected or de-selected for downloading. If the SELECT column is set to <N>, the file will not be downloaded. This screen also allows editing of the filenames, either by changing the template field, or by editing the individual file names.

You can move between prompts by using the **<arrow>** and **<TAB>** keys (and **<Shift>+<Tab>** for reverse). Normal editing is provided within prompt fields: insert using **<Ins>**; delete character using **<Backspace>**, and then type in correct information.

When satisfied with the file selections and names, press <F10>. HOSE attempts to open all of the files prior to downloading. If any of the files already exist in the current directory, a message similar to the following is displayed:

- Opening output files for session 0
- File BRICKA90.009 already exists on disk.
- Do you wish to [O]verwrite or [A]bort opening: 0

If you press **<A>**, HOSE terminates the file naming and downloading procedure. If you press **<O>**, HOSE overwrites the existing file.

HOSE C-5

As the files are being downloaded, the downloading status is displayed:

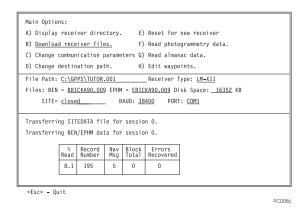


Figure C.5: Main Options Menu

HOSE continuously checks the amount of free disk space available on the target disk. If, during any file transfer, there is not enough space for the remaining data to be transferred, the following message is displayed:

• Not enough free disk space for requested operation.

If you are getting a lot of Block Errors, the baud rate for data transfer may be set too high. Use HOSE option C, 'Change Communication Parameters," to lower the baud rate.

When the download is completed, a summary screen is displayed:

Figure C.6: Download Summary Menu

In addition to the <PgUp> and <PgDn> keys, the <UpArrow> and <DownArrow> keys may be used to scan through the session summary. This summary is appended to the download summary file in the current directory under the filename HOSE.SUM.

Option C: Change Communications Parameters.

Option C provides a means of changing either or both the communication speed or computer communications port. Upon selecting option C, the following selection menu is displayed:

Figure C.7: Option C, Change Communication Parameters

Move the cursor to the desired communication rate via the arrow keys or by the letter associated with the desired speed, and press <CR> or <F10>.

This menu provides selectable baud rates which are available for a given receiver. For receivers which are not capable of 56000 and 112000 baud the menu will not display these selections. Move the cursor to the desired communication rate and/or COMM port and press <CR> or <F10>.

If the requested change does not occur due to an error, the following message is displayed:

ERROR: While attempting to initialize the communications port, an RS232 line status check indicates one of the following conditions:

- 1. Cables not connected properly;
- 2. Cables not fastened securely; and/or
- 3. Receiver power not on.
 - Ensure cables are connected (with FULL NULL MODEM) and receiver power is on.
 - Press any key when ready to try again. . . .

Follow the instructions provided. If the message occurs repeatedly, then it is probable that one of the following conditions exist:

- 1. Cables are connected to an incorrect port of the target computer.
- 2. The cable between the receiver and target computer is NOT a Full Handshake Null Modem Cable.
- Receiver is turned off.
- 4. The computer COMM port is not configured as a data communications equipment (DCE) port. If the computer port is a data terminal equipment (DTE) port, then use a full handshake cable or add a null modem adapter to the HOSE cable.

If during file transfers a large number of checksum errors occur, the RS-232 connection may not be sound. To remedy the problem, tighten all connections, use a shorter RS-232 cable (maximum length is 100 feet), decrease the communication rate, and/or change communications ports on the receiver or computer, or both.

HOSE C-7

If you remove the power from the receiver while HOSE is running, you will have to restart the program.

Finally, Ashtech strongly recommends that you do not disconnect communication cables from one receiver to another without using Option E Reset for new receiver. Disconnecting the receiver cable without resetting the computer and receiver could create problems with the computer data files.

Option D: Change Destination Path

This option will display a screen as follows:

```
Menu: Change File Destination

Drive: C

Directory path: \(\frac{GPPS\TUTOR.001}{GPPS\TUTOR.001}\)

<ESC> - ABORT OPERATION <F1> - DOS Shell <F10> - ACCEPT/DONE

PC0059
```

Figure C.8: Option D, Change Destination

To download data into a different drive and/or directory, enter the appropriate drive and path information and press <F10> to accept the new directory path name.

Option E: Reset for New Receiver

This option provides a means of properly switching from one receiver to the next without having to restart HOSE. To use this option, select the option and follow the instructions provided as shown below:

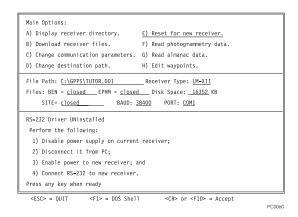


Figure C.9: Option E, Reset for New Receiver

Option F: Read Photogrammetry Data

Option F will read any photogrammetry data stored in the receiver memory. If this option is selected and the receiver has no stored photogrammetry data, the following message will be displayed:

There is not any photogrammetry data to read.

The file generated will either be named PHOTO.DAT or according to the file name template given for session 0 of the file naming menu. Specifically, if the template name is used, then the photogrammetry data file will be named P followed by the file name template.

Option G: Read Almanac Data

Option G will read any almanac data stored in the receiver memory. Choosing this option will cause HOSE to automatically name and create the output almanac data file.

If the file name generated by HOSE corresponds with one in the target directory, that file will be overwritten.

HOSE C-9

The output file name will be of the form ALMyy.ddd where, yy is the year and ddd is the day of the almanac. These dates are taken from the almanac data - not from the computer's internal clock.

Option H: Edit Waypoints

This option lets you download waypoint files from the receiver or directly create waypoint files. Start by turning on the power to the receiver and connecting it to the computer with an RS-232 cable. On the GPPS main menu, select option B) Download Receiver, and from the HOSE menu, select option H:

```
Main Options:

A) Display receiver directory. E) Reset for new receiver.

B) Download receiver files. F) Read photogrammetry data.

C) Change communication parameters. G) Read almanac data.

D) Change destination path. H) Edit waypoints.
```

Figure C.10: Option H, Edit Waypoint

When you select option H) Edit Waypoints, you'll see this screen where you choose the waypoint file to download:

```
Choose Way-Point File To Download

WAY-POINT FILENAME: *_way

PC0062
```

Figure C.11: Option H, Waypoint File to Download

You can type in a file name or a specification such as *.way to summon a display of all files with that extension. When you press <CR>, you'll see a list of all matching files in the current directory:

Select a file to edit by highlighting its name and pressing <CR> again. Its file name is displayed in the WAY-POINT FILENAME field on the second line of the display; its path is displayed on the next line.

- When you specify an existing file, its waypoints are displayed on the Route and Waypoint Line (shown below) so you can edit them.
- If you enter the name of a new file, the screen remains blank so that you can enter new waypoints. To summon a blank Route and Waypoint Line, press the <F5> key.

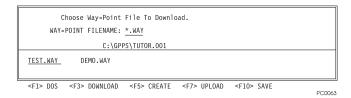


Figure C.12: Waypoint File Name

Alternately, you can download a receiver file that contains waypoints and edit them. To do this, press the <F3> key. This downloads all ninety-nine waypoints and displays them on the Route and Waypoint Line. Unused waypoints have underscores or zero fill.

These functions allow you to edit the waypoint lines:

Table C.2: Waypoint Functions

Field	Description
<ctrl-a></ctrl-a>	Adds a waypoint line.
<ctrl-d></ctrl-d>	Deletes a waypoint line.
<ctrl-p></ctrl-p>	Specifies a position in earth-centered cartesian coordinates.
<ctrl-c></ctrl-c>	Clears the current file.
<tab></tab>	Moves the cursor to the next field.

HOSE C-11

When the first line has been entered, press <CTRL-A> to add another waypoint line for editing as shown below. Continue until all new waypoints have been entered:

Figure C.13: Editing Waypoint

To delete a line, move the cursor to the line you want to delete and press **CTRL-D>**. To clear all waypoints in a file, press **CTRL-C>**.

Press **<CTRL-P>** to see a pop-up screen where you enter a waypoint in earth-centered fixed-cartesian coordinates or in degrees and decimal minutes:

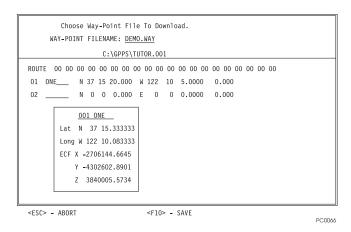


Figure C.14: Clearing Waypoints

After you enter the XYZ coordinates and press <F10>, HOSE converts them to latitude, longitude, and ellipsoidal height. It closes the pop-up screen and automatically updates the Route and Waypoint Line.

- 1. When you are finished editing the waypoint file, press **<F7>** to upload the new waypoints to the receiver.
- 2. Press **<Esc>** to exit HOSE and return to the GPPS main menu.
- 3. Disconnect the receiver from the computer.

Quit/Execute Section

Normal Program Termination

Pressing the **<Esc>** key from the main menu will cause HOSE to terminate normally and exit to either the **GPPS** program or DOS.

Troubleshooting

If at any time during the execution of the program the receiver does not respond to a command, the screen is cleared and a message similar to the following is displayed:

ERROR: RS232 receive problem

- Receiver has not responded to most recent command.
- Simply toggle the power on the receiver and run
- · HOSE again.

Status Registers:

- Modem Status Register:
- Clear To Send Change
- Line Status Register: Normal Status.

Press any key to continue...

If this occurs, follow the instructions provided.

When data will not download normally from the receiver, it may often be recovered by the RAMDUMP procedure. To do this, connect the receiver to the PC, power the receiver on, start HOSE, and from the HOSE main menu, press the F5 key three times. HOSE will download to a file named "RAMDUMP" (an image of the receiver memory). After this is done, exit to DOS, disconnect the receiver, then from the directory with the RAMDUMP file, use the command HOSE-R RAMDUMP. From the HOSE main menu, download as if performing a normal receiver download. HOSE will read the RAMDUMP file as if it were in a receiver, and write the B-, E-, and S-files to disk. If it is necessary to perform a RAMDUMP on more than one receiver, use a separate subdirectory for each one, then combine the data files and process.

HOSE C-13

Advanced Program Options

Command Line Parameters

HOSE accepts the following command line parameters:

Table C.3: HOSE Command Line Parameters

Field	Description
b	To set communication rate (BAUD)
С	To set communication port
?	List options
a	Auto download (use with caution!)
r	Convert image files downloaded by remote program; convert ramdump file
e	Executive overlay
i	Ignore RS-232 status (use with caution)
Z	Exit program if data type from receiver is incorrect

These parameters can exist in any order, but their related parameters must follow them in the same order; see examples.

HOSE, in its default configuration, attempts to communicate via COM1 at 38400 baud. The default start-up configuration can also be set via these command line parameters. To force HOSE to utilize COM2 at 38400 Baud, enter the following at the DOS prompt:

HOSE -c 2 <CR>

To initialize HOSE on COM1 at 9600 Baud, enter the following command:

HOSE -b 9600 < CR>

To start HOSE on COM2 at 9600 Baud, enter either of the following commands:

HOSE -cb 2 9600 <CR> or HOSE -bc 9600 2 <CR>

The command line parameters are order-specific and must follow the order of the switches as shown above.

The executive overlay option is for those who wish to call Ashtech programs from their own software. In general, most programs can call HOSE directly without using it. Use -e only if the calling program is using too much memory to load HOSE at a higher memory address.

This option informs HOSE that it was loaded over the space occupied by the calling program and must therefore ensure that the calling program is restarted in the same address space. When using this option it is VERY IMPORTANT that the calling program be able to save and restore its state. Ashtech recommends that users who are unfamiliar with this type of calling sequence NOT utilize this option. Misuse of this option can cause undesirable effects.

To invoke the executive overlay option you must follow the -e option with the name of the calling program (provide complete path if the program is not in the current working directory or DOS search path). For example,

HOSE -e MYPROG <CR>

Hose Cable

The cable (full handshake null modem cable) that goes to the serial port can have either of the following pin-out specifications.

Figure C.15: Serial Port Pin Diagram

HOSE C-15

Z-12-R	M DGPS I	Reference S	tation Ope	ration & To	echnical Ma

Additional Information

Position Determination with GPS

There are three methods of determining position using GPS receivers. These are **pseudo-kinematic**, **kinematic** and **static**, collectively described as relative or **differential** positioning. The **pseudo-kinematic** and **kinematic** methods are not applicable to DGPS reference station operation and are not explained in this manual.

The **static** survey measures the phase differences from two GPS receivers which are simultaneously locked on several common satellites. One receiver gathers data from a known position, the other from an unknown position.

The static method minimizes errors associated with satellite information and receiver biases, and is the most reliable and accurate method, producing coordinate accuracies to the millimeter level. The disadvantage is that the receiver must remain at a site for a relatively long time to get redundant observations, but this is of little consequence for a fixed reference station.

Doing a Static Survey

The following procedure describes a static survey to show how to use the Z-12-R receiver to determine the exact location of the DGPS reference station. The operations are:

- Set up the receivers and the antennas.
- Measure antenna height.
- Operate the receiver to collect data.
- Enter the site name.
- Terminate the survey properly.
- Connect the receiver to a computer for down loading the data.

A static survey uses at least two stationary GPS antennas that simultaneously observe the range and carrier phase of several common satellites over a specific time period. One antenna is centered over a known point, while the other antennas occupy unknown stations.

By occupying more than one station, a number of common errors cancel so the accuracy can be greatly improved. To compute accurate baselines and establish accurate positions on the unknown points, the data collected by the receivers is post-processed later with a PC (personal computer). The necessary receiver operations for collecting data necessary for the post-processed solution are discussed

System Set Up

Two receivers are required to do a static survey with GPS.

- Set up and level an antenna over a survey mark. The survey point must provide line-of-sight reception of the GPS signals. You should already know the WGS-84 or NAD-83 coordinates of one survey mark in the session. To set up the antenna over the survey mark, a tripod and centering device such as a tribrach with an optical plummet is required. When the tribrach is in level, put the antenna platform on it.
- 2. Connect the antenna through the pre-amplifier to the receiver with an antenna cable.
- Measure the antenna height. Use the Ashtech sectioned precision rod or any other accurate method.
- 4. Connect an external battery or power source to one of the POWER sockets on the receiver's back panel, making sure to align the red dot of the connector with the red dot of the socket.
- 5. Repeat these steps for all receivers participating in the survey. For each, set up an antenna over a mark for which you will determine the coordinates. Measure its antenna height and connect it to its receiver.
- 6. Set the receivers' power switches to ON.

Measuring Antenna Height

In any GPS observation, the measurements are made at the phase center of the top of the antenna receiving the signal. To reduce them to the ground level to serve as a survey control point, you must accurately measure the distance from the antenna to the survey mark. This distance is referred to as the antenna height or **height of the instrument (HI)**.

- 1. Using the precision HI rod, direct the rod through one of the dog-legged holes around the edge of the antenna platform. The holes (marked A to H) are situated so that the rod will not be blocked by a tripod leg.
- 2. Put the rod's point at the center of the mark and read the engraved markings.

Measure three different holes to confirm the HI and check that the tribrach is in adjustment and indeed over the point. All three measurements should be within 1 mm of each other.

If a nongraduated measuring rod is used, lift it up about a ½ inch and place a strip of masking tape on it. Reposition the rod and mark the tape. Measure from two other holes for redundancy. Then measure the marked rod to obtain the HI.

To assure that the HI is correct, measure it several times and preferably in two systems: feet and meters. It is necessary only to measure the distance from the mark to the top **outside** edge of the dog-legged hole on the antenna platform. (Later the processing software corrects this diagonal measurement to vertical.) Measure the HI before and after the observation to check that no settling is experienced during the survey.

Operating the Receiver

- 1. Connect one end of the power cable to a power source (generally a battery pack) and the other end to either of the POWER connectors on the back of the receiver as shown in Figure 2.2.
- 2. Connect one end of the antenna cable to the antenna and the other end to the ANTENNA connector on the back of the receiver as shown in Figure 2.2.
- 3. Check that the antenna height (HI) has been measured.
- 4. To start data collection, turn on the receiver. Set the POWER switch on the back of the receiver to ON.
- 5. Turning on the power initiates a self-test and momentarily displays the following messages:
 - EPROM checksum OK
 - XRAM installed
 - Mag var checksum OK
 - Downloading channel

If the receiver finds a problem, during self-test, it displays an error message and stops. When there are no problems, the receiver briefly displays the Ashtech copyright before displaying Screen 0, (Figure 4.1).

In theory, no interaction with a receiver is required for static surveys. When the receiver is turned on, it automatically:

- Searches and locks on all satellites available.
- Makes GPS measurements and computes its position.
- Opens a file and saves all data into this file.

When the receiver is turned off after a survey, it automatically closes the file.

There are two primary screens for specifying information for a survey. These are Screen 4, (Figure D.1) and Screen 9, (Figure D.3) described later. To operate the receiver after it has been turned on, do the following:

1. On Screen 0 (Figure 4.1), adjust contrast by pressing the ▲ or ▼ key. You do not have to enter any information for the survey if the default parameters are

- suitable. For a static survey, Ashtech recommends that you accept the defaults and go directly to Screen 9, (Figure D.3) (step 3).
- 2. Go to Screen 4, (Figure D.1) Mode Control, to change operational parameters. To do this, press the [4] key.

Figure D.1: Screen 4, Mode Control

The default values work very well for static surveys. However to alter a value, press [e] to shift to data-entry mode. Use an arrow key to move the cursor to the desired parameter and change its value. Press the [e] key to save the changes or [c] to abandon changes.

3. Go to Screen 9, (Figure D.3) Site and Session Control: press [9]. Like Screen 4, you do not have to alter information to successfully conduct a static survey. However, Ashtech recommends at least a four-character site name to assist in automatic processing. For further information, read the detailed information under Screen 9, (Figure D.3).

Figure D.2: Screen 1, Site Information

Site information can be entered during data collection and will not affect or interrupt the collection process. It is output as an ASCII file when the data is downloaded from the receiver. Be aware that external memory, not included with the Z-12-R, is required to perform these functions.

To conclude data collection, turn off the receiver. The receiver automatically closes the data file.

Entering Site Name

To type in text, that is, a site name Screen 9, (Figure D.3):

1. Press [e] to switch to data-entry mode. The following alphanumeric conversion table appears:

Figure D.3: Screen 9, Data Entry Mode

- 1. Type in the site name, one number at a time, where each number corresponds to a desired letter.
- 2. To see another bank of alphanumeric characters, press the ▲ key to cycle through the five displays.
- 3. If the cursor is in the wrong character position, use the ▶ and ◀ keys to line it up again.

After the fourth character of the name, the cursor jumps to the session identifier field.

To change an entry, move the cursor to the desired field and re-enter the information. When the entries are acceptable, press [e] again to save the changes in memory and return to display mode. To cancel the changes before saving them, press [c].

ASHTECH Bulletin Board

The Ashtech bulletin board uses TBBS (The Breadboard System) bulletin board software. Multiple data lines are available 24 hours a day, 7 days a week (except for short periods when the system is off-line for maintenance). To use it dial the number using your modem software and answer the logon questions. On your first call, you will not be able to download. Select the "Register with SYSOP" option from the menu and fill in the appropriate fields. Anonymous callers will not be give access to the system. New users are verified and updated daily, Monday through Friday.

• BBS phone number: 408-524-1527

• Parameters: N,8,1 (No parity, 8 data bits, 1 stop bit, full duplex)

Baud Rate: 2400 through 28,800

Currently Ashtech modems support speeds up to 28.8K baud. Modems slower than 2400 baud are not supported. For slower speeds, it takes longer to negotiate the baud rate. Make sure that you have plenty of time in the "Wait for Carrier Detect" parameter of both your software and your modem (the S7 register). Use at least 60 seconds. 90 seconds is even better and is recommended. IN the modem initialization string, place the command S7=90.

PEP users may need to set the additional modem registers for protocol support S50=255 and S111=20, where 20 is X/Y-modem (may be set differently).

Multi-line Operation

Regardless of which line you dial in on, if that line is busy, you will automatically be transferred to the other line if it is not in use. This means that callers on line 1 at 28.8K baud may not be able to connect at maximum speed if line 1 is busy. This is normal operation.

File Transfer

File transfer, as the name suggests, is the act of moving a file from one place to another. In the on-line community, this is usually referred to a "uploading" and "downloading" files. File transfer is one of the most common uses of an on-line computer system.

The following protocols are supported:

XMODEM, XMODEM-1K, YMODEM, YMODEM-G, SEAlink, KERMIT, SuperKERMIT, ZMODEM and ASCII.

For more information about the Ashtech Bulletin Board, contact Customer Support and asks for the *Ashtech BBS Operating Manual*.

Ionosphere Information

For latest ionosphere information, use the Space Environment Services Center BBS:

• 303-497-5000 2400, N, 8, 1 F

Reference Documents

Two excellent reference books on GPS theory are:

- Wells: Guide to GPS Positioning ISBN 0-920-114-73-3
 Available from Canadian GPS Associates
 Box 5378, Postal Station F, Ottawa, Ontario Canada K2C 3J1
- King, Masters, Rizos, Stolz, Collins: Surveying with GPS ISBN 0-85839-042-6
 Available from School of Surveying, University of New South Wales P.O. Box 1, Kensington, NSW, 2033, Australia

Heavy mathematical treatment:

- Leick: GPS Satellite Surveying ISBN 0-471-81990-5
 Wiley Interscience, 605 3rd Avenue, New York NY 10158-0012
 Excellent overview of geodesy:
- Smith: Basic Geodesy An Introduction to the History and Concepts of Modern Geodesy without Mathematics ISBN 0-910845-33-6 Landmark Enterprises, 10324 Newton Way, Rancho Cordova CA 95670

Sources of GPS Information

International GPS Service for Geodynamics (IGS)
 Jet Propulsion Laboratory, MS 238-540, Pasadena CA 91109
 Tel 818-393-6686 Fax 818-354-8330 or -5072
 Internet ren@logos.jpl.nasa.gov.

National Geodetic Information Center, NOAA
 11400 Rockville Pike, Rockville MD 20852 Tel 301-443-8631

Institute of Navigation
 1626 16th St. NW, Washington DC 20036

• Scripps Orbit and Permanent Array Center (SOPAC)

High-Precision GPS BBS Service

Subscription \$7500/year and \$3000/year

SOPAC Coordinator IGPP-UCSD

9500 Gilman Drive, La Jolla CA 92093-0225

Tel 619-534-0229 Fax 619-534-8090

Common GPS Acronyms

ALT Altitude ALM Almanac AFT After AGE Age of Data ANT Antenna **ASCII** American Standard Code for Information Interchange AZM Azimuth BEF Before BIN Binary Index (file) BMBench Mark BPBarometric Pressure C/A Coarse/Acquisition Clear/Access

DGPS Differential GPS

DIFF Differential

DMS Degrees, Minutes, Seconds

DOP Dilution Of Precision
DOS Disk Operating System
DTD Distance To Destination

EDOP Elevation Dilution Of Precision

ELEV Elevation
ELIP Ellipsoid
ELLIP Ellipsoid
ELP Ellipsoid
ELV Elevation

EMI Electromagnetic Interference

ENU East, North, Up
EPHM Ephemeris

FCC Federal Communications Commission

FREQ Frequency
GH Geoid Height

GLL Latitude/Longitude for Position
GMST Greenwich Mean Sidereal Time

GMT Greenwich Mean Time

GPPS GPS Post-Processing Software
GPS Global Positioning System
GPSIC GPS Information Center

• 7323 Telegraph Road

Alexandria VA 22310-3998

• 703-313-5900

HDOP Horizontal Dilution Of Position

HEL Health

HI Height of Instrument

HTDOP Horizontal/Time Dilution Of Precision ID Identification, Integrated Doppler

LAT Latitude

LAD Liquid Crystal Display

LNA Low-Noise Amplifier

LNG Longitude LON Longitude

MMDD Date format - Month, Date

MSG RTCM Message

MSL Mean Sea Level

N Geodetic Undulation

NAD North American Datum

NMEA National Marine Electronics Assoc.

NV Non-Volatile

PDOP Position Dilution of Precision

PE Precise Ephemeris

POS Position

RAM Random-Access Memory

RF Radio Frequency

RFI Radio Frequency Interference

RH Relative Humidity
RMS Root Mean Square

RTCM Radio Technical Commission for Maritime Services

P.O. Box 19087

• Washington DC 20036-9087

SE Site Editor

Standard Error

SESS Session

SOG Speed Over Ground

SS Static Survey

SV Satellite Visibility

Space Vehicle

T-DRY Temperature - Dry (Celsius)
T-WET Temperature - Wet (Celsius)
TDOP Time Dilution Of Precision

UT Universal Time

UTC Universal Time Coordinated

VDC Volts Direct Current

VDOP Vertical Dilution of Precision

WGS World Geodetic System WGS-84 Reference Ellipsoid

WP Waypoint

Warranty

Ashtech Inc. warrants, to the original buyer only, that the GPS receiver (a) conforms to Ashtech's published specifications, and (b) is free from defects in material or workmanship. The duration of this warranty is one year from date of delivery. If Ashtech is unable to repair the receiver to conform to the warranty after a reasonable number of attempts, Ashtech will provide, at its option, one of the following: (a) a replacement receiver or (b) full refund of the purchase price. These remedies are the buyer's exclusive remedies for breach of warranty.

Ashtech does not warrant (a) against any product, components or parts not manufactured by Ashtech, (b) defects caused by failure to provide a suitable installation environment for the receiver, (c) damage caused by disasters such as fire, flood, wind, and lightning, (e) damage caused by unauthorized attachments or modification, (f) damage during shipment, (g) any other abuse or misuse by the buyer, or (h) that the receiver will be free from any claim for infringement of any patent, trademark, copyright or other proprietary right, including trade secrets.

The foregoing warranties are in lieu of all other warranties, express or implied, including but not limited to the implied warranties or merchantability and fitness for a particular purpose.

In no case shall Ashtech be liable for any special, incidental, or consequential damages arising directly or indirectly out of the ownership, use or operation of the receiver regardless of whether such damages are predicated based upon breach of warranty, breach of contract, negligence, strict tort, or any other legal theory. Such damages include, but are not limited to, loss of profits, loss of savings or revenue, loss of use of the receiver or any associated equipment, cost of capital, cost of any substitute equipment, facilities or services, the claims of third parties, including customers, and injury to property. This limitation does not apply to claims for personal injury.

To the extent the foregoing provisions differ from the terms of the sales contract between the buyer and Ashtech, the sales contract will take precedence. The sales contract contains procedural qualifications and other contractual terms relating to the foregoing provisions.

Index

Numerics	Available, 72		
2d, 159	available memory, 88		
550, 89,174	В		
555, 72,174	backlighting, 89		
888, 89	bar code reader, 97		
990, 89	BARCODER, 99		
991, 89	barometric pressure, 93		
A	BAUD, C-14		
A/S, 65	Baud, D-6		
Acceleration, 163	baud, 33,102,C-14		
Acronyms, D-8	baud rate, 30,33,102		
add waypoints, 81	Beacon, 151		
Advancement, 83	beacon, 151		
AGE, 51,D-8	B-file, A-8,B-1		
Age, 146	B-files, A-10,C-1		
age, 34	bit slippage, 74		
Age of differential GPS data, 121	Broadcast, 152		
age of received messages, 74	broadcast, 151		
alarm thresholds, 153	Broadcast frequency, 41		
All, 38,75	Bulletin Board, D-6		
Almanac, 157,C-9,D-8	BWC, 85		
almanac, 94,C-1	C		
altitude fixed, 59	C/A, 33,107,144		
Amplifier, D-10	C/A code, 33,113		
Antenna, 26	C/A-code, 50		
antenna, 28,93	Cable, 28,C-7		
Antenna height, 133	carrier phase, 113,143		
antenna height, A-8	Cellblazer, 71		
antenna height measurement, 28	C-file, C-1		
antenna identifier, 93	C-files, 57		
antenna location, 145	CHANNEL, 145		
APA, 85	Channel, 151,171		
Archive, 143 ASCII, 43,66,101,145,D-4	channel, 44,109		
Ashtech-to-RINEX, A-1	channel firmware version, 91		
ASHTORIN, A-8	checksum errors, C-7		
availability periods, 97	clock, 34,110		
aranaomi, periodo, 77	Clock data issue, 115		

Index-1

Clock drift, 115 Display, 72 clock offset, 111 Distance, D-9 distance, A-5 Close a file, 72 communication link, 33 Doppler, 111,143,168,D-9 communication rate, C-7 doppler, 111 communication-quality factor, 74 Download, C-10 configuration identification, 91 download, 62,C-10 Correction, 152 downloading, C-5 correction, 34 DRY, D-10 Cross-track error, 54 dry temperature, 93 CS, 153 DTD, 54 CTD, 75 DTE, C-7 current and next waypoints, 75 \mathbf{E} current latitude and longitude, 77 Eccentricity, 116 currently available satellites, 94 ECEF. 125 cycle slips, 51 ECEF-X. 112 D Edit, 78 Data, 57 edit a new waypoint, 79 data, 34,52 edit, add or remove waypoints, 81 E-file, A-1.B-1 data entry, A-2 data link, 156,B-3 E-files, A-1,C-1 data recording, 57 ellipsoidal height, 52 data type, 63 ELV MASK, 175 DATALOGR, 143,B-3 ENU. 54 DATUM, 69 ephemeris and almanac files, 50 epoch counter, 99 Datum, 69,D-10 DBEN, 66,165 EQHR, 88 DBEN Message, 165 estimate of position, 51 DBEN Message Structure, 165 executive overlay option, C-14 DBEN message type, 167 EXT FREO, 56 DCE, C-7 External, 66 default values, 153,174 EXTERNAL FREQUENCY, 144 delete a waypoint, 81 external frequency, 145 D-files, A-1 external memory, 92 Differential, 30.35 F differential, 35.D-1 FCC, D-9 Differential (D) option, 61 FEC coding, 41 differential corrections, 62 file transfer, C-6 Differential GPS, 35,D-9 Firmware, 186 differential option, 58 firmware, 135 differential positioning, D-1 Fixed, 161 Dilution, D-9

Float, 161	I
free disk space, C-6	ICD-GPS-200, 40
Front, 29	IM, 146
FSK, 41,152	Inclination, 123
full reset, 158	initialize the communications port, B-3
	Initialize the modem, 89
G	installed options, 89
geodetic azimuth, 51	integrated doppler, 111
geodetic coordinates, 61	Integrity, 155
geodetic mode, 57	internal memory, 90
Geoidal height, 121	internal oscillator, 66
geometry of the satellites, 34	INTVL, 57
GGA, 107	Ionosphere, D-7
GIS, 97	ionosphere information, D-7
GLL, 107,D-9	ionospheric, 59
GMT, 49,D-9	Ionospheric measurement, 42
GPPS, C-10,D-9	issue of the data, 74
GPS, 52	
GPS latitude, 121	${f L}$
GPS longitude, 121	L1, 21,33,112,168,A-7
GPS time, 68,131	L2, 21,112,168,A-7
GPS week, 88,115,C-4	LNA, D-10
GPS-to-UTC, 49	M
GRS, 132	
GSN, 107	Mag var, 171,D-3
GXP, 119	magnetic variation, 85
Н	MAGVAR, 85,86
handshake, B-1,C-7	mark a survey site, 97
Harmonic correction, 116	MBEN, 66,113
HDOP, 53,121,156,175,D-9	MBEN Files in Binary, 112
HDOP MASK, 60	MBN, 143
heading, 53	Mean anomaly at reference time, 115
Health, 35,157,160,D-9	Mean anomaly correction, 115
health, 74,138	Memory, 173,D-10
healthy, 38,138	memory, 139
Height, D-9	memory reset, 174
HI, 93,177,D-2	MESSAGE, 139,176
HIGH, 144	message, 35
horizontal and vertical position errors, 73	message types, 35 MIN SV, 178
HOSE, A-12,B-2,C-7	minimum elevation angle, 57
Humidity, D-10	Mode, 130,151,D-4
, 2	mode, 117
	mode, 117

Index-3

MODEM, 177,B-3,C-7 Modem, 71 modem, 71,C-7 modify the route, 82 Modulation, 151 Modulation mode, 127 MSG, 127,D-10 MSK, 26,41,151 N navigation firmware version, 91 NMEA, 65,101,135,176,D-10 NMEA 0183, 135 NMEA Message Types, 119 NMEA output option, 101 Null fields, 136 0 offset correction from GPS time, 111 Option, 65,117,A-9,C-8 Orbit, D-8 Orbit data issue, 115 out-of-range data, 93 output option, 68 P

P code, 107 P1-code, 50 P2-code, 50 PACKED, 169 PBEN, 66,109,176 PBEN Files in ASCII, 112 PBEN Files in Binary, 114 PBN, 114 P-code, 21 PDOP, 34,53,60,115,144,175,D-10 pdop, 115 phase data, 57 Photogrammetry, C-9 photogrammetry, C-9 PL1 code, 168 PLZ, 186 P-mode, 64

PNAV, 167 POS, 175, D-10 POSITION, 21 Position, 57,73 position computation criteria, 59 position counter, 52 Position Determination, D-1 post-processing, 57,B-1 power switch, 25 PPS, 89 PRC, 125,153 Pressure, A-11,D-8 PRN, 40,75,126,155,166,A-8 program options, C-3 pseudo-range, 74,166 pseudo-range correction, 74 pseudo-range position, 57 Pulse, 55

R

radio beacon, 21 radius, A-11 RAMDUMP, C-13 Range, 63 range accuracy, 51 range errors, 33 range measurements, 145 Range rate correction, 125 range rate corrections, 153 range-rate correction, 74 rate of transmission, 65 raw data, 143 RCM. 135 real-time, 57 Receiver, 25 receiver identifier, 93 receiver internal memory, C-1 RECORD, 178 record data, 57 Recording interval, 57 reference books, D-7 reference day, 64 reference station health, 38

RTCM differential, 33 Reference time, 116 reference time, 129 RTCM format, 61 relative humidity, 93 RTCM message frame length, 74 Remote, 46,91,166 RTCM Type, 124 remote, 38,91 RUN, A-8 Reset, 161,C-3 S reset, 137 SA, 66 RESTART, 82 SALM, 66 Restart, 82 Satellite, 125,148,D-10 restart the program, C-8 satellite, 146 restart the route, 82 satellite range corrections, 33 RINEX, A-1 satellite range residuals, 53 RMS, D-10 Satellites used, 130 RRC, 163 Screen, 33.87 RS-232, 33,65,B-1 Screen 0, 87 RSIM, 26,135 Seconds of GPS week, C-4 RSIM 20, 38 self-test, D-3 RSIM message, 135 self-test message, 171 RSIM#1, 136 Sequence number, 124 RSIM#10, 137 Serial, 55 RSIM#11, 153 serial number, 89 RSIM#12, 153 Session, 88 RSIM#13, 154 session end time, 63 RSIM#15, 138 session start time, 63 RSIM#16, 156 S-files, A-10, C-13 RSIM#17, 139 signal-to-noise ratio, 51 RSIM#2, 142 Single, 96 RSIM#20, 155 single, 95 RSIM#21, 157 site identifier, 93 RSIM#22, 158 Skysearch, 30 RSIM#23, 159 Skysearch Information, 30 RSIM#3, 137 Slant, A-11 RSIM#4, 143 slant distance, A-12 RSIM#5, 144 sleep mode, 91 RSIM#6, 145 smoothed range, 111 RSIM#7, 147 smoothing, 168 RSIM#8, 148 SNAV, 66,115,176 RSIM#9, 149 SNAV Files, 115 RTCM, 38,61,124,151,175,D-10 SOG, 85,121,D-10 RTCM correction data, 154 stand-alone mode, 62 RTCM Corrections, 156 Static, D-10 RTCM corrections, 146 static survey, D-1

Index-5

Station identifier, 124 STHE, 175 STID, 175 SV PRN number, 116 Synchronization, 151 System, 72 system, 72

T

TDOP, 112,D-10 Telebit, 71 telemetry link, 33 Threshold, 153 time when each satellite is visible, 96 Time-to-destination, 54 Trailblazer, 71 transmission protocol, 117 tribrach connector, 28 tripods, 28 tropospheric, 60 Troubleshooting, C-13 True bearing, 128 true north, 123 TTD, 75 type, 73 type of message, 73

U

UDRE, 39,74,125,154
unhealthy, 156
unhealthy satellites, 59
Unit, 53
unit, 91
UNPACKED, 169
User, 90
user, 74
User Parameters, 174
user-differential range error, 74
UTC, 128,160
UTC of position, 133
UTC time, 124
UTM, 61,133,175

valid ephemerides, 60 VDOP, 60,112,175,D-11 VDOP MASK, 60 velocity, 53 version, A-12 vertical position error, 132 VTS, 65

\mathbf{W}

Waypoint, 30,C-10 WET, D-10 Wet, D-10 wet temperature, 93 WGS-84, 51,D-11 Worldblazer, 71

X

xte, 66

 \mathbf{Z}

Z count, 124,172 Z mode, 49 Z-mode, 64