
ipinfusion®

ZebOS®

Advanced Routing Suite
Version 5.4

ZebOS Architecture and Developer Guide
June, 2003

Document Number: 0150301

ii

© 2001-2003 IP Infusion Inc. All Rights Reserved.

This documentation is subject to change without notice. The software described in this document and this
documentation are furnished under a license agreement or nondisclosure agreement. The software and documentation
may be used or copied only in accordance with the terms of the applicable agreement. No part of this publication may
be reproduced, stored in a retrieval system, or transmitted in any form or any means electronic or mechanical,
including photocopying and recording for any purpose other than the purchaser's internal use without the written
permission of IP Infusion Inc.

IP Infusion Inc.
111 W. St. John Street, Suite 910
San Jose, CA 95113

(408) 794-1500 - main
(408) 278-0521 - fax

For support, questions, or comments via E-mail, contact:
support@ipinfusion.com

Trademarks:

ZebOS is a registered trademark, and IP Infusion and the ipinfusion logo are trademarks of IP Infusion Inc.
All other trademarks are trademarks of their respective companies.

l iii

Table of Contents

Preface .vii

CHAPTER 1 ZebOS® Advanced Routing Suite . 1
Advanced Software for Next Generation IP Routing .1
ZebOS Architecture . 2

Routing Protocol Support .4
MPLS Support .4
MPLS-VPN Solutions .4
MPLS Layer 2 Virtual Circuit .5
Network Processor Integration .5
Management and Logging .5
Nexthop Updating for RSVP PIM and BGP .5

Development, Documentation, and Support .6
System Requirements .6
Key Features and Benefits .7
The Future of the Internet: IPv6 and IP Infusion . 8

CHAPTER 2 IP Infusion Product Overview . 9
Overview of Routing Protocols. .9

Routing Information Protocol (RIP) .9
Open Shortest Path First (OSPF). .10
Border Gateway Protocol (BGP) .10
Multi-Protocol Label Switching . 11
RSVP-TE (Label Distribution Protocol) . 11
MPLS-TE & MPLS VPN .12
Resource Reservation Protocol-Traffic Engineering (RSVP-TE) .12
PIM-SM .12
IS-IS .12
Virtual Router Redundancy Protocol (VRRP). .13
Redundancy .14
Virtual Routing (VR) .15

ZebOS ARS Supported Standards . 17

CHAPTER 3 Source Code Structure Overview . 19
Source Code Summary .19

\ZebOS\ Subdirectories .19
The ZebOS/nsm and ZebOS/lib directories in detail .21

CHAPTER 4 Build System Overview. 23
Compile-time configuration .23

Configuration Options. .24

iv

CHAPTER 5 Common Module Framework . 25
Module Framework .25
Overview of Sample ZebOS NSM . 26
Overview of Sample ZebOS OSPF . 27

CHAPTER 6 CLI Overview . 29
Function of the ZebOS CLI .29
Add a new Command Using CLI .29
Access Lists . 31

CHAPTER 7 VTY Overview. 33
Introduction .33

Features .33
Benefits .33

VTY Architectural Concepts . 34
ZebOS without VTY shell .34
Using VTY shell .34
Unique Command behavior .35

How VTY fits into the ZebOS Build Process . 36
Building and Customizing VTYsh in the ZebOS ARS Environment .36

Source Code Files .36
Main Functionality Files .36
libedit .38
Runtime Files .38

VTY Shell Utility .38

CHAPTER 8 SNMP Overview . 41

CHAPTER 9 ZebOS CLI and SNMP API Overview. 43

CHAPTER 10 PAL Overview . 45
Introduction .45

CHAPTER 11 Memory Manager . 49
Introduction .49
Configuration Options. .50
Architecture . 53
Option Mapping .55
Memory TYPEs .56
Source Code .59
CLI features . 60
API features. .61
Event callouts. 62

 v

CHAPTER 12 Timer. 65

CHAPTER 13 Threads. 67

CHAPTER 14 Runtime Configuration . 71

CHAPTER 15 Logging and Debugging . 73
Logging .73

Debugging .73
Show Commands assisted debugging .74

CHAPTER 16 Asynchronous Events . 75
Unix .75
RTOS. .75

CHAPTER 17 Porting ZebOS to Real-time Systems. 77

CHAPTER 18 Miscellaneous . 79
Crypto .79
File and I/O management .79
Globals .79

Index . Index - 1

vi

vii

Preface

Who should use this Guide
This guide is for routing engineers and other networking professionals who need an overview of the functions and features
of the ZebOS® ARS. For details of each protocol, the reader should refer to the developer guides for each of the individual
protocols.

This guide describes the ZebOS architecture and illustrates much of its internal operation. It itemizes the list of IETF RFCs
that ZebOS fully supports, and it reviews many of the external and internal API functions that facilitate ZebOS module
communications and user customization.

IP Infusion Technical Library

Installation and Configuration Guide
Use the ZebOS Installation and Configuration Guide to review the hardware and software requirements and to compile and
install the ZebOS software. The Installation and Configuration Guide outlines steps for basic configuration of the ZebOS
and other routing protocol daemons.

Release Notes
With each new release of ZebOS software, IP Infusion sends Release Notes that describe all the new enhancements and
features, the bugs fixed and any new bugs found in the software.

Command References
These manuals describe the Command Line Interface command syntax, describe each of the commands and parameters,
and provide usage examples for each command.

• RIP
• OSPF
• BGP
• VRRP
• RMM (Redundancy Management Module)
• MPLS
• RSVP
• LDP
• VR
• ZebOS NSM
• IS-IS (Intermediate System to Intermediate System)
• PIM-SM (Protocol Independant Multicasting Simplex Mode)
• MPLS Layer-3 VPN User Guide describes the L-3 VPN-specific APIs.

Developer Guides
These manuals describe the detailed architecture of all the protocols and their interfaces with the ZebOS daemons.

• ZebOS (this manual) describes the overall architecture of the ZebOS software.
• ZebOS NSM describes the Network Services Module (NSM) interfaces to the other protocol modules.

viii

• BGP describes the interfaces to VPN, graceful restart, as well as the API and function calls. Contains detailed
descriptions of the SNMP and CLI APIs.

• OSPF describes the OSPF-specific SNMP and CLI APIs.
• RIP describes the RIP-specific SMNP and CLI APIs.
• VRRP describes the VRRP-specific API and function calls.
• MPLS describes all the MPLS functionality, data forwarder APIs, and other function calls.
• Virtual Routing describes the virtual routing function.
• ISIS describes the ISIS-specific SNMP and CLI APIs.
• RMM describes the RMM-specific API.
• VRRP describes the VRRP-specific APIs.
• RSVP describes the RSVP-specific APIs.
• PIM-SM describes the PIM-SM-specific APIs.
• MPLS Layer-2 Virtual Circuit describes the L2 VC-specific APIs.
• OSPF describes the OSPF-specific SNMP and CLI APIs.
• PAL API Reference describes each API in the PAL.
• PAL Migration Guide describes the differences among the various PAL modules.
• NPapi Toolkit describes the Network Processor Application Programming Interface.

1

CHAPTER 1 ZebOS® Advanced Routing Suite

Advanced Software for Next Generation IP Routing
IP Infusion's ZebOS® Advanced Routing Suite (ARS) is one of the most widely used, advanced Internet Protocol (IP)
routing and multiprotocol label switching (MPLS) software suites available on the market. ZebOS has a unique modular,
scalable architecture that allows OEMs to quickly integrate IP routing and MPLS switching protocols into their platforms. In
addition, ZebOS is the first routing and switching package that supports IPv4, IPv6 and MPLS protocols. ZebOS contains a
number of features that ensure that device and system developers can quickly bring IP routing software to market.

In development since 1996, ZebOS ARS is currently in use at thousands of sites worldwide and is one of the most popular
routing protocol packages on the market. ZebOS ARS, which has been extensively tested both at customer sites and at
interoperability labs, is a robust, high-performance software package that meets the demands of today's networks,
including carrier-class environments. ZebOS provides all the tools that developers and integrators need to quickly integrate
ZebOS ARS into their platforms, including user and developer technical information as well as technical support.

ZebOS ARS delivers solutions that core routing and switching vendors, appliance vendors, as well as network processor
and ASIC developers require for quick time to market. This software is ideal for provider edge and wide area network
(WAN) aggregation devices, with its integrated MPLS and IP routing solutions. Consequently, ZebOS ARS assists platform
developers in rapidly bringing IP routing and MPLS software to market without the cost and time associated with
developing and testing routing protocols.

Each supported protocol runs in a separate daemon, built from separate source code files. This gives ZebOS ARS the
advantage of fine-grained modularity. Updates, patches, and enhancements can be applied on a module by module basis
without disrupting other running protocols.

• IPv4 and IPv6 Routing Protocol Support • RIP v1, v2 and RIPng Support
• OSPF v2 and v3 Support • BGP-4, BGP-4+ Support
• Label Distribution Protocol (LDP) and

MPLS Forwarding
• High-Availability Support

• Network Processor Integration • Simple Network Management Protocol
(SNMP) Support and API

• Industry Standard Command Line
Interface (CLI)

• RSVP-TE Support

• Extensive Logging Capabilities • MPLS Layer 2 Virtual Circuit
• MPLS-TE support through RSVP-TE

and OSPF/TE and CSPF
• Virtual Routing

• MPLS Layer 3 VPN LDP/RSVP-TE and
BGP-VPN Extensions

• IS-IS and ISISv6

• PIM-SM • Virtual Router Redundancy Protocol
• Redundancy • GMPLS Extension for OSPF

2

ZebOS Architecture
ZebOS ARS 5.0 utilizes a new scalable, modular, platform-independent architecture for routing and switching software.
ZebOS protocols are built on the ZebOS Network Services Module (NSM), which manages the route table and each of the
enabled protocols and performs route conversion and redistribution. ZebOS is built with a flexible architecture called PAL
(Platform Abstraction Layer) that allows developers to easily expand, adapt or configure it according to their specific routing
protocol needs. This well-defined API is available for the ZebOS NSM to interface with the operating system or data plane
for routing table updates. Modules are currently available on a number of operating systems. With its well-defined API's
and modular design, ZebOS ARS can easily be ported onto custom and real-time operating systems (RTOS) as well as
network processor environments.

Because ZebOS ARS supports IPv4, IPv6 and MPLS, it is well positioned not only to support core, edge, and access
routing and switching platforms, but also to act as the standard routing protocol for an entire range of future IPv6 enabled
devices that include Small Office Home Office (SOHO) gateways; wireless, access, and security devices; and devices that

Li
nu

x,
Vx

W
or

ks
,

So
la

ris
,B

SD
,O

SE
,

Ly
nx

O
S,

or
an

y
RT

O
S

Platform Adaption LayerPlatform Adaption Layer

Virtual Redundant Control Plane

Operating
Systems

• Routing Protocols (IPv4, IPv6)
• Traffic Engineering
• MPLS Switching and VPN
• L2 Switching (802.1p/Q, STA)

Management
Plane

Network Services Module RIB

• Multicast
• QoS/DiffServ
• Mobile IP

SN
M

P,
C

LI
,&

AP
I

Network Processor/ASIC

Data Plane

Li
nu

x,
Vx

W
or

ks
,

So
la

ris
,B

SD
,O

SE
,

Ly
nx

O
S,

or
an

y
RT

O
S

Platform Adaption Layer
Platform Abstraction

Layer

Virtual Redundant Control Plane

Operating
Systems

• Routing Protocols (IPv4, IPv6)
• Traffic Engineering
• MPLS Switching and VPN
• L2 Switching (802.1p/Q, STA)

Management
Plane

Network Services Module RIB

• Multicast
• QoS/DiffServ
• Mobile IP

SN
M

P,
C

LI
,&

AP
I

SN
M

P,
C

LI
,&

AP
I

Network Processor/ASIC

Data Plane

3

support Virtual Private Network (VPN) and Voice-over-Internet Protocol (VoIP) technology, and also require Quality of
Service (QoS) and bandwidth management.

Layer 2

IP Routing Daemons

bgpd

ospfd ripd

ospf6d
ripngd

isisd
pimd bgpd

ospfd ripd

ospf6d
ripngd

isisd
pimd

MPLS
Forwarder

IP
stack

FIB

IP stack
Forwarder

FIB

MPLS Daemons

rsvpd

Network Services Module (NSM)

ldpd

Routing
Sockets

NPU/HW
Forwarder

MPLS
APIs

RIBFTN ILM

RIBMPLS
RIBRIBRIB

IP Forwarding
APIs

4

Routing Protocol Support
ZebOS ARS supports IETF-compliant IPv4 and IPv6 versions of OSPF, BGP, and RIP. The RIP IPv4 Protocol Module
supports both RIPv1 and RIPv2. A RIPng Protocol Module is also available for IPv6 platforms. In addition, OSPFv2 and
OSPFv3 Protocol Modules are offered for IPv4 and IPv6 support. Traffic engineering (TE) extensions are available for the
OSPF and ISIS Protocol Modules. BGP-4+ supports both IPv4 and IPv6 in a single module. Individual spec sheets are
available for each protocol module and contain details on supported RFC's, platforms, requirements and features.

IP Infusion is committed to delivering, and has delivered support for a broad range of additional protocols and features.
These include multiprotocol label switching (MPLS) signaling protocols, Constraint based-Routing Label Distribution
Protocol (CR-LDP), and Resource Reservation Protocol–Traffic Engineering (RSVP–TE), Differentiated Services
(DiffServ), Intermediate System to Intermediate System (IS-IS), Virtual Routing, IP Multicast, and an extensive set of
Operating System/ Real-time Operating System (OS/RTOS) and network processor ports.

ZebOS ARS consists of many different modules. Each routing protocol is a stand-alone module and is fully integrated into
the ZebOS ARS architecture. Each module is an executable task or process. ZebOS is built with a flexible architecture and
framework that allow easy enhancements to the existing protocols as well as adding new protocols to the architecture.

ZebOS Network Services Module (NSM) is a common module for all routing protocol modules. NSM manages the route
table and each of the enabled protocols, and performs route conversion and redistribution. It also manages the hardware
interfaces for all routing protocols. Please see ZebOS NSM Developer Guide for more details. ZebOS NSM provides a
well-defined API, called ZebOS protocol, for any routing protocol to leverage the services provided by NSM module via
Inter-Process Communication (IPC). Please see ZebOS NSM Developer Guide for more details.

Other routing protocol modules include IETF-compliant IPv4 and IPv6 versions of OSPF, BGP, and RIP. The RIP IPv4
Protocol Module supports both RIPv1 and RIPv2. A RIPng Protocol Module is also available for IPv6 platforms. In addition,
OSPFv2 and OSPFv3 Protocol Modules are offered for IPv4 and IPv6 support. Traffic engineering (TE) and Constrained
Shortest Path First (CSPF) extensions are available for the OSPF Protocol Modules. BGP-4+ supports both IPv4 and IPv6
in a single module. Label Distribution Protocol (LDP), and Resource Reservation Protocol-Traffic Engineering (RSVP-TE)
are also available. Virtual Router Redundancy protocol (VRRP) is a part of NSM module. For more routing protocol
specifics, please see the appropriate Developer Guide for more details.

ZebOS ARS implements a set of proprietary system services including threading, finite state machine (FSM), optional
memory management, and a command line parser.

MPLS Support
ZebOS ARS supports the LDP and MPLS forwarders to allow IP packets to be switched over an MPLS core network. LDP
support for RFC3031, RFC3032, RFC3036, and a number of draft RFCs are provided. The MPLS–LDP Protocol Module
runs on top of the ZebOS NSM and uses ZebOS ARS services to obtain routing information. The ZebOS MPLS Forwarder
Module is tightly integrated into ZebOS ARS. It works in conjunction with the routing protocol modules to create label-
switched paths used when forwarding packets.

The MPLS Forwarder Module also has a MPLS forwarder capability for Ethernet. An MPLS specsheet that contains more
details on features, platforms, and requirements is available.

MPLS-VPN Solutions
Most of the current VPN infrastructures are designed using ATM or Frame Relay networks. ZebOS ARS provides a full
Layer 3 MPLS-VPN solution by tightly integrating BGP-VPN extensions with our MPLS–LDP Forwarder Module. This
MPLS-VPN solution provides address space and routing separation through the use of per VPN routing tables (VRF) and
MPLS switching in the core. This provides the security needed by VPN service providers, while at the same time building a
scalable infrastructure that can take advantage of IP routing, traffic engineering (TE), and MPLS switching features.
Providing VPN services can add significant value to provider edge equipment.

5

MPLS Layer 2 Virtual Circuit
The MPLS Layer 2 Virtual Circuit (VC) Module is an implementation of draft-martini-l2circuit-trans-mpls-08.txt and draft-
martini-l2circuit-encap-mpls-04.txt and is an extension to the existing ZebOS LDP Module. MPLS Layer 2 VC extends a
customer LAN across an MPLS network. Ethernet frames from the customer LAN are first encapsulated with a VC label
and then sent over an MPLS LSP tunnel to the remote LAN.

Network Processor Integration
The ZebOS NSM supports both an operating system/ real-time operating system (OS/RTOS) abstraction layer as well as a
data plane abstraction layer. Our Network Processor API (NPapiTM) provides a mechanism to bind the ZebOS control
plane functions with popular network processors. IP Infusion is working closely with the Network Processing Forum (NPF)
to design and implement a standard API for control to data plane interaction. Although this NPF API is not fully
standardized, IP Infusion has implemented a draft standard and is fully committed to tracking and promoting this standard.
Please see ZebOS NSM Developer Guide for more details.

Our NPapi currently supports the NPF API submission and will track the standard as it develops. By integrating control and
data plane components through its NPapi, IP Infusion helps equipment developers to quickly bring products to market
without the difficult integration work that would otherwise be required. IP Infusion is working with a range of popular network
processing vendors to ensure that these integrated solutions are readily available and easy to implement.

In addition to NPapi, ZebOS also provides a standard MPLS Forwarding API that is fully integrated with the Linux-based
MPLS forwarder module for Ethernet. Please see MPLS Developer Guide for more details.

Management and Logging
ZebOS contains an industry standard CLI to manage and configure both the Network Services Module and all of the
protocol modules. The ZebOS CLI follows the industry standard. The ZebOS SNMP Management Information Base (MIB)
support allows network management agents, as well as billing and provisioning applications, to pull important data from the
ZebOS software and its associated protocol modules for all standard defined MIBs. Furthermore, ZebOS has extensive
logging capabilities both to log systems’ events and errors. See VTY/CLI Chapter for more details.

SNMP Management Information Base (MIB) support is also available to allow network management agents, as well as
billing and provisioning applications, to pull important data from the ZebOS software and its associated protocol modules
for all standard defined MIBs. The built-in, pre-ported SNMP agent is SMUX. See Simple Network Management Protocol
chapter for more details.

In addition to SNMP and CLI, ZebOS provides a set of application programming interfaces (API) that implement the
Command Line Interfaces and MIBs. Use this API to integrate with any management plane to control the ZebOS Advanced
Routing Suite. See SNMP-API and CLI-API manuals for more details.

ZebOS has extensive logging facilities to log system events and errors. See Logging and Debugging Chapter for more
details.

Nexthop Updating for RSVP PIM and BGP
These three protocols do periodic lookups for prefixes to check router reachability. With the ZebOS Nexthop lookup feature
these protocols avoid this periodic lookup. The protocols during start up notify NSM about the prefixes that they are
interested in. NSM notifies the protocols if a better nexthop is available or if a nexthop becomes unavailable. This way the
protocols need not spend resource with periodic lookups as NSM is proactive in their maintenance.

6

Development, Documentation, and Support
ZebOS is written in the portable ANSI C programming language. ZebOS is platform and processor independent, but is
available with tools and modules to easily support a variety of platforms. ZebOS ARS is delivered with extensive
documentation including: Command Reference Manuals, Developer Guides, Installation and Configuration Guide. ZebOS
support is available and includes customer assistance and product updates. IP Infusion's support staff is composed of
highly skilled network engineers developing, supporting and operating advanced IP networks. Together, these services
provide a package that ensures developers can quickly port, integrate, and test the ZebOS Advanced Routing Suite.

System Requirements
ZebOS can be ported to a variety of platforms as long as they support an ANSI C compiler and include an IPv4 and/or IPv6
TCP/IP stack. The ZebOS MPLS–LDP Switching Module can be used with the MPLS forwarder provided, or it can be
integrated with existing MPLS Forwarders. It contains both built-in support for a number of standard and real-time operating
systems and features to allow vendors to easily port to any RTOS. ZebOS also supports a number of popular processors,
including Intel (Pentium), Motorola (PowerPC), and MIPS.

7

Key Features and Benefits
Feature Benefits
High Performance Routing Engine Designed to support millions of routes for both core and edge routing and

switching platforms
Modular & Robust Design Fault tolerant, independent process implementation; easily extensible &

upgradeable
IPv4 and IPv6 support Supports current and future IP implementations and is ready to support

explosive growth in IP devices
MPLS Support Includes LDP and MPLS forwarders for IP delivery over an MPLS core
MPLS-VPN Support Integrated BGP-VPN and MPLS solution offers the scalability and

security of Layer 3 VPNs for provider edge equipment
MPLS L2 VC Layer 2 MPLS Virtual Circuit support
Network Processor Integration Support for control and data plane integration through IP Infusion NPapi
Industry standard CLI Easy and intuitive command line interface for IT personnel
Platform-Independent Design Works on a variety of platforms, including Linux, Solaris, BSD, and

VxWorks, OSE, and so on
API for OS integration Ability to easily port product to additional platforms
API for Control to Data Plane Integration Ability to easily port ZebOS ARS to network processor platforms
SNMP Management Support and API Ability to interface to network management stations and provisioning and

billing systems
Member of Interoperability Lab at University of
New Hampshire

Full interoperability testing between ZebOS and major router vendors

Virtual Routing (VR) Provides mechanism to have several isolated routing functions on one
hardware platform

Redundancy Provides mechanism to have failover from primary to backup router
(different physical unit) to maintain high-availability (RMM)

PAL The Platform Abstraction Layer API for porting to any OS.

8

The Future of the Internet: IPv6 and IP Infusion
The Internet of today is a legacy system, far too limited to support continued, rapid growth. The original design for the
Internet Protocol (IPv4) is over 20 years old. A new addressing scheme, Internet Protocol Version 6 (IPv6) improves
Internet quality, scalability and security. Some other benefits of IPv6 are:

• Expanded addressing. An increase in the available addresses allows many more devices to connect to the Internet
and enable the growth of Internet applications (such as VoIP).

• Simplified header format. A new header format improves routing efficiency.

• Improved extension and option support. Implementations of header extensions improves the ways in which routers
process packets.

• Flow labeling. Related packets can be treated as streams, improving reliability.

• Improved Authentication and Privacy. Security measures are built into the IPv6 protocol.

IETF Membership
IP Infusion is a member of the IETF and will continue its participation in this and other standards bodies. IPv6 functionality
is an integral part of the ZebOS ARS and it fully supports the most recent drafts and specifications (RFCs) from the IETF,
of the IPv4 and IPv6 versions of RIP, OSPF, and BGP4.

The IPv6 RFCs supported by the ZebOS Advanced Routing Suite are:

• RFC 2080 (RIPng)

• RFC 2740 (OSPF for IPv6)

• RFC 1771 and 2545 (BGP4 and Use of BGP4 Multi-protocol Extensions for IPv6 Inter-Domain Routing)

9

CHAPTER 2 IP Infusion Product Overview

Overview of Routing Protocols
ZebOS utilizes a scalable, modular, platform-independent architecture for routing and switching software. The ZebOS ARS
is a system with three different planes and components.

Routing Information Protocol (RIP)
A distance-vector protocol RIP is an interior gateway protocol (IGP) that uses hop counts as its metrics. The ZebOS ARS
RIP module supports RFCs 1058 and 1723; the RIPv2 module supports more fields in the RIP packets and supports
security authentication features.

At regular intervals of the routing update timer (a default value of 30 seconds) and at the time of change in the topology,
RIP router sends update messages to other routers. The listening routers update their route table with the new route and
increase the metric value of the path by one, called a hop count. The router recognizes the IP address advertising router as
the next hop and then sends the routing updates to other routers. A maximum allowable hop count is 15. If a router reaches

Control
Plane

Forwarding Plane

RIP OSPFv2 BGP4+

Virtual
Routing

Forwarding
 Label Interface

(MPLS-VPN)

R
T
O
S

Unicast Forwarding InterfaceUnicast ARP Interface

Management Plane

MPLS Forwarder

High Level API Implementation

VRRP

RIPng

TE

TE RSVPISIS TE
T
o
p
o
l
o
g
y

DB

OSPF
v3 PIM-SM

Command Line Interface SNMP

Low Level API

Forwarding Devices
Forwarding Devices

Forwarding Devices

Interconnect
(cPCI, Switch Fabric, Ethernet, etc.)

ZebOS High Level API
(Classification, IPv4)

Traffic
Engineering

Label
Interface

CR LDP

Incoming Label
Mapping/FTN

Interface

Routing Information Base
Interface

10 ©2001-2003 IP Infusion Inc. Confidential

a metric value of 16 or more (called as infinity), the destination is identified as unreachable. This avoids the indefinite
routing loops. The split-horizon and hold-down features are used to avoid propagation incorrect routing information. The
route becomes not valid when the route time-out timer expires; it remains in the table until the route-flush timer expires.

Open Shortest Path First (OSPF)
A link-state routing protocol OSPF is an interior gateway protocol (IGP) that uses the shortest path first (SPF) Dijsktra
algorithm for the Internet and is specified in RFC 1247.

OSPF sends link-state advertisements (LSAs) to all other routers within the same hierarchical area. Data on attached
interfaces, metrics used, and other variables are included in OSPF LSAs. As OSPF routers accumulate link-state data,
they use the SPF algorithm to calculate the shortest path to each node.

An Autonomous System (AS) or Domain is defined as a group of networks with common routing infrastructure. OSPF can
work in one AS or receive/send routes from/to different AS systems. Autonomous systems consists of areas. An area is a
group of neighboring networks or attached hosts. A router attached to multiple areas with its interfaces is called an Area
Border Router (ABR). It creates distinct topological database, a group of LSAs received from all routers in the same area,
for each area. All the routers in the same area have identical topological database. OSPF routing traffic is restricted in the
area because areas are unknown to each other. The routing information is distributed between areas, area border routers,
networks and connected routers by the OSPF backbone.

All backbone OSPF area routers use the same procedures and algorithms to maintain routing information within the
backbone that any area router would. The backbone topology is invisible to all routers within an area. The individual area
topologies are invisible to the backbone. Sometimes the backbone is not a contiguous area. Virtual links function as if they
were direct links and are configured between backbone routers that share a link to a non-backbone area.

AS border routers running OSPF learn about exterior routes through exterior gateway protocols (EGPs) such as Border
Gateway Protocol (BGP).

At boot time, an OSPF router initializes its routing-protocol-specific data structures and tables. When the lower-layer
protocols with which it interfaces are functional, it sends the OSPF Hello protocol packets to find neighboring routers. A
router sends Hello packets as keep-alive packets, informing other routers about its continuing functionality.

Two routers are adjacent when their link state databases are synchronized. Multi-access networks have more than two
routers. On multi-access networks, the hello protocol chooses a designated router and a designated backup-router. The
designated router generates LSAs for the entire multi-access network, and reduces network traffic and the size of the
topological database. The designated router also determines the adjacency of routers and the synchronization of their
topological databases. The data on a router's adjacencies or state changes are provided by periodic transmission of an
LSA. Failed routers are detected and topology is changed quickly by comparison of adjacencies to link states. Each router
calculates a shortest path tree, with itself as a root, from the topological database generated from these LSAs. This
shortest path tree creates a routing table.

Border Gateway Protocol (BGP)
Border Gateway Protocol (BGP) is an exterior gateway protocol (EGP) that determines the best path in networks and
performs optimal routing between multiple autonomous systems or domains and exchanges routing information with other
BGP systems. The RFCs 1771 (BGP4), 1654 (first BGP4 specification), and 1105, 1163, 1267 (older version of BGP)
describe BGP and BGP4.

Multiple-peer BGP routers in different autonomous systems or administrative domains on the same physical network
support consistent internetwork topology using inter-autonomous system routing. Multiple-peer BGP routers within the
same AS support consistent system topology using inter-autonomous system routing. BGP determines the router to serve
as the connection point for specific external autonomous system routing services. Multiple-peer BGP routers transport
traffic across an autonomous system that does not run BGP using pass-through autonomous systems routing. Here the
traffic does not originate or is destined for an autonomous system under consideration, the AS is used only to transport
(pass-through) the traffic using some other intra-autonomous system routing protocol.

11

BGP exchanges information about the list of autonomous system paths with other BGP systems. A connectivity mapping
between autonomous systems is created, routing loops are pruned, and other autonomous systems-level policy decisions
are taken. Each BGP router maintains a routing table of all feasible and optimal paths to other networks and updates
incrementally the routing information received from other peer BGP routers.

The BGP routing metric describes the preference of the path and is assigned to each link by the network administrator. The
network administrator assigns this value to a link depending on path criteria such as:

• the number of autonomous systems through which the path passes

• the history of stability

• the line speed

• any delays

• cost per packet

Multi-Protocol Label Switching
MPLS brings the traffic engineering capabilities of ATM to packet-based network. It works by tagging IP packets with labels
that specify a route and priority. It combines the scalability and flexibility of routing with performance and traffic
management of layer 2 switching. Routing protocols such as OSPF or IS-IS define reachability and the binding/mapping
between FEC and next-hop address. MPLS gets routing information from OSPF or IS-IS. No changes are required to
routing protocols to support MPLS, MPLS-TE, MPLS QoS, or MPLS-BGP VPNs. It works with any control protocol other
than IP and layers on top of any link-layer protocol. At the Network Layer MPLS supports IPv6, IPv4, IPX and AppleTalk.
At the Link Layer, MPLS supports Ethernet, Token Ring, FDDI, ATM, Frame Relay, and Point-to-Point Links. It supports
almost all transport media (ATM, FR, POS, Ethernet and so on) instead of being tied to a specific layer-2 encapsulation. As
it uses IP for its addressing, it uses common routing/signaling protocols (OSPF, IS-IS, RSVP and so on).

In an MPLS (RFC 3031, 3032) network, incoming packets are assigned a label by a label edge router (LER). Packets are
forwarded along a label switch path (LSP) where each label switch router (LSR) makes forwarding decisions depending on
the contents of the label. At each hop, the LSR strips off the existing label and assigns a new label that tells the next hop
how to forward the packet.

 Label Switch Paths (LSPs) are configured by network operators to guarantee a certain level of performance, to route
around network congestion, or to create IP tunnels for network-based virtual private networks. An LSP can be established
that crosses multiple Layer 2 transports such as ATM, Frame Relay or Ethernet. This creates end-to-end circuits, with
specific performance characteristics, across any type of transport medium and eliminates the need for overlay networks or
Layer-2-only control mechanisms. MPLS evolved from earlier technologies such as Cisco's Tag Switching, IBM's ARIS,
and Toshiba's Cell-Switched Router.

RSVP-TE (Label Distribution Protocol)
RSVP-TE extends RSVP and CR-LDP extends LDP to support Label distribution and explicit routing. Traffic engineering
selects paths chosen by data traffic to balance the traffic load on the various links, routers, and switches in the network.
Traffic engineering is important in networks with multiple parallel or alternate paths.

The label assigned to a packet represents the Forwarding Equivalence Class (FEC) to which that packet is assigned. An
FEC is a set of packets that are forwarded in the same manner (for example, over the same path with the same forwarding
treatment). An LSP is provisioned using Label Distribution Protocols (LDPs, RFC 3036) such as RSVP-TE or CR-LDP.
Either of these protocols establishes a path through an MPLS network and reserves necessary resources to meet pre-
defined service requirements for the data path. The LDP specification lets an LSR distribute labels to its LDP peers and
enables LSR peers to find each other and establish communication. CR-LDP and RSVP-TE are signaling mechanisms
used to support traffic engineering across an MPLS backbone.

12

MPLS-TE & MPLS VPN
MPLS TE makes use of the following concepts:

• Constrained shortest path first (CSPF) algorithm, a modified version of the well-known SPF algorithm, is used in path
calculation.

• RSVP/TE extension or CR-LDP is used to establish the forwarding state along the path and to reserve resources along
the path.

• Link state routing protocols with extension (OSPF with Opaque LSAs or TE, IS-IS with Link State Packets TLV (type,
length, value)) keep track of topology changes propagation

Since MPLS allows the creation of virtual circuits or tunnels across an IP network, providers use MPLS to provision Virtual
Private Network services. There are multiple proposals for using MPLS to provision IP-based VPNs. MPLS-BGP/VPN
enables MPLS-VPNs (RFC 2547) via extensions to Border Gateway Protocol (BGP). Here BGP propagates VPN-IPv4
data using the BGP multi-protocol extensions (MP-BGP) for handling these extended addresses. MP-BGP propagates
reachability data (VPN-IPv4 addresses) among Edge Label Switch Routers (Provider Edge router). The reachability data
for a given VPN are propagated only to other members of that VPN. The BGP multi-protocol extensions identify the valid
recipients for VPN routing data. All the members of the VPN learn routes from other members. MP-BGP is implemented
using either IPV6 BGP4+, IPv4 multicast (MBGP), or MPLS VPN/BGP (BGP-AD for AutoDiscovery). MPLS can also be
used to create IP-VPN's based on the idea of maintaining separate routing tables for various virtual private networks and
does not involve BGP.

Resource Reservation Protocol-Traffic Engineering (RSVP-TE)
The RSVP (resource reservation protocol) is an independent protocol that establishes a level of service quality for a data
stream or path through a network. Host machines use RSVP to request specific service quality from network for particular
data streams. Routers along these data streams use RSVP to deliver quality of service requests to all nodes in a path or
data stream, to establish the level of service, and to maintain the quality of service.

This protocol is a signaling protocol that supports explicit routing capability. To do this, a simple EXPLICIT_ROUTE object
is incorporated into RSVP PATH messages. The object encapsulates a sequence of hops which constitutes the explicitly
routed path. Using this object, the paths taken by the label-switched RSVP-MPLS flows can be predetermined without
conventional IP routing. The explicitly routed path can be administratively specified or computed based on CSPF and policy
requirements and taking the current network state into consideration.

One useful application of explicit routing is Traffic Engineering (TE). Using explicitly routed LSPs, an ingress node can
control the path through which traffic flows from itself, through the MPLS network, to the egress node. Explicit routing is
therefore useful for the optimization of network resources and an increase in the quality of traffic oriented performance.

PIM-SM
The ZebOS™ Advanced Routing Suite (ARS) Protocol Independent Multicast–Sparse Mode (PIM-SM) Module is a
multicast routing protocol module that uses the underlying unicast Routing Information Base (RIB) to find out the best next-
hop neighbor to reach the root of the multicast data distribution tree or the Rendezvous Point (RP) or the source. It builds
unidirectional-shared trees per group and optionally creates shortest-path trees per source.

IS-IS
The ZebOS™ Advanced Routing Suite (ARS) Intermediate System-to-Intermediate System (IS-IS) Module provides an
IETF-compliant implementation of IS-IS. It is based on link-state technology with two levels of hierarchy. IS-IS forwards the
Open Systems Interconnect (OSI) and IP packets unaltered; packets are transmitted directly over the underlying link-layer
protocols using the Dijkstra algorithm to find the shortest path to the destination. The ZebOS IS-IS Module communicates

13

to ZebOS Network Services Module (NSM) to pass routing information to the forwarding plane. The IS-IS Module is fully
integrated into the NSM and the other IPv4 protocol modules.

Virtual Router Redundancy Protocol (VRRP)
This document provides an architectural overview of VRRP implementation over ZebOS platform.

Typically, end hosts are connected to the enterprise network through a single router (first hop router) that is in the same
Local Area Network (LAN) segment. The most popular method of configuration is for the end hosts to statically configure
this router as their default gateway. This minimizes configuration and processing overhead. The main problem with this
configuration method is that it produces a single point of failure if this first hop router fails.

The Virtual Router Redundancy Protocol attempts to solve this problem by introducing the concept of a virtual router,
composed of two or more VRRP routers on the same subnet. The concept of a virtual IP address is also introduced, which
is the address that end hosts configure as their default gateway. Only one of the routers (called the Master) forwards
packets on behalf of this IP address. In the event that the Master fails, one of the other routers (Backups) assumes
forwarding responsibility for it .

First Hop

R

A

Enterprise Network

Node 1
G/W: A

Node 1
G/W: A

Node 1
G/W: A

 Master Backup

Virtual Router
Virtual IP = A

Enterprise Network

Node 1
G/W: A

Node 1
G/W: A

Node 1
G/W: A

A B

14

At first glance, the above configuration outlined in might not seem very useful, as it doubles the cost and leaves one router
idle at all times. This, however, can be avoided by creating two virtual routers and splitting the traffic between them.

Redundancy
Mission critical applications running on fault tolerant networking equipment such as routers and switches need redundancy
and high availability. The Routing Redundancy Module consists of extensions to the Redundancy Management Module
(RMM) and the Network Services Module (NSM). The RMM provides a series of APIs that enables any redundant
application to function properly within a fault tolerant system. The NSM extensions provide communication between
primary and secondary NSM to duplicate the Routing Information Base (RIB). During a failure, the NSM extensions
preserve routing/forwarding information and bring the routing protocols back online quickly and with minimal impact to the
network.

 Master Backup

Virtual Router
Virtual IP = A

Enterprise Network

Node 1
G/W: A

Node 1
G/W: A

Node 1
G/W: A

A B

15

Virtual Routing (VR)

Physical Routers

Without virtual routers (VRs), a
typical service-provider-to-customer
relationship involves one physical
router (PR) for services like VPN.

Each router functions as an
extension of each customer’s LAN.

Virtual Routers
Each VR has its own connection with
the customer network, but might share
physical resources (for instance,
several logical interfaces mapped to a
physical one).

PR2

PR3

PR1

Any Network
Entity

LAN1

LAN2

LAN3

Service
ProviderCustomers

VR3

VR2

VR1

Any Network
Entity

LAN1

LAN2

LAN3

Service
Provider

 Physical Router

Customers

16

Virtual Routers from the inside
A virtual router is a software emulation of a
physical router. The many properties of a
router are present in a virtual router:
addressability, configurability,
troubleshooting. All the tools used to
configure the software in physical routers are
available for virtual routers: command line
interface (CLI), scripts, telnet (remote
configuration).

Each VR has a management authority,
VRMA, that administrators use to configure
and maintain the router. Each VR also has a
complete copy of the ZebOS ARS, with
routing information base (RIB) and
forwarding information base (FIB).

VR Management Authority

 RIP, OSPF,
BGP, etc

 CLI, HTTP,
 SNMP, etc

ZebOS
NSM TCP/IP Stack

Forwarding Plane (FP)

RIB

FIB

17

ZebOS ARS Supported Standards

RFC or Draft Descriptions
Draft-bernstein-gmpls-optical-01 Some Comments on GMPLS and Optical Technologies
Draft-chen-bgp-dynamic-cap-02 Dynamic Capability for BGP-4
Draft-chen-bgp-prefix-orf-04 Outbound Router Filter (ORF)
Draft-ietf-diffserv-model-06 A conceptual model for Diffserv routers
Draft-ietf-idr-aspath-orf-02 Outbound Router Filter (ORF)
Draft-ietf-idr-bgp4-17 A Border Gateway Protocol 4 (BGP-4)
Draft-ietf-idr-bgp4-multiprotocol-v2-05 Multiprotocol Extensions for BGP-4
Draft-ietf-idr-bgp-ext-communities-05 BGP Extended Communities Attribute
Draft-ietf-idr-restart-05 BGP Gracful Restart
Draft-ietf-isis-diff-te-01 Extensions to ISIS for support of Diff-Serv-aware MPLS Traffic

Engineering
Draft-ietf-isis-ipv6-02 Routing IPv6 with IS-IS
Draft-ietf-isis-traffic-04 IS-IS extensions for Traffic Engineering
Draft-ietf-isis-wg-mib-09 Management Information Base for IS-IS
Draft-ietf-mpls-ldp-mib-08 Definitions of Managed Objects for the Multiprotocol Label Switching,

Label Distribution Protocol
Draft-ietf-mpls-rsvp-tunnel-applicability-02 Applicability Statement for Extensions to RSVP for LSP-Tunnels
Draft-ietf-ospf-abr-alt-04 Alternative OSPF ABR Implementations
Draft-ietf-ospf-nssa-update-11 The OSPF NSSA Option
Draft-ietf-pim-sm-bsr-02 Bootstrap Router (BSR) Mechanism for PIM Sparse Mode
Draft-ietf-pim-sm-v2-new-05 Protocol Independent Multicast - Sparse Mode PIM-SM): Protocol

Specification (Revised)
Draft-ietf-ppvpn-rfc2547bis-02 BGP/MPLS VPNs
Draft-ietf-vrrp-spec-v2-06 Virtual Router Redundancy Protocol
Draft-katz-yeung-ospf-traffic-07 TE extensions to OSPF
Draft-martini-l2circuit-encap-mpls-04 Encapsulation Methods for transport of Layer 2 Frames over IP and MPLS

Networks
Draft-martini-l2circuit-trans-mpls-10 Transport of Layer 2 Frames over MPLS
Draft-ramachandra-bgp-ext-communities-10 BGP Extended Communities Attribute
1058 Routing Information Protocol (RIP)
1195 Use of OSI IS-IS for Routing in TCP/IP and Dual Environments
1227 SNMP MUX protocol and MIB
1321 The MD5 Message-Digest Algorithm
1370 Applicability Statement for OSPF
1587 The OSPF NSSA Option
1657 Definitions of Managed Objects for the Fourth Version of the Border

Gateway Protocol (BGP-4) using SMIv2
1724 RIP Version 2 MIB Extension
1765 OSPF Database Overflow

18

1771 A Border Gateway Protocol 4 (BGP-4)
1772 Applications of BGP in the Internet
1812 Requirements for IP Version 4 Routers
1850 OSPF Version 2 Management Information Base
1966 BGP Route Reflection An alternative to full mesh IBGP
1997 BGP Communities Attribute
2080 RIPng for IPv6
2082 RIP-2 MD5 Authentication
2205 Resource ReSerVation Protocol (RSVP) -- Version 1 Functional

Specification
2210 The Use of RSVP with IETF Integrated Services
2211 Specification of the Controlled-Load Network Element Service
2212 Specification of Guaranteed Quality of Service
2236 Internet Group Management Protocol, Version 2.
2328 OSPF Version 2
2338 Virtual Router Redundancy Protocol
2362 Protocol Independent Multicast-Sparse Mode (PIM-SM):
2370 The OSPF Opaque LSA Option
2439 BGP Route Flap Damping
2453 RIP Version 2
2545 Use of BGP-4 Multiprotocol Extensions for IPv6 Inter-Domain Routing
2547 BGP/MPLS VPNs
2740 OSPF for IPv6
2763 Dynamic Hostname Exchange Mechanism for IS-IS
2796 BGP Route Reflection - An Alternative to Full Mesh IBGP
2842 Capabilities Advertisement with BGP-4
2858 Multiprotocol Extensions for BGP-4
2918 Route Refresh Capability for BGP-4
2934 Protocol Independent Multicast MIB for IPv4
2966 Domain-wide Prefix Distribution with Two-Level IS-IS
2973 IS-IS Mesh Groups
3031 Multiprotocol Label Switching Architecture
3032 MPLS label stack encoding
3032 MPLS Label Stack Encoding
3036 LDP Specification
3065 Autonomous System Confederations for BGP
3107 Carrying Label Information in BGP-4
3209 RSVP-TE: Extensions to RSVP for LSP Tunnels
3212 Constraint-Based LSP Setup using LDP
3270 MPLS Diffserv Extension

RFC or Draft Descriptions

19

CHAPTER 3 Source Code Structure Overview

Source Code Summary
In ZebOS ARS, each protocol daemon has its own module and its own source code consists of four logical parts:

• Generic C source code: Compile this code with any ANSI-compliant C compiler. The standard environment includes
make, bash, and other Unix-related utilities. Source code can be recompiled on a Windows NT platform using the
CYGWIN windows environment from http://www.redhat.com/ .

• OS-specific code: encapsulates system specific calls. These calls are related to task creation, message passing,
memory allocation, and serial TTY communication.

• Network-specific code: addresses the issues related to accessing network routing tables, UDP access for RIP, IP
access for OSPF, and TCP access for BGP and network management.

• Data storage-specific code: consists of the hooks for persistent data storage for configuration load/save operations,
and log and trace information.

\ZebOS\ Subdirectories
The ZebOS main directory contains subdirectories for the zebos daemon and for each routing protocol daemon: ripd,
ospfd, bgpd, ripngd, ospf6d, ldpd, and so on. The ZebOS main directory also contains two PAL-related directories:
/pal and /platform.The principle ZebOS subdirectories are:

Directory Name Description
bgpd contains the BGP module files.
isisd contains the ISIS module files.
ldpd contains the LDP module files.
lib contains the library function files.
mpls contains the MPLS module files.
npf contains the Network Processor module files.
nsm contains the NSM module files. This is the former zebos

directory.
ospf6d contains the OSPFv3 module files.
ospfd contains the OSPFv2 module files.
pal contains subdirectories named by platform that contain the

implementation of the API functions needed by ZebOS to run
on that particular platform. Each platform type is detailed in
subsequent chapters.

pimd contains the PIM-SM module files.
platform contains subdirectories named by platform that contain code

to start daemons or initialize threads, and other platform
specifics of startup, shutdown and signaling.

ripd contains the RIP module files.
ripngd contains the RIP next generation module files.
rmm contains the RMM module files.

20

/pal
The pal directory contains prototypes for all the API calls for mapping ZebOS to platform services depending on which
operating system environment licenses included in the license.

• api

• dummy

• freebsd

• linux

• lynxos

• netbsd

• ose

• ose_ipnet

• solaris

• openbsd

• openbsd_ipnet

• vxworks

• vxworks_ipnet

/platform
The platform directory contains all the prototypes and functions for starting up and shutting down daemons.

• dummy

• freebsd

• linux

• lynxos

• netbsd

• ose

• ose_ipnet

• solaris

• openbsd

• openbsd_ipnet

• vxworks

• vxworks_ipnet

Config.h, hconfig.h, and acconfig.h contain #define flags for the enable prefixes when compiling or omitting
specific modules (such as vrrp, ldp, etc.) or specific features (such as NSSA for OSPF). Each enabled flag creates archive
files in the /lib directory in each individual modules, for example, libospf.a in the ospfd/lib directory.

The base software contains the main.c file. Each of the subdirectories for each module contains the respective main files.
For example, /bgpd contains bgp_main.c, /ldpd contains ldp_main.c, and so on.

rsvpd contains the RSVP module files.
vtysh contains the VTY shell module files.

Directory Name Description

21

The ZebOS/nsm and ZebOS/lib directories in detail
The ZebOS/nsm directory contains all the files related to the zebos daemon. The ZebOS/lib directory contains all the
files for the library. In the ZebOS framework the library is used to link certain common functions and the zebos daemon to
get information about the system (interfaces and routes). The library includes functions and structures for:

• Connecting to the zebos daemon (zclient.h)

• Vty management (access method (for example telnet), terminal management and CLI control)

• Command registration

• Access lists (commands and functionality) (filter.h)

• Prefix lists (commands and functionality) (plist.h)

• Route maps

• Key chains

• Logging

• Linked lists, vectors and hashes

• Memory management, including CLI

• Cooperative multithreading (using select (2))

• MD5 authentication

• Interface structs and functions, including zebos protocol functions (if.h)

• Socket management (sockunion.h and sockopt.h)

• IPv4 and IPv6 route tables

• Internal functions, like serialization support routines for the zebos protocol.

22

23

CHAPTER 4 Build System Overview

Compile-time configuration
GNU software licensing
Certain Linux Kernel patches are provided with ZebOS ARS. These are a Linux Kernel Patch for the MPLS Forwarder and
a Linux Kernel Patch for the PIM-SM Forwarder. These patches are distributed under the GNU General Public License.
They are not part of the ZebOS software. To review the terms and conditions of the GNU General Public License, please
go to www.gnu.org.

If you contemplate using any open source software that would link with ZebOS code when compiled, please carefully
review the license agreement for the open source software first. Software that is licensed under the GNU General Public
License may not be linked with ZebOS code because that could require disclosure of the ZebOS source code. That would
be a violation of your ZebOS software license agreement. Open source software that is licensed under other types of
license agreements may impose similar requirements.

GNU Compiler Versions
To compile PAL, GNU make version 3.79.1 or later is needed. Earlier versions, including 3.79 do not work.

Build Process Files
acconfig.h

This file is input to the autoconf command.

configure

This script file contains statements that determine the system dependent variables and create the makefile. It also parses
the --enable commands. Use the help parameter configure --help to view a list of all the enable options.

makefile

The top-level make file is generic because the platform-specific details are contained in rules.platform and
rules.options.

rules.platform

In each ZebOS/platform/platformname directory there is a rules.platform file. This file, included by the makefile,
contains platform-specific data about:

• the build environment

• installation locations of the final build products

• file suffixes for the build products

• build process tools and commands

• flags for the build process tools

With these and other parameters organized this way, the makefiles are generic, even the top-level one.

rules.options

Some platform directories have a rules.options file that defines extra build process flags or module enable flags. This
file is included by rules.platform.

24

Configuration Options
These options, specified on the command line as part of the configure command (--enable-ipv6, --enable-vtysh
and so on) are used by the system in this manner: in the configure script file, there is a list of these options with the defaults
specified. This list is merged with the options given with the configure command into the config.h file and the rules.options
file. The build process uses the config.h file to turn on the several #define HAVE_ statements.

25

CHAPTER 5 Common Module Framework

Module Framework
The zebos daemon uses most of the lib functions to process its threads, manage lists, manage interfaces, and to
manipulate IP addresses. (Example: ZebOS NSM daemon)

CLI

Policy

Main Loop

Initialization

vty.c

command.c

linklist.c

vector.c

keychain.c
plist.c
filter.c

routemap.c
....

RIP specific
OSPF specifics

.....

v

if_*.c

rtread_*.c

rt*.c
kernel*.c

Preparation for
Protocol
Module

zserv*.c

thread.c

Protcol Interface
& RIB/FIB
Synchronization

rib.c

interface.c

connect.c

if.c

ZebOS/libZebOS/zebos

Interface Information

Routing Table Information

Kernel Communication

Command Line Interface

main.c Threading

Route Information Base

Interface Update

Protocol Module Interface

Connected Route

RIB

FIB
TCP/IP

Kernel

Policy

CLI

26

Overview of Sample ZebOS NSM
The main.c file performs the initialization for vty, zebos, kernel routing sockets, the sorting of the vty commands, and the
cleaning up of the self-inserted routes. Then functions within main.c:

• read the configuration file nsm.conf

• load the configuration parameters

• clear the RIB database

• start the master thread emulator

• fetches and calls multiple threads.

When ZebOS processes start, they read the nsm.conf configuration file from storage (disk, memory) with the initial
configuration. Through the CLI, users reconfigure each protocol while the protocol is running. The modified configuration
can be saved to the configuration file nsm.conf on disk, ready for the next start up.

When the routing protocol daemons receive a SIGHUP, they reset themselves, and re-load the current configuration file
from disk. Any changes to the configuration not saved in the nsm.conf are lost and the process is restarted with the saved
settings.

The nsm_main.c file has these functions:

• Create VTY socket:

• Print version banner for ZebOS start:

• Use the SIGHUP handler function:

• Use the SIGINT interrupt handler function:

• Use SIGUSR1 handler function:

The zebos process (or task):

• maintains dialogs with all installed routers (through sockets)

• communicates with the operating system for

• route table information

• connected interfaces

• forwarding

• manages its own route information base (RIB) for centralizing all router and system Route Information.

• reads its own configuration file, zebos.conf. This file is in the same sub-directory as zebos itself or in
/usr/local/etc.

• installs commands

• establishes vty.c telnet connections;

The operating system type determines which files will be selected for zebos compilation.

Callbacks are activated as:

• Socket callback Incoming Service Request thread

• Timer callback Any number of re-activation (event or timer) threads

• Command callback An incoming command from the telnet user

• Signal Any of the activated 5 signals.

27

Overview of Sample ZebOS OSPF
Each protocol could establish a socket connection to ZebOS by way of its own zebos.c. Any of the layers could call the
Library Functions.

This section introduces how a typical protocol interfaces with the ZebOS NSM services using the OSPF - NSM interface as
a model.

ZebOS provides central thread controls to run OSPF timers and processes simultaneously. The central library provides IP-
related services, such as IPv4 and IPv6 address manipulation and testing, list management, tree management, route table
management, and a variety of other common IP functions used by OSPF, RIP and BGP protocols. ZebOS ARS maintains
logging mechanisms and the OSPF interactions with external networks involving other AS connections and RIP and BGP
interactions.

Finally, the TCP/IP function interface is provided, including the interface to the routing table. ZebOS supports the data
mapping as big endian or little endian, depending on the platform.

The configuration file ospfd.conf drives the OSPF operation. Network administrators can edit this file before starting
OSPF. Administrators can change the configuration while the daemon is running using the CLI commands; administrators
can save the changed configuration with a write command to ospfd.conf.

OSPF Core Source Files
The build file configure.in establishes all the compile-time switches for compiling a specific feature set and
environment for zebos and ospfd (and other protocols). The “configure” module then is run to generate config.h and
condefs.h, used for the final compilation and linking.

The ospf_main.c file in the ospfd directory has a structure similar to that of the main.c file in the main ZebOS directory.
It performs module initialization and goes into a loop, processing threads. Each thread completes its functions before the
main process begins the next. The main thread is for packet-reading; many timer threads kick-off throughout the OSPF
process.

The file ospfd.h provides the majority of the data structures involving the Link State Data Base (LSDB), segmented by
area.

File ospfd.c contains several main functions and provides many of the fundamental features of OSPF.

File ospf_packet.c provides direct packet sending and receiving and the initial breakdown of packets by major OSPF
type (HELLO, DATA-DESCRIPTOR, LSA-UPDATE, LSA-REQUEST, ACKNOWLEDGE). Code in this file extracts packets
from and inserts packets into the database.

File ospf_snmp.c provides the centralized SNMP functions for OSPF.

Router Role
Throughout the OSPF process, the particular role of the router is maintained:

• designated router (DR)

• backup designated router (BDR)

• any other router (DRother)

• individual router

• area border router (ABR)

• AS-boundary router (ASBR)

• both ABR and ASBR

• backbone router

28

• connected in any other arbitrary AREA

Router Connections
A Router can can be connected by:

• broadcast

• point-to-point

• non-broadcast

• virutal.

File ospf_interface.c contains the logic for the OSPF module to understand its connections and to map the structures
for those connections to other modules.

File ospf_ism.c is for the Interface State Machine strictly in accordance with RFC 2319 requirements.

File ospf_neighbor.c allows for the definitions of neighbors and adjacencies and provides for the Neighbor State
Machine with strict RFC requirements.

File ospf_lsa.c can be considered the heart of OSPF, as link state data is exchanged with other systems. This file
defines the precise format for all six -types of LSAs as well as the detailed handling for each one.

File ospf_lsdb.c contains the logic for installing LSA's into the Data Base.

File ospf_flood.c provides for the flooding services of LSAs, depending on the particular role of the Router at the time
LSA's are either received, or self-generated. File ospf_spf.c can be considered the main reason for OSPF. The
calculations for one complete area are performed, with the particular router at the top node; if the router borders several
areas, the calculation must be performed for each of those areas.

File ospf_asbr.c is the routine for handling all the special conditions when this router is an ASBR. It must advertise its
External Connections to the rest of the AS.

File ospf_ase.c specifically handles the External Connections incoming from the rest of the AS, and the building of
routes on top of the Route Table.

File ospf_abr.c specifically handles the processing of LSAs when this router is an ABR. Default LSAs and the
Aggregation of LSA packets are handled here.

The above files support various data structures for efficient IP functionality.

File table.c describes route table binary tree. An efficient binary tree structure and macros for providing node adds and
deletes. It is used about three or four times for Route Table and other intermediate structures.

File prefix.c describes IP Data Structures. It contains the IP address structure, in three to four different formats (by use
of union).

File linklist.c is a set of efficient list functions and macros. It is mainly used for LSAs.

File stream.c is a set of intermediate functions and macros for packet streams. It consists of a header and body; typical
LSAs are created (copied) as streams then transferred to instantiated memory and the original copy freed.

29

CHAPTER 6 CLI Overview

Function of the ZebOS CLI
The components of the ZebOS CLI library (in the /lib directory) are: vty.c, command.c, linklist.c, and vector.c.
These files contain information for the CLIs in zebos, ospfd, ripd, etc. servers/daemons. Basically, vty implementation is a
client/server style to handle the command interface from a remote terminal. The client is a telnet session to the server. To
fully understand the vty implementation, start with vty_init() in the file ZebOS/lib/vty.c. The file command.c
shows how commands are stored and sorted in a linked list (linklist.c, vectors) and how the actual functions are
invoked for each protocol (all DEFUN functions under each protocol directory).

A telnet session for each module begins in EXEC mode, and progresses to PRIVILEGED mode by use of the enable
command. Subsequent modes may involve the CONFIGURATION mode, the ROUTER mode, the INTERFACE mode and
others. In addition to the CLI for each module, each module for initial default operation reads a configuration file. This file
can be changed by standard editors and saved. The CLI additionally provides the change and write operations for the
configuration file. The command sh run shows the current configuration file of the module.

The available commands change depending on the configuration mode the user is in. These configuration modes are
called nodes in the code. The available nodes are defined by the enum node_type:

To enter the debugging state enter the following (abbreviated) commands:

1. en for enable to enter privileged mode

2. de <syntax> for debug logs to turn on various debug logs

3. te mo for terminal monitor to see the debug logs on the monitor

Add a new Command Using CLI
To add CLI commands into ZebOS CLI, the function

install_element (struct lib_globals *zg,
enum node_type ntype,
struct cmd_element *cmd);

installs a command with entry interface_desc_cmd() at the INTERFACE_NODE level. If a command is intended to
operate at multiple levels, it must be installed into each level.

The entry contains the MACRO definition DEFUN for the Command Header as follows:

• The 1st parameter will be the FUNCTION NAME compiled into the code.

• The 2nd parameter is the INSTALLED NAME entry.

• The 3rd parameter is SYNTAX for the COMMAND.

The remaining parameters are for HELP and LIST command output, corresponding to each parameter of the command
(accessed by standard argc and argv). The code for handling the command follows the Command Header. The return
CMD_SUCCESS (or other return codes) finishes the command handler. The variable vty->node maintains the code for the
current LEVEL, and all currently defined LEVELs are in the library directory under command.h.

Example (interface_desc_cmd used by all protocols)

30

DEFUN (interface_desc,
 interface_desc_cmd,
 "description .LINE",
 "Interface specific description\n"
 "Characters describing this interface\n")
{
 int i;
 struct interface *ifp;
 struct buffer *b;
.
.
 if (argc == 0)
 return CMD_SUCCESS;
.
.
 ifp = vty->index;
 return CMD_SUCCESS;
}

Many routines invoke library functions to communicate to the user using the function install_element(). The syntax
for each user command and its linked handler are specified for each OSPF command.

31

Access Lists
ZebOS provides a way to define access and prefix lists. When the subsystem with access_list_init() is initialized,
the user has the following commands available:

access-list WORD (deny|permit) (A.B.C.D/M|any)
access-list WORD (deny|permit) A.B.C.D/M (exact-match|)
no access-list WORD (deny|permit) (A.B.C.D/M|any)
no access-list WORD (deny|permit) A.B.C.D/M (exact-match|)
no access-list WORD
access-list WORD remark .LINE
no access-list WORD remark no
access-list WORD remark .LINE

If IPv6 support is configured another set of commands for IPv6 access lists is created. The user needs to make sure that
#include filter.h is inserted into the source code. The following functions are available (from filter.h):

Function or Element Description
void access_list_reset (void); Removes all access lists
void access_list_add_hook (void (*func)(struct access_list *)); Hook function which is executed when new access_list is

added
void access_list_delete_hook (void (*func)(struct access_list *)); Hook function which is executed when new access_list is

deleted
struct access_list *access_list_lookup (int, char *); First parameter is AF_INET or AF_INET6, second is the

name of the list, e.g. "101".
enum filter_type access_list_apply (struct access_list *, void *); Apply access list to object (which should be struct prefix

*)."
enum filter_type is {FILTER_DENY, FILTER_PERMIT,
FILTER_DYNAMIC}.

Non-existent or empty lists return DENY. Using prefix lists
#include "plist.h"

enum prefix_list_type { PREFIX_DENY, PREFIX_PERMIT };
enum prefix_name_type { PREFIX_TYPE_STRING,
PREFIX_TYPE_NUMBER};

 /* Prototypes. */

void prefix_list_reset (void);
void prefix_list_add_hook (void (*func) (void));
void prefix_list_delete_hook (void (*func) (void));
struct prefix_list *prefix_list_lookup (int family, char *);
enum prefix_list_type prefix_list_apply (struct prefix_list *, void *); The descriptions are similar to the access-list API above.

32

33

CHAPTER 7 VTY Overview

Introduction
The ZebOSTM VTY (Virtual Teletype) shell for ZebOS Advanced Routing Suite (ARS) and ZebOS Server Routing Suite
(SRS) provides the command line interface (CLI) to the ZebOS daemons. From one telnet session, a system administrator
can issue commands that start, stop, reset, display and change the configuration of any accessible daemon. All
configuration that can be done directly to a protocol through a dedicated telnet session can be done to multiple protocols
through a VTY session.

System status as reported through show commands is a consolidated report for all running protocol daemons.

Engineering teams that modify portions of the ZebOS CLI or provide their own CLI, it is important for team members to
understand the structure and method of the VTY shell because every command available to each daemon is replicated in
the VTY shell.

Features
• Supports industry-standard CLI.

• Supports configuring, monitoring & logging protocols from the CLI.

• Supports word auto-completion & syntax checking.

• Supports ?, help & list.

• Log messages can be logged to a file.

• Easily extendible to add new commands.

• Easily extendible to add new protocol modules.

Benefits
• Stable & robust implementation for CLI.

• Fully integrated with ZebOS modules.

• Single point of configure, control & monitoring.

• Platform-independent implementation.

34

VTY Architectural Concepts

ZebOS without VTY shell
Configuring, maintaining and querying ZebOS
daemons without the VTY shell is done with a
separate telnet session for each daemon.

Using VTY shell
ZebOS users with the VTY shell start one telnet
session to administer the several daemons in one
session window. The telnet session can be on a
local machine or on a remote machine.

There are two methods for using the VTY shell:
One is by using the VTY shell directly to control
the daemons.

ZebOS-
NSM

OSPF

RIP

BGP

Telnet

Telnet

Telnet

Telnet

Configuring ZebOS daemons without the VTY shell

ZebOS-
NSM

OSPF

RIP

BGP

VTY Shell

Configuring ZebOS daemons with the VTY shell

35

The other method is to use a Unix TTY device to enforce user authentication. The user telnets into the TTY device, and
logs in with a username and password to the vty shell. From there the user can access the ZebOS daemons..

Unique Command behavior
Some ZebOS CLI commands are not applicable if a user uses the VTY shell to configure the router:

• (no) smux peer

• (no) smux peer password

Note: Routing protocols use the default OID and the default password "ipinfusion"

All commands available to various protocol modules are available to vtysh.

ZebOS-
NSM

OSPF

RIP

BGP

VTY Shell
Unix
TTY

Device
User

Telnet

Configuring ZebOS daemons with the Unix TTY and ZebOS VTY shell

User Logs on
with Username
and Password

36

How VTY fits into the ZebOS Build Process
To build vtysh with ZebOS, specify --enable-vtysh as an option to ./configure. This builds vtysh. All the DEFUN/
ALIAS from various modules make their way in ZebOS/platform/platformname/obj/vtysh/vtysh_cmd.c file.

Building and Customizing VTYsh in the ZebOS ARS Environment
If the user wishes to add/delete some DEFUN/ALIAS from this file depending on his configuration options, he should do the
following.

1. # ./configure --enable-.... (all options that user wants)
./configure --enable-vtysh --enable-ipv6 --enable-te --with-libpam --enable-ospf-te
--enable-mpls --enable-vrrp-linux --enable-mplsvpn --enable-static

2. cd/ZebOS/platform/platformname

3. # make all or #make vtysh

The vtysh_cmd.c file is generated automatically every time vtysh is built depending on the latest configuration options
that have been specified. This changes protocol behavior in 2 ways:

• Disables a protocol module from reading "protocol.conf" file at startup.

• User cannot directly telnet to the protocol for configuration/management.

These help to avoid inconsistencies among the configurations of various protocol modules in ZebOS when they are being
configured centrally.

Source Code Files

Main Functionality Files
vtysh.c

This file is broken in to several parts:

• VTY main functionality prototypes

• void vtysh_init_vty ();

• void vtysh_init_cmd ();

• void vtysh_connect_all ();

• void vtysh_readline_init ();

• void vtysh_user_init ();

• void vtysh_execute (char *);

• void vtysh_execute_no_pager (char *);

• char *vtysh_prompt ();

• void vtysh_config_write ();

• int vtysh_config_from_file (struct vty *, FILE *);

• void vtysh_read_config (char *, char *, char *);

37

• void vtysh_config_parse (char *);

• void vtysh_config_dump (FILE *);

• void vtysh_config_init ();

• void vtysh_pager_init ();

• void vtysh_config_parse ();

• void vtysh_parse (char *, void (*) (char *));

• The command definition section:

In this section there are several statement types:

• DEFUNSH
Calls the callback in vtysh and sends the command to protocol modules.

• DEFUN
Calls the callback in the module in the defined context: the protocol module or vtysh.

• ALIAS
Calls the callback for the associated DEFUN statement. Each ALIAS statement is associated with a DEFUN.

• DEFSH
Commands of this type are passed to the protocol modules only. Used by vtysh only.

• The node or mode installation section, that defines the prompting strings

• CLI installation section that installs the commands.

vtysh.h

This file contains definitions for the daemons and common macros, macros for the locations of various files and the name
of the default configuration file.

vtysh_cmd.c

This dynamically generated file contains all the commands for all the daemons in DEFSH statement and installation
commands to install the commands in to the VTY shell.

vtysh_config.c

This file:

• contains functions that parse and execute the commands entered in the VTY shell session.

• takes care of the configuration functions required by vtysh.

• contains a config structure containing the configuration info of the node.

• create, read and write to configuration files.

A config file contains the routing daemon configurations. This information forms the initial command set for a routing
daemon as it is starting. Config files are located in:

 /usr/local/etc/*.conf

vtysh_main.c

This file

• contains the text displayed by the help command. The help information is called by the main() program in response to
the “h” parameter or no parameter.

• calls various functions to initialize vty shell.

vtysh_exec.

• connects to each of the routing daemons through socket connections.

38

• once the connection is established it parses the commands from the command prompt

• after verifying the command, executes the command if required, passes on commands to protocol daemons and waits
for the next command.

vtysh_user.c

This file contains code to log in a user. This file takes care of the authentication. The original version of vtysh uses PAM
(plugable authentication module) for this purpose, and authenticates based on the process id that invokes the vtysh. This
file makes use of the geteuid and getpasswd function calls for the purpose.

vtysh_user.h

This file contains a single prototype for the authentication function.

ZebOS/platform/platformname/vtysh.c

This file does signal handling and calls vtysh_main() to do all the work; it contains the main() routine.

libedit
This is the replacement of readline library which acts exactly like readline library. It manages the user input and "command
line" editing.

Runtime Files
The file, ZebOS.conf, is the optional configuration file for setting up the runtime environment for the VTY shell. Particular
features to note in this file are:

• vtysh comes up with the following options to read config files.

• -b, --boot Execute boot startup configuration

• -f, --file Execute this config file

• If either "--boot" or "--file" option is specified then vtysh reads the config file and passes the configuration
information on to all protocol modules.

• If neither option is specified then no configuration file is read.

• Default config file for vtysh is ZebOS.conf. At configure command time this option, --prefix=prefixname
contains the name of the directory of the configuration file and is interpreted as prefixname/etc/. The default
location, if these options are not specified, is /usr/local/etc/.

VTY Shell Utility
The VTY shell command extraction utility extract.pl is a PERL script that inspects all the ZebOS daemon CLI source
files for commands and then builds the vtysh_cmd.c file. The extraction utility builds vtysh_cmd.c file everytime the
vtysh is built.

The extract.pl perl script extracts DEFUN and ALIAS statements from files in the various protocol modules and creates
the vtysh_cmd.c file. If multiple protocol modules have the same command, logic within the script file merge these
equally-named commands into one command.

Some commands, such as show running-config, need special treatment at command execution time. The script
contains logic so that when the command is executed, VTY merges the output from all the daemons into consolidated
output.

39

vtysh Debugging
The vtysh facility is an integrated shell for ZebOS routing engine. The vtysh module allows one Telnet Session to control all
the ZebOS routers. It requires the standard Linux/Unix inetd services, and requires the —enable-vtysh” directive to the
“configure” program. To configure “vtysh”, use the “—enable-vtysh” option in the “configure” command:

./configure –host=i686-gnu-linux –enable-vtysh
make
make install

To start the “vtysh” daemon:

1. Copy the “vtysh” program to the executable directory
cp /…../ZebOS/vtysh/vtysh /usr/local/sbin

2. Set up a vtysh account using vipw to edit document /etc/passwd, and include an entry such as
zebos:x:1100:1000:test:/home/<name>:/usr/local/sbin/vtysh.

3. To locally invoke vtysh enter /usr/local/sbin/vtysh with an option -e command where –e specifies the
command to be executed in batch mode.

To remotely invoke “vtysh”, install the “inetd” modules. From the remote machine, “telnet <ip_address>”

To generate a starter configuration file, zebos.conf, start vtysh, and use the command write memory to generate a copy
of zebos.conf.

To get information on vtysh, use “man vtysh”.

40

41

CHAPTER 8 SNMP Overview

Network management typically consists of stations on the network that issue query packets to an IP address for the
purpose of gathering status information. IP Infusion protocol daemons respond to these query packets under the
requirements defined in RFC 1657, 1724 and 1850. ZebOS requires the use of an intermediary agent using the SMUX
protocol specified in RFC 1227. The protocol for the query, set and callback functions are defined as SNMP (RFC 1157)
and the Data Descriptions are defined as MIB-II (RFC 1213). ZebOS does not support SNMPv3.

To make SNMP operational within ZebOS, define the HAVE_SNMP pre-processor variable; the enable_snmp directive
performs this operation during compilation. In general, the SMUX agent responds to UDP-161 packets and transmits them
to ZebOS over telnet connections using port 199. Each protocol daemon contains its x_snmp.c module (where x is RIP,
OSPF, BGP, or other protocol name) for handling gets and sets; data flows into and out of the smux.c located in /lib.

In /lib/smux.h SMUX_PORT_DEFAULT is defined as 199.

The ASN parser

We

42

43

CHAPTER 9 ZebOS CLI and SNMP API Overview

ZebOS offers an SNMP API calls and a Command Line Interface API that together give engineering teams the flexibility to
customize these to interfaces. These APIs allow full integration into any management plane.

Management Plane

NET_SNMP CLIENTS Telnet/VTYsh

NET_SNMP Agent

Control Plane

SMUX

SNMP API CLI API

Routing/Signaling Protocols

44

45

CHAPTER 10 PAL Overview

Introduction
ZebOS™ ARS advances platform independence with the introduction of the Platform Abstraction Layer (PAL) collections
of APIs. For each supported platform, these APIs are fully implemented and use the system services of each platform to
isolate ZebOS daemons from operating system details. Developers can concentrate more on feature enhancement and
less on porting their changes for multiple OSs. (platform is an OS-hardware combination.)

Some PAL equivalents to system components and features:

In the earlier versions of ZebOS, each ZebOS component had relationships with each OS, management protocol, and
processor. For example, differences from one OS to another were handled by the source through #ifdef <OS> statements.
With six to eight OSs supported, the code was becoming quite complex.

OS Services PAL_Services
Types PAL_Types
Sockets PAL_Sockets
Memory PAL_Memory
String PAL_String
Stdlib PAL_Stdlib
Configuration/storage PAL_Config
Interfaces PAL_Interfaces
Logging PAL_Log
Route PAL_Route
Daemonization PAL_Daemon

46

With PAL, ZebOS supports the same number of OSs and management protocols, and now the complexity is removed from
the ZebOS components and pushed to a PAL module for the OS. Each ZebOS component makes one call and the compile
time options link in the proper PAL module to fulfill those calls.

Memory Types

New memory management in PAL gives developers more control over memory including the class of requested storage
and size of the storage.

Sockets

Sockets services are used to create TCP sockets. PAL sockets handle all traditional socket functionality like creation and
deletion, read and write, and synchronization functionality such as select. There are extensions to the socket calls that
handle L2 and raw sockets, offering flexibility to those systems that need to handle sockets in a special manner.

String

The String abstraction includes string operations, such as copying, scanning, parsing, and comparing strings and
characters. It interacts with the memory abstraction to create or move memory cells, when needed, such as by strdup.

STDLIB

The stdlib abstraction allows developers to take advantage of the most effective stdlib functions on the system. If there is
richer or special functionality available for these features, that functionality can be used in preference to the classical
function.

Configuration Storage

The PAL abstracts storage of configuration files. This allows platforms without a file system to store configuration
information in whichever memory model is available such as linear memory or flash memory.

Logging

47

Logging facilities are abstracted in such a way that the system can log to whatever facility it has available, be it syslog, file,
or the console. These outputs can also be run in parallel, as demonstrated in some of our implementations, where each of
several outputs can be set independently to different log trap levels.

Kernel (Interfaces and Routes)

The PAL abstracts control and management of kernel routes and interfaces so ZebOS does not need to be directly aware
of how routes are manipulated.

Daemons

Process daemonization on systems is abstracted so that it is automatically handled on systems with this functionality.

Source

The source tree layout puts each protocol in its own directory. There is no platform-specific source in any of the protocol
directories. All calls, data types and other components that are operating system or platform specific are moved to the PAL
code. All included modules either document other needed included modules or automatically include the necessary
modules.

Build

A "dummy" build environment helps to determine if the protocols include any system functions. The dummy environment
excludes the system header files. Every protocol that builds with the dummy environment does not include any system-
dependent functions. This helps IPI ensure that all of the modules run on any PAL supported environment, even if that
environment does not fully support the usual stdlib features, such as file I/O.

The delivered version of ZebOS 5.0 comes with a set of production-quality, fully-tested PAL modules for the most common
operating systems. Any porting efforts to non-supported platforms can be modeled on these PAL modules.

In the future, additional platforms can be supported by the PAL. IP Infusion will consider efforts to support other operating
systems and assist customers in their porting efforts.

Module Compatibility

Changes, additional features and enhancements to protocols are restricted to the source for that module. Changes made
necessary by a platform are restricted to the PAL module for that platform. The PAL API will only change to support new
operating system features ensuring backward compatibility for the protocol modules with later versions of the PAL API.

48

49

CHAPTER 11 Memory Manager

Introduction
The ZebOS ARS uses dynamic memory. This allows it to operate in constrained environments where little memory is
available and in large-scale systems where there is more to track. However, sometimes there are needs beyond allocating
as much memory is needed at a given time. Often, certain system conditions change rapidly, and the overhead for memory
alloc and free is high on most operating systems. Additionally, the system may want to track memory usage and provide
information about how much memory is in use for what purpose, and maybe even statistics about memory allocation, such
as the number of times a particular type of memory has been allocated or freed.

Prior versions of the ZebOS ARS provided a memory accounting system to track the active cells and alloc bytes for various
purposes. Also, they provided a memory manager feature that, when enabled, would allow different types of memory to be
allocated using different methods.

ZebOS ARS moves the memory management function to the Platform Abstraction Layer. In this, it removes the accounting
and memory allocation management from the library, that is intended to be platform independent. To replace this
functionality, ZebOS provides a sample implementation for a memory manger. In some cases, the platform provider may
provide a different memory manager, perhaps with improved abilities on that platform (an example here would be to
allocate often used MTYPEs (such as route entries) from fast SRAM and to use slower DRAM for less used or less critical
MTYPEs (such as CLI strings)). Because these rules would vary from platform to platform, and possibly between board
revisions, IPI does not supply examples.

This sample implementation combines accounting, statistics, integrity checking, and handling of different allocation
methods into a single module, with each feature able to be enabled or disabled at build time, according to the needs of the
user and environment.

A memory type feature, the MTYPE, provides information to the memory manager about the intended purpose for a
particular cell at allocation time. The included memory manager code uses the MTYPE to determine how to handle a
memory request. Vendor implementations can extend this and use the MTYPE to determine not only how to handle memory
allocation, but where, or to manage other behavior, as they see fit.

The included memory manager code is written so that the internal logic is platform independent, but it takes into account
several aspects of the platform to enhance performance and reliability. As shipped, it is configured to operate on 32-bit
protected architectures, but it can be modified through changes to #define and typedef statements within the module to
handle non-protected architectures and 64-bit architectures, and potentially other environments.

The included memory manager code provides support for several allocation methods, and can be extended by the vendor
to allow others if desired. As shipped, it supports HEAP (pure standard heap allocation), FSHEAP (heap allocation using
fixed size cells), PRE (preallocate only), and EXPRE (expandable-preallocate: preallocates cells, but adds more if they are
needed). For prealloc types (when expansion is not needed), memory transactions operate in O(1) time. For heap types (or
EXPRE when expansion is required), the time is based upon the OS heap memory calls.

A configuration file is used to configure (at compile time) allocation behavior for MTYPES, as well as to define several
parameters for each MTYPE.

Because of the complexity in the memory manager, and also because support for each platform is separate to improve
portability, there are several files that affect the memory manager:

• pal_memory.c file, in the appropriate PAL subdirectory, contains implementation for the memory manager.
• pal_memory.h file, also in the appropriate PAL subdirectory, contains definitions to resolve parts of the PAL memory

API that are not included in the memory manager implementation onto the API provided by the OS, as well as the
platform specific #define and typedef statements to configure the memory manager.

50

• pal_string.c file, in the appropriate PAL subdirectory, contains implementation for the string functions. This file
must not implement the pal_strdup call, as the memory manager needs to do this to maintain integrity.

• pal_string.h file, in the appropriate PAL subdirectory, contains definitions to resolve parts of the PAL string API.
This file must not resolve the pal_strdup call directly onto the OS supplied function, as the memory manager needs to
do this to maintain integrity.

• pal_memory.def file, in the PAL API subdirectory, contains the actual function prototypes and descriptions for the
PAL memory API. These functions are implemented by the memory manager or mapped onto OS functions as
appropriate.

• pal_memory_desc.def file, also in the PAL API subdirectory, contains descriptions of the various MTYPEs, including
name, owning module, description, allocation method, and three allocation parameters. It also contains lists of memory
types that are displayed for certain CLI features, such as the show memory {protocol} command.

Note: That the memory manager provides the implementation of the memory CLI. This prevents the library or other parts
of the ZebOS ARS having to understand the underlying memory mechanism, and allows vendor specific
extensions to memory management and monitoring. It additionally allows vendors to implement their own
extensions to the memory CLI, or to remove parts of the memory CLI, if desired, without affecting other code.

Configuration Options
On supported operating systems, the configure script controls several features of the memory manager. On operating
systems without support for the configure script, the pal_memory.h file contains the definitions for these features. There
are several configuration options supported. When using the configure script, they can be controlled using
 --enable-{feature} or --disable-{feature}. When editing the file directly, either #define or #undef the
appropriate switches in the first configuration section.

Two of these features are fixed in function: they directly control the behavior of the code. These two features are memmgr
and memlog. The other three (memchk, memacct, memacct-detail) are mapped to certain features in the code.

memlog
The memlog feature allows the memory system to emit log entries for certain events. Based upon the other enabled
features, there are many events that are logged when this feature is enabled. The memlog feature only increases the
module size (and only one of the messages adds processor time overhead to the successful execution path). The memlog

Feature name Default Feature description
memlog disabled The ability to log memory information, warnings, and errors,

when it is possible (there are situations where it is not).
memmgr disabled The ability to allocate different MTYPEs using different

techniques. This parallels the old memmgr.c file that was in
the library before.

memchk disabled Checking of certain memory structures in an attempt to
detect memory corruption, cell overruns, and attempts to
manipulate invalid pointers (such as trying to realloc a
stacked structure).

memacct disabled The accounting of bytes per cell and the ability to track the
memory overhead imposed by the memory manager.

memacct-detail disabled Additional details to accounting, such as alloc and free
request counting, and tracking lists of cells for all MTYPEs.

51

feature is only able to log events that can be detected by the other configured features of memory manager (only a few
events can be detected at all times).

Log Level Log entry Description
Debug added supercell An EXPRE type was out of space, so the memory

manager added a new group of cells to its pool. This
can occur if the memmgr feature is enabled.

Warning invalid type An invalid cell type was specified in a call requesting
cell manipulation. This can always be detected.

type mismatch A call was made asking an existing cell to be
manipulated; the call gave the wrong type for the cell
to be changed. This can only be detected when cell
type tracking is enabled.

creating new cell from invalid one A realloc request provided an invalid cell and the
memory manager is creating a new one instead. This
can only be detected when pointer checking is
enabled or when header magic numbers are enabled.

Error no memory A call failed because there was not enough available
memory to complete it. This can always be detected.

none free A call failed because there was no available cell for
the MTYPE (prealloc method only). This can be
detected only when memmgr is enabled.

too big A call failed because it requested a fixed size cell be
larger than allowed. This can be detected only when
memmgr is enabled.

cell already free A call requesting a cell be freed could not complete
because the cell is already free. This can only be
detected when header magic numbers are enabled.

invalid context A call requesting manipulation of a cell could not
complete because that cell belongs to a different
context.

unknown method A call requesting manipulation of a cell could not
complete because the cell uses an unknown
allocation method.

cell address invalid A call requesting manipulation of a cell could not
complete because the address given is outside the
valid address range for memory cells, or because the
cell is not aligned correctly.

cell header invalid A call requesting manipulation of a cell could not
complete because the address given did not point to
a valid cell, or the cell’s header had been corrupted.

cell overrun detected A call was made requesting that a cell be
manipulated, but the cell data had overrun the cell
size.

Critical memory warning threshold reached A call requesting creation of a new cell or expansion
of an existing cell has pushed memory usage up to or
above the warning level.

Alert maximum memory size reached A call requesting creation of a new cell or expansion
of an existing cell has pushed memory usage up to
the maximum limit, or would have pushed it beyond
the maximum limit.

52

memmgr
The memmgr feature offers additional allocation methods. Currently, the system supports four methods: HEAP (standard
heap alloc), FSHEAP (allocate fixed size heap cells), PRE (allocate only from preallocated workspace), and EXPRE (allocate
from preallocated workspace, but expand that workspace if needed). Additional methods can be added to the code if
desired. The pal/api/pal_memory_desc.def file contains the configuration mapping MTYPE to method. This adds a
limited amount of overhead for all cell types, but any type that supports a free list (PRE and EXPRE do currently) can
allocate new cells and free old cells very quickly after this small overhead, without having to make OS calls (providing, in
the case of alloc with EXPRE, that there are cells on the free list). This feature adds a six machine word overhead per
MTYPE to the static data.

memchk
The memchk feature actually maps to various features that are controlled by settings in the source file. By default, memchk
enables all of the additional fields per cell, as well as all of the accounting and request tracking features. It is intended to be
used for debugging purposes (with memlog, preferably); disable it for normal builds because it imposes additional
overhead in terms of runtime performance, runtime memory usage, code size, and static data size.

memacct
The memacct feature actually maps to various features that are controlled by settings in the source file. By default,
memacct enables tracking of bytes in variable size cells, as well as allowing the memory manager to be aware of the
overhead that it imposes upon the system.

memacct-detail
The memacct-detail feature actually maps to various features that are controlled by settings in the source file. By default,
memacct-detail enables tracking of requests made (alloc, free, realloc) per MTYPE, and enables linking of all cells into lists
(this feature allows remaining cells to be freed at shutdown).

Other Memory Manager Features
The MEM_DEBUGGING_ENABLE feature, not available from the configuration script, is intended for use only when
debugging the memory manager itself, or diagnosing problems with modules that call it (or implement callouts). Use this
feature with the memchk and memlog features enabled. Do not use it in a production environment, as it emits considerable
output to the stdout device and adds substantial time overhead to the code.

Method Description
HEAP Standard heap based allocation of variable size cells. This method uses an extra

machine word to track the size of this memory cell.
FSHEAP Heap based allocation, but with fixed size cells. This has the advantage over HEAP of

knowing the cell size without requiring additional data be stored with each cell.
Because this method produces a fixed-sized cell, it allocs only enough space for
statistics and for the memory requested.

PRE Preallocation of a fixed number of fixed-size cells. These cells are maintained in two
lists (in use and free) and can be allocated and freed in O(1) time. This method
always allocate the maximum number of cells up front, and does not support addition
of cells during runtime.

EXPRE Preallocation of a base number of fixed-size cells. These cells are maintained in two
lists (in use and free) and can be allocated and freed in O(1) time as long as there are
cells available. This method can defer allocation of cells until they are needed, and
can create additional cells (uses heap calls to build them) as needed after startup.

53

Architecture
The ZebOS memory manager is designed to work in many environments. However, it must know about environment-
specific variables. Because these are environment specific, rather than user options, none of these is addressed by the
configuration script; they must all be edited in the pal_memory.h file itself. This allows platform specifics to be isolated
from other parts of the code.

There are additional details about each of these options in the comments within the code.

MEM_GLOBAL_CONTEXT_ENABLE
Defining this indicates that it is safe on this platform to use a global context variable. Here, ‘safe’ means that the global
variable is not shared between multiple instances of the PAL in different modules, or even in multiple instances of the same
module. This saves one machine word per cell in header overhead, if MEM_HEADER_ENABLE_CONTEXT is defined.
Disabling this requires changes to the interface functions at the bottom of the pal_memory.c file, so they can get the
correct context.

MEM_GLOBAL_CONTEXT_[DE]REGISTER
In some non-protected operating systems, it is possible to ask the OS to protect a limited number of variables per process.
This is often considerably less overhead than passing pointers on the stack, because the memory moves are only done
once per thread switch rather than per function call. If such a feature exists, it also usually allows the global context feature
to be enabled. These must be defined so they make appropriate OS calls to register a pointer as belonging to the local
variables of the current context (MEM_GLOBAL_CONTEXT_REGISTER), or remove a variable from the same
(MEM_GLOBAL_CONTEXT_DEREGISTER).

MEM_SEM_*
If using non-protected OS without the ability to protect even limited local variables per process, or if intentionally sharing
memory space between processes for some reason, MEM_SEM_TYPE must be defined to be an OS semaphore or spin lock
or other exclusion device handle type. If running protected OS, or the OS has the limited protection ability used above, and
not intentionally sharing memory, MEM_SEM_TYPE must be left blank.

If MEM_SEM_TYPE is defined, MEM_SEM_INIT must be defined so it makes appropriate calls to create and claim (preferably
atomically) the exclusion device. It must return a non-zero handle on success. If it returns zero or NULL, the memory
manager interprets it as failure and abort its initialization process. If MEM_SEM_TYPE is undefined, this must be left blank.

If MEM_SEM_TYPE is defined, MEM_SEM_DESTROY must be defined so it makes appropriate function calls to release and
destroy (preferably atomically) the exclusion device. If MEM_SEM_TYPE is undefined, this must be left blank.

If MEM_SEM_TYPE is defined, MEM_SEM_REQUEST must be defined so it makes a blocking, non-expiring call to claim the
exclusion device. If MEM_SEM_TYPE is undefined, this must be blank.

If MEM_SEM_TYPE is defined, MEM_SEM_RELEASE must be defined so it makes a blocking, non-expiring call to release the
exclusion device. If MEM_SEM_TYPE is undefined, this must be blank.

MEM_ALIGNMENT_REQUIREMENT
This setting has no effect if alignment checking is disabled and cell footers are disabled.

This is the alignment requirement for this platform, in increments of bytes. It must be set to an integral power of two, one or
greater. This is usually the number of bytes in a machine word, but sometimes it is less (if a system with a narrower data
bus than register file), or greater (if a system where the OS forces larger alignments to keep cache alignment). Set this to
the machine word size, in bytes. If set to 1 (two to the zero power), it disables alignment forcing and checking.

54

typedef ... mem_int
This must be set so it defines mem_int to be an unsigned integer that is large enough to contain all possible pointer
values. It is used as an override in pointer arithmetic to ensure there is no truncation or overflow created error.

typedef ... mach_word
This must be set so it defines mach_word as an unsigned integer with the same number of bits as an actual machine word.
Under many cases, this is the same type of integer as mem_int. This is used in many structures to ensure proper
alignment.

MEM_ADDR_*
MEM_ADDR_LEN is the number of digits to show when displaying addresses in hexadecimal, represented as a string (it is
used in format strings). Normally, this would be the number of nibbles in the address, so eight on 32-bit systems (because
it needs to be a number expressed as a string, “8”). On platforms using 64-bit addressing, it is possible that this would be
sixteen (so “16”).

MEM_ADDR_LINE is a string comprised of hyphens, that is as long as the hexadecimal address display noted above. In the
case of a 32-bit platform, “--------” is normal. On platforms using 64-bit addressing, it is possible that this would be
longer (perhaps “----------------”).

MEM_*_MAXIMUM*
These settings control the default value for the memory usage limit, and whether the CLI can access the value. They have
no effect if the cell header size field is disabled.

MEM_DEFAULT_ALLOC_MAXIMUM is the default initial value for the memory usage limit. This is based upon actual data
usage (not the total OS memory exposure), and it is expressed in bytes. Set this to zero to disable this feature by default. It
can be changed at runtime from the default value by the API, or from the CLI.

If MEM_ALLOW_CLI_SET_MAXIMUM is defined, the CLI views and sets the memory usage limit value (including disabling
the limit). If not defined, only the API may access the memory limit, not CLI commands.

If MEM_ALLOW_CLI_SET_MAXIMUM is defined, then MEM_ALLOW_CLI_SET_MAXIMUM_LOW is the minimum value the CLI
is permitted to use for the memory usage limit, and MEM_ALLOW_CLI_SET_MAXIMUM_HIGH is the maximum value the CLI
is permitted to use for the memory limit. These settings have no effect upon the API.

MEM_*_WARNING*
These settings control the default value for the memory usage limit, and whether the CLI can access the value. They have
no effect if the cell header size field is disabled.

MEM_DEFAULT_ALLOC_WARNING is the default initial value for the memory usage warning threshold. This is based upon
actual data usage (not the total OS memory exposure), and it is expressed in bytes. Set this to zero to disable this feature
by default. It can be changed at runtime from the default value by the API, or from the CLI.

If MEM_ALLOW_CLI_SET_WARNING is defined, the CLI views and sets the memory usage warning threshold value
(including disabling it). If not defined, only the API may access the memory warning threshold and not the CLI commands.

If MEM_ALLOW_CLI_SET_WARNING is defined, then MEM_ALLOW_CLI_SET_WARNING_LOW is the minimum value the CLI
is permitted to use for the memory usage warning threshold, and MEM_ALLOW_CLI_SET_WARNING_HIGH is the maximum
value the CLI is permitted to use for the memory warning threshold. These settings have no effect upon the API.

Other Settings
Some compilers do not support the inline keyword. Several routines within the memory manager are defined as inline
in order to improve performance. In an environment where code space is limited, or where the compiler does not support
the inline keyword, set the definition of INLINE to blank. Under normal conditions leave INLINE defined as inline.

55

Some compilers do not support the volatile keyword. Under these conditions, set the definition of VOLATILE to blank.
Under normal conditions, leave VOLATILE defined as volatile. Depending upon the optimization behavior of a compiler,
this feature may be required (else corruption may result in the memory manager data).

Option Mapping
Some of the options that are accessed using the configure script (or through the first section of the pal_memory.h file) are
able to have the features they control changed. These options are mapped to their actual features in the third section of the
pal_memory.h file. The parts of this are controlled by the settings from the configure script or from the first section of the
pal_memory.h file.

By default, the memchk setting (MEM_CHECK_ENABLE) turns on all of these features; the memacct setting
(MEM_ACCOUNTING_ENABLE) turns on the MEM_HEADER_ENABLE_SIZE feature and the MEM_OVERHEAD_TRACK feature;
the memacct-detail (MEM_ACCOUNTING_ENABLE_DETAILS) setting turns on MEM_HEADER_ENABLE_LINKS_HEAP
and MEM_REQUEST_COUNT features.

MEM_HEADER_ENABLE_MAGIC
The memory manager supports checking the integrity of the memory cell by placing a ‘magic number’ in the cell header.
This allows the memory manager to verify that cells are indeed valid, and to also know whether a cell is free or in use
without having to traverse cell lists. Normally, this feature would be used when debugging. This adds only slight time
overhead, but adds a one machine word overhead per cell in the memory manager.

MEM_HEADER_ENABLE_TYPE
The memory manager supports many memory cell types (MTYPEs). Under some conditions, different MTYPEs are allocated
using different mechanisms and often use different size cell headers (some MTYPEs use headers and others not). By
including the MTYPE for a cell in its header, the memory manager can validate that the cell being manipulated is the correct
type, and avoid potential corruption that could be caused by manipulating a cell with an incorrect MTYPE. This adds only
slight time overhead, but adds a one machine word overhead per cell in the memory manager.

MEM_HEADER_ENABLE_SIZE
The memory manager can account for memory usage per cell on fixed size cells without this feature, but in order to
accurately track memory use on variable size cells, it must add a size field to the cell header. This feature also enables cell
size details to be displayed for variable size cells in the CLI. This adds only slight time overhead, but adds a one machine
word overhead per variable size cell in the memory manager (it does not affect overhead on fixed size cells). This also
adds a two machine word per MTYPE overhead to the memory manager data.

MEM_HEADER_ENABLE_CONTEXT
In operating systems where memory space is shared between processes, it is possible to validate that memory cells
belong to the particular process making the request. This feature can help to ensure that somehow memory cells are not
being passed between processes (that could cause corruption within the memory manager) in such an environment. Under
isolated environments, or if the environment is safe for the MEM_GLOBAL_CONTEXT_ENABLE feature, leave this disabled
(in fact, it is disabled automatically if MEM_GLOBAL_CONTEXT_ENABLE is enabled). This adds only slight time overhead,
but adds a one machine word overhead per cell in the memory manager.

MEM_HEADER_ENABLE_LINKS_HEAP
Some supported allocation methods keep cells in lists. This can be useful for debugging. This allows the memory manager
to know all cells that are in the system of that type. Enabling this feature allows the memory manager to track heap cells
that are not normally maintained in lists. There is a time overhead for this feature, as well as a two machine word per heap
cell overhead. Allocation methods that normally keep cells in lists suffer the time and two machine word per cell overhead

56

whether this feature is enabled or not. The memory manager shutdown function can free any remaining cells that are in
lists on final shutdown.

MEM_FOOTER_ENABLE_MAGIC
The memory manager supports checking memory cells for overrun conditions (where the data in the cell are larger than the
cell itself). This feature adds a one machine word overhead (plus alignment waste) per cell, plus a slight time overhead.
Normally, this would be enabled when debugging new code to make sure that it does not overrun the allocated cells for
some reason (such as off-by-one bugs or similar), and disabled under other conditions.

MEM_CONTEXT_MAGIC_ENABLE
Similar to the checking of ‘magic numbers’ in the header and footer for a cell, the memory manager also supports checking
for one in its own data space. This check is only made the first reference to the data during a particular call, but it is made
per call. This adds a slight time overhead, and a one machine word overhead to the memory manager data.

MEM_POINTER_VALIDATE
The memory manager can track the valid memory range for cells, and also verify that any pointers provided to it are aligned
correctly. This feature is intended to be used as a debugging aid; leave this disabled unless trying to track a problem that
appears to be an invalid pointer. It adds a slight time overhead, and a two machine word overhead to the memory manager
data.

MEM_OVERHEAD_TRACK
The memory manager can track its own overhead. This capability adds two machine words per MTYPE to the memory
manager data, and slight time overhead.

MEM_REQUEST_COUNT
The memory manager can track the number of times each MTYPE is used for alloc, realloc, and free requests. This can be
of assistance when trying to optimize the MTYPE settings. It adds a three machine word per MTYPE overhead to the
memory manager data, and slight time overhead.

Memory TYPEs
The MTYPE specifications are expanded and moved. They now include the MTYPE name, the ‘owning’ protocol (the
specifications list uses IPI_PROTO_MAX to indicate the library), a long description of the type as a clear text string, the
allocation method, and three parameters for the allocation method.

The pal_memory.c file provides the CELL_TYPE macro that allows a standard interface to make these descriptions, even
when certain features are disabled. The pal_memory_desc.def file in the pal/api directory contains the descriptions
of the cell types and the needed includes for additional data such as the sizes of types to be used for prealloc class cells. It
also includes lists of MTYPEs that are displayed by the show memory commands in the CLI.

pal_memory.def
The pal_memory.def file defines all of the standard PAL memory APIs, as well as defining all of the available MTYPEs.
The enumerated type pal_mem_t includes all of the MTYPEs that are used in any of the modules. Please see the
comments within the file for details about the function of each of the APIs provided. If MTYPEs are added, removed or
otherwise changed in pal_memory.def, update the pal_memory_desc.def file.

pal_memory_desc.def (first section)
The first section of the pal_memory_desc.def file includes various header files needed when an MTYPE is defined to use
fixed size cells. These header files are needed so the compiler knows the size of the cells at compile time (this can’t be

57

changed after compile time). Please see the comments and includes within this section of the file for examples, to add
additional headers to be able to make additional MTYPEs prealloc or expanding prealloc.

The pal_memory.def file also contains some additional memory related definitions used by the ZebOS code.

pal_memory_desc.def (second section)
The second section of the pal_memory_desc.def file defines a static constant structure that lists characteristics for
MTYPEs. This structure is defined as an array, where excepting the first and last entries, order is not significant. The first
entry must be MTYPE_UNKNOWN, and the final entry must be MTYPE_MAX. A limitation with this version of the memory
manager is that MTYPE_ZGLOB cells are allocated in the heap (this should not be a problem, because this type is only
allocated at startup). Allocate cell types that are variable in size in the heap, bacause prealloc class cells take up their
maximum size. This structure is filled by using the CELL_TYPE macro. The CELL_TYPE macro takes these arguments:

CELL_TYPE (typename,owner,description,method,param1,param2,param3);

Any MTYPEs that are not listed in this structure are assumed to be heap allocated with no additional parameters and no
descriptions (they are displayed numerically when referenced by the CLI).

With the memory manager feature disabled, the memory system supports only one method, heap. All cells are allocated
from the heap, and all frees are returned to the heap. When the memory manager feature is enabled, additional allocation
methods are available. These methods may take advantage of the additional parameters provided, depending upon what
they need.

Argument Description
typename The MTYPE_* designation for the cell type.

owner The IPI_PROTO_* designation for the owning module, or IPI_PROTO_MAX to indicate
the library or the PAL.

description A clear text string 30 characters or fewer describing the cell type.
method The allocation method to use: HEAP, FSHEAP, PRE, EXPRE.
param1 The first parameter for the allocation method. See below.
param2 The second parameter for the allocation method. See below.
param3 The third parameter for the allocation method. See below.

Method Parameter Description
HEAP Cells are allocated from the heap and immediately returned to the heap when they are

freed. None of the parameters have any meaning, and leave each set to zero. Realloc
functions as expected. Supports dynamic size cells.

FSHEAP Fixed-sized cells are allocated from the heap and immediately returned when they are
freed. These cells are fixed size. realloc change only accounting data because the
cells can not change size. Any call that tries to alloc or realloc a cell of size greater
than that specified here fails.

param2 This is the cell size, in bytes.

PRE Cells are allocated from a fixed size pool, and returned when freed. Only the first two
parameters have any meaning, and leave the third set to zero. Once all cells are
allocated, no more can be allocated until some are freed. Alloc and free take a fixed
length of time. Realloc calls change only the accounting because the cells can not
change size. Any call that tries to alloc or realloc a cell of size greater than that
specified here fails. Only supports fixed size cells.

param1 This is the number of cells to make available on startup. Only this many cells total can
be allocated.

param2 This is the cell size, in bytes.

58

Some reasons for using an alloc method other than HEAP would include:

• Performance: If an MTYPE tends to be allocated and freed a lot, the overhead for heap alloc and free can be huge.
Using either PRE or EXPRE method can improve performance because these bypass the heap for normal operations.

• Memory fragmentation: If a particular MTYPE tends to be allocated and freed a lot, but not always freed in reverse order
of allocation, or perhaps with intervening allocs and frees of other types, memory fragmentation can occur. Using
either PRE or EXPRE method reduces this because these are allocated from and freed into reserved memory pools.
This can also work for MTYPEs that are resized often, but will always be smaller than a fixed size.

• Tracking of memory usage: MTYPEs that use static sized cells do not require additional overhead in order to track their
memory usage.

ZebOS ARS uses memory in several different ways. A few of these might make good candidates for using MTYPEs other
than HEAP.

• Variable sized structures or strings. These are not good candidates for conversion to using PRE or EXPRE, because
there would be considerable memory waste from cells that are not fully utilized.

• Variable sized structures that are always smaller than a fixed size. These might make good candidates for conversion
to use PRE or EXPRE, but only if they are never allocated larger than the chosen size, and tend to be allocated,
reallocated, or freed often. On PRE and EXPRE, because the actual cell size is fixed, realloc also runs in O(1) time and
does not need to do memcpy even in the case where the cell is expanding.

• Fixed size structures. These are the optimal choice for conversion to PRE, FSHEAP or EXPRE allocation types,
because they are fixed size. The best performance gain could be achieved by using the memory accounting details
feature to collect statistics about the structures that are allocated and freed the most in a given configuration, and
converting those.

• Buffers that are passed to the OS. If the OS frees these buffers, they are not good candidates, because the OS often
cannot be asked to use the ZebOS memory manager. If, on the other hand, the OS returns ownership of these buffers
to the application and the buffers have a reasonably small maximum size (perhaps some network MTU), they might be
good candidates.

After using the memory accounting statistics to find the MTYPEs with high alloc, free, and realloc counts, decide on the best
method for handling the MTYPEs. MTYPEs that always have a need for a few (never many) and that tend to see
substantial alloc / realloc / free activity might be best using PRE. MTYPEs that have high alloc / realloc / free activity and
tend to use more than a few cells (or may sometimes use none), may benefit from EXPRE. Use the FSHEAP method for
byte-level accounting of a fixed size MTYPE without the additional machine word overhead for the byte count.

Several examples are given in the pal_memory_desc.def file of MTYPEs that use EXPRE allocation method, and many
are given that use the FSHEAP method. Many of those using EXPRE used a similar method in the memory manager code in
previous releases of the ZebOS ARS.

EXPRE Cells are allocated from a pool with an initial size, and returned to that pool when
freed. All three parameters have meaning. After all cells are allocated, another
allocate request attempts to expand the alloc pool by a set number of cells. Free takes
a fixed amount of time to run. Alloc takes a fixed time to run unless there are no more
cells, then it has to add more cells from the heap. Realloc calls change cell accounting
because the cells can not change size. Any call that tries to alloc or realloc a cell of
size greater than that specified here fails. Only supports fixed size cells.

param1 The number of cells available at startup. The cells are allocated at startup whether any
are used or not. If zero, the first alloc request initializes the pool with a number of cells
equal to the additional cells parameter, and ignores this value.

param2 This is the cell size, in bytes.

param3 This is the number of additional cells that made available when an alloc request is
made with no available cells. Use a minimum value of 16 for this parameter; for small
MTYPES efficiency is gained by providing more cells; for large MTYPES, inefficiency
could result from having much empty space.

59

pal_memory_desc.def (third section)
The third section of the pal_memory_desc.def file defines several static constant structures that list the MTYPEs that are
displayed by the memory manager when the CLI is asked to show memory for a particular protocol (or the library, or for all
protocols). These lists include each MTYPE to be displayed for the protocols, and a list of these lists that is used by the
show memory and show memory all commands.

Source Code
The memory module is written using standard C calls where needed, and calls to other PAL components or to the library
where applicable. The code is in the pal_memory.c and pal_memory.h file, and the supporting code and configuration
(pal/api/pal_memory.def, pal/api/pal_memory_desc.def) and some parts of make process files
(configure.in, acconfig.h).

There were several design objectives for the memory manager:

The algorithms involved in implementing the objectives are portable, but some of the specific behaviors are not.

Additionally, extensibility was considered in the design of the memory manager. It is a reasonable process to add new
MTYPEs and descriptions (that the CLI accommodates without changes to the CLI code -- even by the commands that
accept an MTYPE name as a parameter), as well as to change settings for existing MTYPEs. Additional allocation methods
are also possible, but it is a more complex process.

Keep the #define sections of the source at hand while viewing the code.

In laying out feature implementation within the code, the #ifdef...#else...#endif construct was used extensively.
None of these constructs spans sections of the file, and they are usually only a few lines in length. Sometimes, they are
layered, especially when behavior is different when features are used in combination (usually this happens in the CLI
implementation).

Objective Reason
Fast operation Memory requests are made in large numbers by many

products.
Small code size It is important to keep the code small enough to run on

embedded systems and in other applications that run on
limited resources.

Small static data size Same reason as small code size.
Accurate accounting If accounting memory use, it is almost useless if there are

inaccuracies built into the accounting system.
Various allocation methods Sometimes there is a need to allocate and deallocate memory

of a particular type repeatedly. In these cases, alternatives to
(the often slow) heap helps system performance.

CLI compatibility Several features in previous releases that had to be
maintained, or at least, the UI had to be maintained.

Debugging aid features that enhance debugging, such as trapping frees of
already free cells, and warning of corruption, are useful.

60

CLI features
The older versions of ZebOS provided a simple memory accounting system. This system attempted to track active cell
count and total byte count. Active cell count could be tracked with reasonable accuracy, but total byte count did not always
work, particularly when dealing with cells types that could be different sizes.

There was also a ‘memory manager’ feature that handled various allocation methods. This feature could be enabled or
disabled at configuration time.

This version replaces both of those features, and provides additional functionality. This version provides several CLI
commands, that were provided by the old accounting function, as well as a few new CLI commands. This version also
provides better accuracy, because each active cell size can be known, as well as the totals. Additional accounting details
(such as the number of times an MTYPE has been allocated or freed, or the overhead for the memory manager itself) can
also be enabled.

The original accounting CLI features are handled as they were before. Only the modules that were enabled during the build
show up in the list, and only the options that are applicable to the running module are available (the RIP daemon cannot
report data about the memory usage in the PIM daemon, for example).

There are several show commands (from view or enable state) provided by the memory manager, based upon the modules
and features that are enabled.

Where an MTYPE is given, it can be either MTYPE_* style name, or the number assigned to the MTYPE in the enumeration of
the MTYPEs. The list of known MTYPEs, and the valid numbers, can be displayed using the CLIs built-in help feature.

Note: The output from these commands varies according to the actual options used during the build. Appropriate notes
are provided in Appendix 1 with the output samples.

Command Description
show memory Displays memory information for all modules
show memory all Displays memory information for all modules
show memory bgp Displays memory information for BGP module
show memory cspf Displays memory information for CSPF module
show memory isis Displays memory information for IS-IS module
show memory ipv6 ospf Displays memory information for OSPFv3 (IPv6) module
show memory ipv6 rip Displays memory information for RIPng (IPv6) module
show memory ldp Displays memory information for LDP module
show memory nsm Displays memory information for NSM
show memory ospf Displays memory information for OSPF module
show memory pim Displays memory information for PIM module
show memory rsvp Displays memory information for RSVP module
show memory lib Displays memory information for the library
show memory summary Displays a summary of the memory manager status
show memory stats [MTYPE] Displays statistics for all memory cell types that have active cells, unless the

MTYPE is specified, then it displays statistics for only the specified MTYPE.
show memory stats all Displays statistics for all memory cell types, used or not.
show memory detail [MTYPE] Displays a list of active cells for all memory cell types that have active cells or

have had active cells during this run, unless the MTYPE is specified, then it
displays statistics for only the specified MTYPE. This command is only available
if MEM_ALLOC_TYPES_ENABLE is defined (the memmgr feature is enabled) or if
MEM_HEADER_ENABLE_LINKS_HEAP is defined.

61

There are also commands in the configure state of the CLI. These are intended to configure certain aspects of the memory
manager. Note that these are available only if MEM_HEADER_ENABLE_SIZE and MEM_LIMIT_ENABLE are both
defined. Also, these features must be enabled by defining MEM_ALLOC_CLI_SET_MAXIMUM or
MEM_ALLOC_CLI_SET_WARNING as appropriate. If these commands are available, and the maximum or warning
threshold is active, the show memory summary command displays the current maximum or warning threshold.

API features
There are several additional APIs defined by the new memory manager. These are used to configure the memory
manager, to check the memory manager status, and to provide notification to an external entity for certain types of memory
events.

result_t pal_mem_warning_set(size_t warning);

This function sets the current value, in bytes, for the warning threshold. It returns RESULT_OK unless an error occurs, in
that case it returns the error. Set the warning threshold to zero to disable this feature.

size_t pal_mem_warning_get(void);

This function gets the current value, in bytes, for the warning threshold. It returns zero if the warning threshold is disabled,
or if an error occurs.

result_t pal_mem_maximum_set(size_t maximum);

This function sets the current value, in bytes, for the maximum memory limit. It returns RESULT_OK unless an error occurs,
in that case it returns the error. Set the maximum to zero to disable this feature.

size_t pal_mem_maximum_get(void);

This function gets the current value, in bytes, for the maximum memory limit. It returns zero if the maximum is disabled, or
if an error occurs.

size_t pal_mem_current_get(void);

This function gets the current memory usage, in bytes. It returns zero if an error occurs.

result_t pal_mem_handler_set(enum mem_event_type event, mem_event_handler handler);

This sets a handler in the memory manager for the specified event. It returns RESULT_OK for success, or the error on
failure. Set a particular handler to NULL to disable the handler and to use the default behavior.

result_t pal_mem_handler_get(enum mem_event_type event, mem_event_handler handler);

This gets a handler from the memory manager for the specified event. It returns NULL if there is no handler or if there is an
error.

Command Description
memory maximum <size> Sets the memory usage maximum to <size>, specified in bytes. This

command is only available if MEM_HEADER_ENABLE_SIZE is defined.
no memory maximum Disables the memory usage maximum threshold feature.
memory warning <size> Sets the memory usage warning threshold to <size>, specified in bytes. This

command is only available if MEM_HEADER_ENABLE_SIZE is defined.
no memory warning Disables the memory usage warning threshold feature.

62

Event callouts
The memory system supports several event callouts to notify other components of potential problems. Handlers may be
registered for these callouts using the pal_mem_handler_set function, and may be retrieved using the
pal_mem_handler_get function. Only one handler may be in place for a particular event, but different handlers maybe
used for each event (or the same handler may be used if that is desired).

There are currently several events which may have handlers:

The memory manager calls the registered handler (if there is none, it follows the default behaviour of assuming the
MEM_RESP_CONTINUE result from the handler). The handler should, if possible, make an attempt to fix the situation.

MEM_EVENT_WARN_THRESHOLD This indicates that a memory request which is currently pending would
put total consumption at or above the warning level. This does not affect
the results of the memory operation, unless the handler specifies the
FAIL result.

MEM_EVENT_MAXIMUM_LIMIT This indicates that a pending memory request would put total
consumption at or above the maximum limit. Heap memory must be
freed before the handler returns a result or the only result which will not
FAIL is FORCE.

MEM_EVENT_NO_MEM This indicates that a pending memory request is unable to be filled
because the OS is not fulfilling a request by the memory manager for a
heap cell. Heap memory must be freed before the handler returns a
response other than FAIL or CONTINUE.

MEM_EVENT_NO_FREE This indicates that a pending memory request is unable to be filled
because there are no free cells of the type which has been requested.
Memory of the particular type must be freed before the handler returns a
response other than FAIL or CONTINUE.

MEM_EVENT_TOO_BIG This indicates that a memory request has been made for a cell, but the
requested size is too big for the requested type of cell.
This is not recoverable and indicates either a configuration error or an
error in the calling module. It will only FAIL (all results will FAIL).

MEM_EVENT_INVALID_CELL This indicates that a memory request has been made to manipulate a
cell which is not valid for some reason (such as invalid pointer, or
corrupt cell header, or incorrect context).
This is normally unrecoverable since it indicates either corrupt cells or
an invalid pointer. It will FAIL for all except FORCE, which will make a
new cell of the desired size.

MEM_EVENT_INT_ERR This indicates an internal error in the memory manager, likely caused by
incorrect configuration (such as a type using an undefined alloc
method).
This is not recoverable and likey indicates misconfiguration or some
sort of corruption in the memory manager subsystem.

63

Once the handler has performed its actions, it returns a response to the memory manager, letting it know what to do next.
There are several responses. However, some problems are not recoverable and will always result in the memory manager
failing the request.

In this context, 'Return error' indicates the normal mechanism of returning an error in malloc/realloc/free calls, as
documented in the standard libraries.

MEM_RESP_RETRY can cause infinite loops: the memory manager retries the operation and if the situation has not been
resolved, calls the same handler to attempt to get it handled. When using RETRY, be careful to avoid loops.

MEM_RESP_FORCE does not remove or disable the maximum limit, so forcing past it will require continued use of force
for all allocations until the memory consumption falls back below the maximum limit.

All memory allocation or expansion requests that would put or keep memory usage above the warning level will cause the
warning event.

Handlers for events that indicate a low memory or out of memory condition must not do anything which would allocate or
reallocate memory, because they are reentrant functions; the new request might also be above the given threshold. All
handlers may free memory, or make other requests that do not allocate or reallocate memory.

Memory event handlers use a varargs mechanism for addressing the state information from the memory manager.
Currently, they all provide the same set of parameters, but this may change if new events are added, according to what
data are available. The C prototype for a handler function is:

mem_event_resp_t mem_event_handler(mem_event_t, size_t, struct lib_globals *, pal_mem_t,
void *, size_t, size_t);

All events provide this set of parameters if they are available (if an argument is not available for the event, zero is used):

 mem_event_t = the event type
 size_t = the number of arguments which follow
 struct lib_globals * = the library context for the memory manager (will be NULL on startup before the

call to pal_mem_register, and may be NULL during the shutdown operations)
 pal_mem_t = the cell type being manipulated

Response Event Result

MEM_RESP_CONTINUE MEM_EVENT_WARN_THRESHOLD Proceeed as if the warning threshold did not exist.

(all others) Return error.

MEM_RESP_FAIL (all) Return error.

MEM_RESP_RETRY MEM_EVENT_WARN_THRESHOLD Recheck usage against the threshold.

MEM_EVENT_MAXIMIM_LIMIT Recheck usage against the maximum limit.

MEM_EVENT_NO_MEM Retry request.

MEM_EVENT_NO_FREE Retry request.

(all others) Return error.

MEM_RESP_FORCE MEM_EVENT_WARN_THRESHOLD Proceed as if the warning threshold did not exist.

MEM_EVENT_MAXIMUM_LIMIT Proceed as if the maximum limit did not exist.

MEM_EVENT_INVALID_CELL
Create a new cell of the specified size filled with
zeroes.

(all others) Return error.

64

 void * = pointer to the cell if it already exists (this is only valid on realloc and free)
 size_t = number of bytes requested in the cell (this is only valid on alloc and realloc)
 size_t = number of heap bytes free required to fulfill it (this is only valid on alloc and realloc) (this is only

valid on realloc if the input cell was also valid)
Currently, the warning and limits are not aware of the memory subsystem overhead, but they are aware of the operation of
the PRE and EXPRE types. Always free heap cells to free memory for NO_MEM, and always free the type being
requested to free memory for NO_FREE.

65

CHAPTER 12 Timer

ZebOS provides a set of platform-abstracted timer functions in pal_time.c.

Function name Description.
pal_time_start This call starts the time manager.
pal_time_stop This call stops the time manager.
pal_time_clock This call gets the number of clock ticks since the system started; this

call replaces clock ().
pal_time_current This call gets the current time. Returns the current time, plus sets the

time_t at the end of the provided pointer (unless pointer is NULL then
it only returns the current time). This replaces the time () call.

pal_time_tzcurrent This call gets time of day and timezone information. Puts current
time, plus the current timezone in the provided space. Does not
return time if t is NULL; does not return timezone if tz is NULL.

pal_time_mk This call takes an expanded struct tm and compress it into a
time_t. This call replaces the mktime () call.

pal_time_gmt This call takes a local time and convert it to GMT (UTC), in expanded
form. This call replaces gmtime ().

pal_time_loc Take a local time and converts it into expanded form. This call
replaces the localtime () call.

pal_time_strf This call takes an expanded time and converts it into string form.
This follows the K&R definition for strftime ().

pal_time_calendar Convert the calendar time into string form. The calendar time is often
obtained through a call to pal_time_current (); This function is used to
replaced ctime ();

66

67

CHAPTER 13 Threads

ZebOS ARS uses a thread-queuing mechanism in /lib/thread.c to manage a variety of asynchronous events. The
threading mechanism the ZebOS daemon uses may be characterzed as a non-preemptive, execute-to-completion type of
scheduling. As far as the host OS is concerned, it is a single thread. Therefore there are no contention problems, since all
the code execution is serialized.

Each protocol module has a master thread structure to hold several thread linked-lists. Each linked list is dedicated for an
executable type; network I/O read, network I/O write, handling an event, timer, etc. The thread linked-list is built of
threading elements that contain pointers to the actual executable task. For every thread element, it has an executable
function associated with it. For every task that needs to be executed, a thread element is added to the linked-list for its type.
One important part of an event is the timer function. The main program waits on the main loop as:

while (thread_fetch (master, &thread))
 thread_call (&thread);

The function thread_fetch()uses the select() system call to perform a blocking wait on pre-set timers or any system
I/O interrupt. When the select becomes unblocked, the callback is returned from thread_fetch() and the main loop
executes the thread callback using thread-call().

When several events arrive simultaneously (multiple timers, read, write), they are all placed into the EVENT queue; all such
threads are continually provided from fetch until the EVENT queue is empty, in which case the blocked select will once
again be invoked.

MasterThread Struct

Network
I/O

Reads

Network
I/O

Writes

Event
Handlers

Timers

others

Thread
Element

head

tail

count

next

prev

master

next

prev

master

next

prev

master

next

prev

master

NULL

NULL

next

prev

master

ID

type

func

68

Internal Structure
ZebOS/lib/thread.h

/* Linked list of thread. */
struct thread_list
{
 struct thread *head;
 struct thread *tail;
 int count;
};
/* Master of the theads. */
struct thread_master
{
 struct thread_list read_pend;
 struct thread_list read_high;
 struct thread_list read;
 struct thread_list write;
 struct thread_list timer;
 struct thread_list event;
 struct thread_list event_low;
 struct thread_list ready;
 struct thread_list unuse;
 fd_set readfd;
 fd_set writefd;
 fd_set exceptfd;
 unsigned long alloc;
};
/* Thread itself. */
struct thread
{
 unsigned long id;
 unsigned char type;/* thread type */
 struct thread *next;/* next pointer of the thread */
 struct thread *prev;/* previous pointer of the thread */
 struct thread_master *master;/* pointer to the struct thread_master. */
 struct zglobals.*zg; /*pointer to the struct zglobals*/
 int (*func) (struct thread *); /* event function */
 void *arg; /* event argument */
 union {
 int val; /* second argument of the event. */
 int fd; /* file descriptor in case of read/write. */
 struct timeval sands;/* rest of time sands value. */
 } u;
};
...

69

Functions in file ZebOS/lib/thread.c

Callback
When programmers want to handle an asynchronous event based on I/O or Timer Timeout, they pass a "Callback" pointer
to the threading routines. When the event happens, control will be passed to the programmer-supplied "Callback" which
can then handle the event. The callback pointer can be an I/O handler (using a file descriptor), or a time-out handler. The
daemon is responsible for initiating these callback pointers. For example, from the zebos daemon:

• For Socket read: call thread_add_read(zebosm, fd , callback);

• For Socket write: call thread_add_write (zebosm, fd, callback);

• For a Timer: call thread_add_timer(zebosm, callback, <argument>, INTERVAL)

• For an Event: call thread_add_event (………)

When the event occurs, the callback function will be invoked, and the <argument>, if any, is passed to the function. Within
the CALLBACK, it is typical to re-trigger the event or to invoke thread_cancel(). A typical macro within OSPF is
OSPF_TIMER_OFF (timer struct).

The thread_fetch() returns any thread at the top of the event queue; then the top of the ready queue. Times are
stored as actual (future) time.

The head of the list is subtracted from TIME-OF-DAY to get how long to wait. If there is no head of the list then the wait time
is defined as infinity. During thread_add_timer(), the wait time is converted to actual time by adding Time-of-day to the
time to wait. It is then sorted into the list of all other actual times. This wait time, and the functions readfd, writefd,
exceptfd are used in the select call. If the read is satisfied, threads are taken from the read list and set into the event list.
If the write is satisfied, threads are taken from the write list and set into the event list. All timer threads older than time-of-

Function Name Description Files (ZebOS/lib/)

Thread_make_master Create a master structure that
holds all thread linked-lists

Thread.c

Thread_add_read Add a read I/O thread to the
read linked-list

Thread.c

Thread_add_write Add a write I/O thread to the
write linked-list

Thread.c

Thread_add_timer Add a timer thread to the timer
linked-list

Thread.c

Thread_add_event Add an event to the event
linked-list

Thread.c

Thread_cancel Cancel a thread to the linked-
list

Thread.c

Thread_cancel_event Cancel an event Thread.c

Thread_fetch Fetch a thread element to be
executed from the master if
there is any I/O and the timer
expires.

Thread.c

Thread_call Call a specific thread element Thread.c

Thread_execute Execute a specific thread
element

Thread.c

70

day are taken from the timer list and set into the event list. If a thread event exists, its thread is returned. If there are no
thread events then this process tries the select indefinitely.

1

CHAPTER 14 Runtime Configuration

These functions take care of reading and writing the runtime configuration. The run-time configurations are kept in .conf
files (bgpd.conf, ospfd.conf and so on), the main one being zebos.conf.

With PAL, the full-path, configuration filename can now be specified on the start up line:

nsm -f /usr/local/etc/myconfig.conf

Without a path

nsm -f nsm.conf

the NSM reads the configuration from the named file in the current directory. The command write_memory causes
file.old to be written to the directory the configuration was read from.

How:

• code to read/parse config-filename as argument already exists. Filename is already passed to <prot>_main()
functions.

• <prot>_loadconfig() functions call host_config_set() to store config_file in host->config[]. Then, they call
pal_config_open().

• pal_config_open() calls host_config_get() to see if filename exists.

• If yes, it opens that file.

• If NULL, it opens the default file.

(Previously, it was just opening the default file always).

If pal_config_open() fails, the error is now LOGGED so that administrator knows what's going on. Previously, nothing was
being done to handle this error. The stderr/out logging is turned off by default and this error is not displayed to the
screen. It is logged to /var/log/zebos/.

pal_config_open() takes an argument that specifies the config file.

Run-time Search Order for Configuration files
1) If -f option is specified, configuration checks for this file ONLY.

2) Else, it looks for the default file in the following order:

1. (i) Check nsm.conf in CWD

pal_config_start(); none
pal_config_stop(); none
pal_config_open(); fopen for config files
pal_config_close(); fclose for config files
pal_config_read(); fread for config files
pal_config_reads(); freads for config files
pal_config_write(); fwrite for config files
pal_config_writes(); fwrites for config files
pal_config_seek(); fseek for config files
pal_config_pos(); pos for config files
pal_config_eof(); eof for config files

72

2. (ii) Check nsm.conf.sav in CWD

3. (iii) Check nsm.conf in /usr/local/etc/

4. (iv) Check nsm.conf.sav in /usr/local/etc/

Note: This is example for nsm only. CWD = current working directory.

73

CHAPTER 15 Logging and Debugging

Logging
A log file can be created for each protocol by adding the debug command to the configuration file. For example, for OSPF,

log file <path/file>
debug ospf lsa

To tee the logs use the command terminal monitor for on, terminal no monitor for off.

plog_err
zlog_debug

_notice
_info
_warn
_err

keywords:
packet
lsa
event
nssa

For logging and debugging the user needs to be familiar with multiple commands such as ping, trace route, the many show
commands, vtysh, netstat –rn, and the “logging” options in each of these commands. The routing modules also have the “-
l” options for logging. The user will also need to know the use of vtysh option.

Telnet <host> <service>

where <host> is localhost or <ip addr>, and <service> is port Number or ZebOS alias defined in
/etc/services.

Debugging
The zebos routing daemon supports all routing protocols. It is executed as:

zebos (-bdhklrv) (-f config-file)(-P port-number)

where:

-b, --batch: Runs in batch mode, parses its configuration and exits.
-d, --daemon: Runs in daemon mode, forking and exiting from tty.
-f, --config-file: Specifies the config file to use for startup. If not specified, it defaults to /usr/local/etc/

zebos.conf.
-h, --help: A brief help message.
-k, --keep_kernel: On startup, don't delete self-inserted routes.
-l, --log_mode: Turn verbose logging on.
-P, --vty_port port-number: Specify the port that the NSM VTY will listen on. This defaults to 2602, as specified

in /etc/services.
-r, --retain: When the program terminates, retain routes added by zebos

74

-v, --version: Print the version and exit. If the zebos process is configured to output logs to a file, the ZebOS
writes the zebos.log file to the directory that started ZebOS. The ZebOS process can log to a standard
output, to a VTY, to a log file, or through syslog to the system logs.

Show Commands assisted debugging
Some of the simple “show” commands are:

show ip route; show ipv6 route; show interface; show ipforward; show ip6forward

Debugging can be accomplished by logging special categories, either to file or to the terminal or to both. For example,
NSSA debug proceeds by first inserting into the configuration file debug ospf nssa. Then enable is issued followed by
terminal monitor. Logs are viewed on the terminal console. The easiest category would be altering the CLI-Interface
to include a rich variety of user-defined commands. (Debugging is easier under VxWorks because all routines are
accessible, and harder under Linux because inter-task communication might be involved).

75

CHAPTER 16 Asynchronous Events

Unix
In the Unix environment, the ZebOS threads are idle until either a timer event triggers or until an I/O event ensues. These
two operations are bundled into a single blocked select statement. Upon block-release the rules dictate that the program
can use the FD_ISSET macro for each active File Descriptor to determine which I/O events are ready and can use the
gettimeofday() on its sorted list of timers to determine which timers are ready. These conditions are actually queued
up and their associated threads are executed, until there are no more active threads, in which case the program will fall into
a blocked select once again. The above sequence is the same, in parallel, for all active, running daemons or processes.

RTOS
In the RTOS environment, the simulated select statement is NOT BLOCKED. An external process can call a ZebOS task to
poll its I/O or poll its timer list to find any active thread ready to run. The process that calls ZebOS tasks can be in a multi-
task environment, a single-task environment, or process-type environment (Unix). The method a process uses to call
ZebOS tasks can be any of the following:

• Background Manager

• I/O Manager

• 1 Second Timer Tick Manager (i.e. RTOS_DEFAULT_WAIT_TIME)

• Timer Wake-up Manager

Current Main Loop
Each daemon performs its various forms of initialization and then enters a Main loop.

Example:

zebosm->master = thread_master_create(); Builds the Master thread struct
while (thread_fetch(master, &thread))
{

thread_call (&thread);
}

thread_fetch() blocks on a select statement until either the current time-out ensues or until any I/O operation
unblocks. For the duration of the select, the task is idle. Upon select becoming unblocked, the callback is returned from
thread_fetch(), and the main loop executes the thread callback using thread_call(). In case several events
arise at the same time, (multiple timers, read, write) they are all placed into the EVENT queue; all such threads are
continually provided from fetch until the EVENT queue is empty, in which case the blocked select will once again be
invoked. ZebOS uses two priority queues; Events is for Internal Events, serviced first, and Ready is for I/O and timers.
VxWorks emulates the select function by invoking vs_select in vs_list.c.

CURRENT gettimeofday()

Unix

#include <sys/time.h>
#include <unistd.h>
gettimeofday(. . .); /* standard UNIX function */

76

VxWorks

int
gettimeofday(struct timeval_L * tv ,void * unused)
{
struct timespec tp;
clock_gettime (CLOCK_REALTIME,&tp); /* standard VxWorks function */
 tv->tv_sec=tp.tv_sec;
 tv->tv_usec=tp.tv_nsec*1000;
 return 0;
}

RTOS Methods
A ZebOS task can be the zebos daemon (the NSM running process and threads) or any protocol daemon (ripd, ospfd
bgpd, and so on).

Under RTOS, each of the tasks above must be individually managed by the central I/O in the system and the central timer
functions. One entry (or message) to the above tasks is called <Task>_tic(); ZebOS finds out what type of service is
being called by looking at FD-bits or by looking at gettimeofday().

OSPF Threads
The following THREADS (t_* functions) are defined throughout the system:

These threads are usually associated with timers, to allow Queuing processes and Simultaneity processes to proceed.

t_router_id_update t_router_lsa_update t_distribute_update t_spf_calc
t_ase_calc t_abr_task t_asbr_check t_external_lsa
t_maxage t_maxage_walker t_lsa_refresher t_router_lsa_self
t_poll

77

CHAPTER 17 Porting ZebOS to Real-time Systems

Currently IPI has ZebOS software ported and running on all the major Unix platforms and embedded RTOS systems on the
Intel/PowerPC/MIPS platforms. The customer can use any one of these software builds as a reference build. The simplest
porting involves many steps, and many complicated situations could arise depending on the types of variations from the
above reference builds.

The communication stack is designed to be system independent and easily transferred to most real-time platforms. The
purpose of the real-time ZebOS is to develop efficient and light routing blocks with the following benefits:

• Portability

• Efficient utilization of a real-time environment provides high-performance routing.

• Scalability

• Integration with various physical media (for example, fiber optics, Ethernet, Serial Links, etc.).

When considering of porting of ZebOS to a RTOS, the following factors should be considered:

• Hardware16/32/64-bit CPUBig/Little Endian architectures Global Address Space (No Memory Management Unit)

• Software Real-time preemptive/non-preemptive

• OS Persistent File system or non-volatile memory (Flash memory, PCMCIA memory cards)

• TCP/IP stack

• Preemptive OS Scheduler

• Flash data storage

• SNMP management interface

• TTY management console ZebOS basic IP stack

The real-time ZebOS is implemented in the SendBox environment. ZebOS runs in a type of virtual environment,
surrounded with the following blocks that interface with the real OS services and other interface:

• Physical Low-level Interfaces

• Inter Task Communication

• Configuration and Management

• TCP/IP stack

Most real-time operating systems provide the preemptive Scheduler with a guarantee of task switching. ZebOS runs
efficiently in preemptive systems and provides these OS-specific, task-scheduled services:

• Guarantees the time interval for minimum task switching

• Watch Dog timer hooks

• Resistance to priority inversion

• Cold and warm system restart

• Hooks for handling power-off correctly

This task scheduling policy has fewer restrictions than preemptive schedulers. Behavior of non-preemptive ZebOS is
similar to the Unix version of the routing stack.

Some of the following information has been discussed earlier. However it is useful for porting of ZebOS to other RTOS.

78

79

CHAPTER 18 Miscellaneous

Crypto
First of all, IPI recommends avoid using the plain crypt() function because it uses a static buffer for the return value and
therefore isn't thread safe. The des_fcrypt() routine provides the same functionality, and because it takes the result
buffer as a parameter, it is thread safe.

File and I/O management
PAL handles all file and I/O management to make sure that all protocols are not dependent upon any system-level details.

Globals
ZebOS uses the minimum number of global variables as possible, utilizing pointers for inter-process communication as
parameters in function calls. The file lib.h contains the definitions for the global structures typedef struct
lib_globals.

80

Index - 1

Index

A
ABR 27
Access Lists (CLI) 31
acconfig.h 20
AppleTalk 11
area border router 27
AS-boundary router 27
ASBR 27
assisted debugging 74
Asynchronous Events 75
ATM, traffic engineering capabilities 11
AutoDiscovery 12

B
backup designated router 27
BDR 27
BGp

auto discovery 12
BGP-AD 12
Border Gateway Protocol 10
Border Gateway Protocol (BGP) overview 10

C
Callback 69
CLI

adding commands 29
command.c 29
comparing virtual and physical routers 15
Config.h 20
connectivity diagram 11
CR-LDP 11

D
Debugging ZebOS protocols 73
debugging, using show commands 74
designated router 10, 27
DR 27
DRother 27

E
end hosts 13
EXPRE, see memory management, extended preallocation
exterior gateway protocols 10

F
FEC 11

first hop router 13
fixed sized memory cells

use FSHEAP, PRE or EXPRE 52
Forwarding Equivalence Class 11
FSHEAP see memory management, fixed heap

H
hconfig.h 20
HEAP see memory management, heap
Hello protocol 10
hello protocol 10

I
inter-autonomous system routing 10
intra-autonomous system routing 10

L
Label Distribution Protocols 11
label edge router 11
Label Switch Paths 11
label switch router 11
labels 11
layer 2 switching 11
LDP 11
LER 11
libospf.a 20
Link State Data Base 27
link-layer protocol 11
linklist.c 29
link-state advertisements 10
Logging rutime information 73
LSDB 27
LSP 11
LSR 11

M
main.c 20, 26
memory management

extended preallocation 52
fixed size

when to use 52
heap

when to use 52
preallocation 52

MP-BGP 12
MPLS

BGP VPN 11
evolved from

Index - 2

ARIS 11
Cell-Switched Router 11
Tag Switching 11

gets route data from IS-IS 11
gets route data from OSPF 11
QoS 11
supports

AppleTalk 11
ATM 11
Ethernet 11
FDDI 11
Frame Relay 11
IPv4 11
IPv6 11
IPX 11
Point-to-Point 11
Token Ring 11

TE 11
MPLS (LDP) overview 11
multi-access networks 10
multiple-peer 10

N
NSM

main.c 26

O
Opaque LSA 12
Open Shortest Path First (OSPF) overview 10
OSPF

Link State Data Base 27
packet types

ACKNOWLEDGE 27
DATA-DESCRIPTOR 27
hello 27
LSA-REQUEST 27
LSA-UPDATE 27

OSPF Hello protocol 10
ospf_asbr.c 28
ospf_flood.c 28
ospf_interface 28
ospf_ism.c 28
ospf_lsa.c 28
ospf_lsdb.c 28
ospf_main.c 27
ospf_neighbor.c 28
ospfd.h 27

P
packet types

OSPF 27
physical router configuration 15
PRE see memory management, preallocation
pruning routing loops 11

R
request for comments supported 17
RFCs supported 17
role of OSPF routers 27
Router Connections 28
router connections

broadcast 28
non-broadcast 28
point-to-point 28
virutal 28

router roles
area border router 27
AS-boundary router 27
backbone router 27
backup designated router 27
designated router 27

Routing Information Protocol (RIP) overview 9
routing loops 11
routing metric, BGP 11

S
self-inserted routes 26
SNMP 41, 43
Source Code

Directories 19

T
thread_fetch() 67
thread-call() 67
thread-queuing mechanism 67

V
Variable size memory cells

use HEAP 52
vector.c 29
Virtual Private Network 12
virtual router

as a software emulation 16
configuration 15

virtual router management authority 16
VR

internal architecture 16
VRMA- see virtual router management authority
VRRP protocol introduction 13
vty.c 29
vtysh Debugging 39

Z
zebos daemon 19
ZebOS Debugging 73
ZebOS protocol daemons 19

	CHAPTER 1 ZebOS® Advanced Routing Suite
	Advanced Software for Next Generation IP Routing
	ZebOS Architecture
	Routing Protocol Support
	MPLS Support
	MPLS-VPN Solutions
	MPLS Layer 2 Virtual Circuit
	Network Processor Integration
	Management and Logging
	Nexthop Updating for RSVP PIM and BGP

	Development, Documentation, and Support
	System Requirements
	Key Features and Benefits
	The Future of the Internet: IPv6 and IP Infusion

	CHAPTER 2 IP Infusion Product Overview
	Overview of Routing Protocols
	Routing Information Protocol (RIP)
	Open Shortest Path First (OSPF)
	Border Gateway Protocol (BGP)
	Multi-Protocol Label Switching
	RSVP-TE (Label Distribution Protocol)
	MPLS-TE & MPLS VPN
	Resource Reservation Protocol-Traffic Engineering (RSVP-TE)
	PIM-SM
	IS-IS
	Virtual Router Redundancy Protocol (VRRP)
	Redundancy
	Virtual Routing (VR)

	ZebOS ARS Supported Standards

	CHAPTER 3 Source Code Structure Overview
	Source Code Summary
	\ZebOS\ Subdirectories
	The ZebOS/nsm and ZebOS/lib directories in detail

	CHAPTER 4 Build System Overview
	Compile-time configuration
	Configuration Options

	CHAPTER 5 Common Module Framework
	Module Framework
	Overview of Sample ZebOS NSM
	Overview of Sample ZebOS OSPF

	CHAPTER 6 CLI Overview
	Function of the ZebOS CLI
	Add a new Command Using CLI
	Access Lists

	CHAPTER 7 VTY Overview
	Introduction
	Features
	Benefits

	VTY Architectural Concepts
	ZebOS without VTY shell
	Using VTY shell
	Unique Command behavior

	How VTY fits into the ZebOS Build Process
	Building and Customizing VTYsh in the ZebOS ARS Environment

	Source Code Files
	Main Functionality Files
	libedit
	Runtime Files

	VTY Shell Utility

	CHAPTER 8 SNMP Overview
	CHAPTER 9 ZebOS CLI and SNMP API Overview
	CHAPTER 10 PAL Overview
	Introduction

	CHAPTER 11 Memory Manager
	Introduction
	Configuration Options
	Architecture
	Option Mapping
	Memory TYPEs
	Source Code
	CLI features
	API features
	Event callouts

	CHAPTER 12 Timer
	CHAPTER 13 Threads
	CHAPTER 14 Runtime Configuration
	CHAPTER 15 Logging and Debugging
	Logging
	Debugging

	Show Commands assisted debugging

	CHAPTER 16 Asynchronous Events
	Unix
	RTOS

	CHAPTER 17 Porting ZebOS to Real-time Systems
	CHAPTER 18 Miscellaneous
	Crypto
	File and I/O management
	Globals

	Index

