
CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 i

Title

CCCAAAPPPIII FFFUUUNNNCCCTTTIIIOOONNNAAALLL
SSSPPPEEECCCIIIFFFIIICCCAAATTTIIIOOONNN
VVVEEERRRSSSIIIOOONNN 333...444

Configuration Application Programming Interface
for Chaparral External RAID Controllers

and Intelligent Storage Routers

Document Revision Date: 20 Sep 2002

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

ii Chaparral document #07-0003-340

Copyright
© 1999-2002 Chaparral Network Storage, Inc. All rights reserved. No part of this publication may be reproduced
without the prior written consent of

Chaparral Network Storage, Inc.
7420 East Dry Creek Parkway
Longmont, Colorado 80503
USA
http://www.chaparralnet.com

Trademarks
Chaparral Network Storage, Inc. and the Chaparral logo are trademarks of Chaparral Network Storage, Inc.
Windows is a registered trademark and Windows NT, Windows 98 and Windows 95 are trademarks of Microsoft
Corporation in the U.S. and other countries, used under license.
All other trademarks are the property of their respective companies.

Changes
The material in this document is subject to change without notice. While reasonable efforts have been made to ensure
the accuracy of this document, Chaparral Network Storage, Inc. assumes no liability resulting from errors or omissions
in this publication, or from the use of the information contained herein.
Chaparral reserves the right to make changes in the product design without reservation and without notification to its
users. Comments and suggestions can be sent to the address listed above.

Technical Support
If after reviewing this specification, you still have questions about installing or using your Chaparral product, please
contact us at (303) 845-3200 or by e-mail at support@chaparralnet.com.

Chaparral Part Number
07-0003-340

Differences from Previous Versions
The graphic � � has been inserted in this document to highlight differences between CAPI 3.1 and
CAPI 3.2.
The graphic � in CAPI 3.3� has been inserted in this document to highlight differences between CAPI
3.2 and CAPI 3.3. CAPI 3.3 was introduced with RIO 1.0.
The graphic � in CAPI 3.4� has been inserted in this document to highlight differences between CAPI
3.3 and CAPI 3.4. CAPI 3.4 was introduced with RIO 1.1.

See also CAPI Versions on page 29.

mailto:support@chaparralnet.com

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 iii

Table of Contents
1 Introduction 1

CAPI Overview 1
Document Overview 3

2 CAPI Programming Concepts 4
CAPI Basics 4
Unified CAPI 5
Reply to Function Calls 6

Callback Function 6
CAPI Events 7
Lengthy Operations 7
Obtaining Information on the Health of a System Via CAPI 7
Controller Structure Updates 9
Controller Configuration Sequence Number 10
SDK Code Assists with Current Configuration Information 10
Portability 11
SDK Contents 12

Compiler Settings 13
SDK Notes 13
Link Manager Exchange 14

Primitive Data Types 15
Initialization Details 15
Controller Handle 16
CAPI Timer Tick 16
Finding Controllers Example 16

3 Typedefs and Defines 18

4 Data Structures 26
Controller Structure Diagram 28
CAPI Versions 29
CAPI Capabilities 29
CAPI_ADD_ARRAY_STRUCT 32
CAPI_ADVANCED_NETWORK_INTERFACE 34
CAPI_ARRAY 38
CAPI_ARRAY_PARTITION 40
CAPI_ARRAY_STATS 41
CAPI_ARRAY_STATS_HOST 42
CAPI_CACHE_PARAMS 43
CAPI_CHANNEL 44
CAPI_CHANNEL_COMMON_DATA in CAPI 3.4 46
CAPI_CHANNEL_PARAMS 47
CAPI_CHANNEL_UNIQUE_DATA in CAPI 3.4 49
CAPI_CHANNEL_UNIQUE_PARAMS in CAPI 3.4 50
CAPI_CONTROLLER 51
CAPI_CONTROLLER_CONTEXT 54
CAPI_CONTROLLER_ENVIRONMENTALS 55
CAPI_CONTROLLER_PARAMS 57

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

iv Chaparral document #07-0003-340

CAPI_CONTROLLER_RAID_PARAMS 59
CAPI_CONTROLLER_ROUTER_PARAMS 60
CAPI_DRIVE 61
CAPI_DRIVE_ERROR_STATS in CAPI 3.3 63
CAPI_DRIVE_LOCATION 64
CAPI_ENVIRON_PROCESSOR_DATA 65
CAPI_ENVIRON_PROCESSOR_INFO 66
CAPI_EVENT 67
CAPI_FAILOVER 69
CAPI_FC_DRIVE_ERRORS in CAPI 3.3 71
CAPI_FC_INFO 72
CAPI_FC_LOOP_POSITION 73
CAPI_FC_PARAMS 74
CAPI_FLEX_ID 75
CAPI_FW_REVS 76
CAPI_HOST_DESCRIPTOR 77
CAPI_HOST_NICKNAMES in CAPI 3.3 78
CAPI_HOST_TABLE 79
CAPI_IDENTIFIER 80
CAPI_KNOWN_HOSTS 81
CAPI_MAINT_CDB 82
CAPI_MAINT_DATA_STRUCT 83
CAPI_MEMBER_DRIVE 84
CAPI_MEMORY 85
CAPI_MIN_MAX_DRIVES_PER_RAID_LEVEL 86
CAPI_NETWORK_INTERFACE 87
CAPI_NETWORK_INTERFACE_COMMON_DATA in CAPI 3.4 88
CAPI_NETWORK_INTERFACE_COMMON_PARAMS in CAPI 3.4 89
CAPI_NETWORK_INTERFACE_UNIQUE_DATA in CAPI 3.4 90
CAPI_NETWORK_INTERFACE_UNIQUE_PARAMS in CAPI 3.4 91
CAPI_PACKET 92
CAPI_PARTITION_REQUEST 94
CAPI_PER_CHANNEL_PARAMS in CAPI 3.4 95
CAPI_RAID 96
CAPI_ROUTER 97
CAPI_SCSI_INFO 98
CAPI_SCSI_PARAMS 99
CAPI_SERIAL_NUMS 100
CAPI_UNIFIED_CONTROLLER in CAPI 3.4 101
CAPI_UNIFIED_CONTROLLER_COMMON_DATA in CAPI 3.4 102
CAPI_UNIFIED_CONTROLLER_COMMON_PARAMS in CAPI 3.4 104
CAPI_UNIFIED_CONTROLLER_PARAMS in CAPI 3.4 105
CAPI_UNIFIED_CONTROLLER_UNIQUE_DATA in CAPI 3.4 106
CAPI_UNIFIED_CONTROLLER_UNIQUE_PARAMS in CAPI 3.4 109
CAPI_UNIFIED_CREATE_ARRAY_SERIAL_NUMBER_STRUCT in CAPI 3.4 110
CAPI_UNIFIED_CREATE_ARRAY_STRUCT in CAPI 3.4 111
CAPI_UNIFIED_DRIVE in CAPI 3.4 112
CAPI_UNIFIED_KNOWN_HOSTS in CAPI 3.4 113
CAPI_UNIT_MAP 114

5 CAPI Function Reference 115
Abort Utility 116
Add Array Partition 118
Add Dedicated Spare 120
Add Host 121

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 v

Add Host Nickname in CAPI 3.3 123
Add Pool Spare 125
Blink Drive 126
Cache Test 127
Change Array Name 128
Change Array Partition Geometry 129
Change Array Partition LUN 130
Change Array Partition Name 131
Change InfoShield Type 132
Change Utility Priority 134
Clear Event Log 135
Create Array 136
Delete Array 139
Delete Array Partition 140
Delete Spare 141
Down Drive 142
Enable Packet Compression 143
Enable Packet Compression Master To Slave in CAPI 3.4 144
Environ Read 146
Environ Write 148
Expand Array 150
Find LMX Of Type 151
Find Next Controller 152
Find Next Environ Processor 153
Force Offline in CAPI 3.3 155
Force Online in CAPI 3.3 157
Free Cache 158
Get Advanced Environmentals 159
Get Advanced Network Interface 160
Get Advanced Unit Mapping 161
Get Array List 163
Get Array Partitions 164
Get Config Sequence Number 165
Get Debug Data in CAPI 3.3 166
Get Drive Error Statistics in CAPI 3.3 168
Get Drive List 169
Get Event 170
Get First Event 171
Get Free Array Partitions 172
Get Host Nicknames in CAPI 3.3 173
Get Host Table 174
Get Known Hosts 175
Get Last Event 176
Get Percent Complete 177
Initialize 178
Kill Other 179
Log Event in CAPI 3.3 180
Log In 181
Log Out 182
Pause Bus 183
Put Offline in CAPI 3.3 185
Put Online in CAPI 3.3 187
Reboot Controller 188
Reconstruct Array 189
Register Callback 190
Remove Host 191

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

vi Chaparral document #07-0003-340

Rescan Bus 193
Reset Array Statistics 195
Reset Array Partition Statistics 196
Reset Drive Error Statistics in CAPI 3.3 197
Reset Drive Statistics 198
Reset LAN 199
Restore Controller Defaults 200
SCSI Maintenance 201
SCSI Maintenance Retrieve Data 203
Set Advanced Network Interface 205
Set Advanced Unit Mapping 206
Set Array Partition Cache Params in CAPI 3.3 208
Set Battery Monitor 210
Set Cache Params 211
Set Channel Params 213
Set Controller Params 214
Set Controller Time Date 215
Set Preferred Owner 216
Set Unit Mapping 217
Shut Down Controller 218
Silence Alarm 220
Test Drive 221
Test Spares 222
Timer Tick 223
Trust Array 224
Unblink Drive 225
Unkill Other 226
Unpause Bus 227
Update Controller 229
Update Firmware 230
Use Key 231
Verify Array 232
Unified Abort Utility in CAPI 3.4 234
Unified Add Array Partition in CAPI 3.4 236
Unified Add Dedicated Spare in CAPI 3.4 238
Unified Add Host in CAPI 3.4 239
Unified Add Host Nickname in CAPI 3.4 241
Unified Add Pool Spare in CAPI 3.4 243
Unified Blink Drive in CAPI 3.4 244
Unified Change Array Name in CAPI 3.4 245
Unified Change Array Partition Geometry in CAPI 3.4 246
Unified Change Array Partition LUN in CAPI 3.4 247
Unified Change Array Partition Name in CAPI 3.4 248
Unified Change InfoShield Type in CAPI 3.4 249
Unified Clear Event Log in CAPI 3.4 250
Unified Create Array in CAPI 3.4 251
Unified Delete Array in CAPI 3.4 253
Unified Delete Array Partition in CAPI 3.4 254
Unified Delete Spare in CAPI 3.4 255
Unified Do SCSI Maintenance in CAPI 3.4 256
Unified Down Drive in CAPI 3.4 258
Unified Environ Read in CAPI 3.4 259
Unified Environ Write in CAPI 3.4 261
Unified Expand Array in CAPI 3.4 263
Unified Find Next Environ Processor in CAPI 3.4 264
Unified Force Offline in CAPI 3.4 266

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 vii

Unified Force Online in CAPI 3.4 268
Unified Free Cache in CAPI 3.4 269
Unified Get Advanced Network Interface 270
Unified Get Array List in CAPI 3.4 271
Unified Get Array Partitions in CAPI 3.4 272
Unified Get Config Sequence Number in CAPI 3.4 273
Unified Get Controller Data in CAPI 3.4 274
Unified Get Debug Data in CAPI 3.4 275
Unified Get Drive Error Statistics in CAPI 3.4 277
Unified Get Drive List in CAPI 3.4 278
Unified Get Event in CAPI 3.4 280
Unified Get First Event in CAPI 3.4 281
Unified Get Free Array Partitions in CAPI 3.4 282
Unified Get Host Nicknames in CAPI 3.4 283
Unified Get Host Table in CAPI 3.4 284
Unified Get Known Hosts in CAPI 3.4 285
Unified Get Last Event in CAPI 3.4 286
Unified Get Percent Complete in CAPI 3.4 287
Unified Get SCSI Maintenance Data in CAPI 3.4 288
Unified Log Event in CAPI 3.4 290
Unified Pause Bus in CAPI 3.4 291
Unified Put Offline in CAPI 3.4 293
Unified Put Online in CAPI 3.4 295
Unified Reboot Controller in CAPI 3.4 296
Unified Remove Host in CAPI 3.4 297
Unified Rescan Bus in CAPI 3.4 298
Unified Reset Array Statistics in CAPI 3.4 300
Unified Reset Array Partition Statistics in CAPI 3.4 301
Unified Reset Drive Error Statistics in CAPI 3.4 302
Unified Reset LAN in CAPI 3.4 303
Unified Restore Controller Defaults in CAPI 3.4 304
Unified Set Advanced Network Interface 305
Unified Set Array Partition Cache Params in CAPI 3.4 306
Unified Set Battery Monitor in CAPI 3.4 308
Unified Set Cache Params in CAPI 3.4 309
Unified Set Channel Params 311
Unified Set Controller Params in CAPI 3.4 312
Unified Set Controller Time Date in CAPI 3.4 313
Unified Set Preferred Owner in CAPI 3.4 314
Unified Set Unit Mapping in CAPI 3.4 315
Unified Shut Down Controller in CAPI 3.4 316
Unified Silence Alarm in CAPI 3.4 318
Unified Test Drive in CAPI 3.4 319
Unified Test Spares in CAPI 3.4 320
Unified Trust Array in CAPI 3.4 321
Unified Unblink Drive in CAPI 3.4 322
Unified Unpause Bus in CAPI 3.4 323
Unified Update Firmware in CAPI 3.4 325
Unified Verify Array in CAPI 3.4 327

6 Reply Code Reference 328

7 Event Code Reference 332

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

viii Chaparral document #07-0003-340

8 Return Code Reference 339

9 Error Code Reference 340

10 Link Manager Exchange (LMX) 343
Include Files 345

LMX.H 345
lmxXXX.h 347

Routines 348
Initialization Routine 348
Find Next Controller 349
Send And Receive 349
Slave Receive 349
Timer Tick 350

Adding a New Type of LMX 351
Specific Cases 351
Independent LMX 351
Serial LMX 353

11 SCSI LMX 355
Introduction 355
Controller SCSI Commands for CAPI 358

Inquiry 358
Write Buffer 360
Read Buffer 361
Test Unit Ready 361
Request Sense 361

12 RS-232 LMX 365
Introduction 365
Protocol Elements Description 365

Framing 365
Timeouts 366
BCC Calculation 366
Responses 366
Out-of-Sequence 367
Establishing a Connection 367
Master/Slave and Line Turn 367
Jabber Frames 367
Stalled Frames 367
Link Up Status Checking 367

Data-Link Control 368
Line Encodings 368
Example Data Exchanges 369

Error Handling 370
How to Get Serial Port Back to Disk Array Administrator 371

13 Simplified RS-232 LMX 372
Introduction 372
Protocol Elements Description 372

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 ix

How to Get Serial Port Back to Disk Array Administrator 373

14 Changes between CAPI 2.x and CAPI 3.x 374

15 Capabilities 375
JSS122 (G6322) L410 / JFS224 (G8324) L411 Implementation 375
JFS226 (A8526) A400 Implementation 376

16 Failover Notes 377
Placeholder LUN 377

17 Non-CAPI Pass Through Feature 378
Introduction 378
Pass Through Command 379

Pass Through To Array Members 379
Pass Through Errors 380

Pass Through Timeout Command 381
Pass Through Timeout Errors 381

18 CAPI Interface Without Using the SDK 382
In-band (SCSI/Fibre Channel) Communications 382
Out-of-band (RS-232) Communications 382
Example CAPI_PACKET Usage 383

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

x Chaparral document #07-0003-340

Index of Tables and Figures

FIGURE 1-1. CONTROLLER SYSTEM WITH RS-232 CONFIGURATION API 2
FIGURE 1-2. CONTROLLER SYSTEM WITH SCSI CONFIGURATION API 2
TABLE 2-1. CAPI CALLBACK FUNCTION PARAMETERS 6
FIGURE 2-1. PRIMITIVE TYPEDEFS CUSTOMIZED BY THE DEVELOPER 15
TABLE 4-1. CAPI CAPABILITIES 30
TABLE 4-2. CAPI_ADD_ARRAY_STRUCT FIELDS. 32
TABLE 4-3. CAPI_ADVANCED_NETWORK_INTERFACE FIELDS. 35
TABLE 4-4. CAPI_ARRAY FIELDS. 38
TABLE 4-5. CAPI_ARRAY_PARTITION FIELDS. 40
TABLE 4-6. CAPI_ARRAY_STATS FIELDS. 41
TABLE 4-7. CAPI_ARRAY_STATS_HOST FIELDS. 42
TABLE 4-8. CAPI_CACHE_PARAMS FIELDS. 43
TABLE 4-9. CAPI_CHANNEL FIELDS. 44
TABLE 4-10. CAPI_CHANNEL_PARAMS FIELDS. 48
TABLE 4-11. CAPI_CONTROLLER FIELDS. 52
TABLE 4-12. CAPI_CONTROLLER_CONTEXT FIELDS. 54
TABLE 4-13. CAPI_CONTROLLER_ENVIRONMENTALS FIELDS. 55
TABLE 4-14. CAPI_CONTROLLER_PARAMS FIELDS. 57
TABLE 4-15. CAPI_CONTROLLER_RAID_PARAMS FIELDS. 59
TABLE 4-16. CAPI_CONTROLLER_ROUTER_PARAMS FIELDS. 60
TABLE 4-17. CAPI_DRIVE FIELDS. 61
TABLE 4-18. CAP_DRIVE_ERROR_STATS FIELDS. 63
TABLE 4-19. CAP_DRIVE_LOCATION FIELDS. 64
TABLE 4-20. CAPI_ENVIRON_PROCESSOR_DATA FIELDS. 65
TABLE 4-21. CAPI_ENVIRON_PROCESSOR_INFO FIELDS. 66
TABLE 4-22. CAPI_EVENT FIELDS. 67
TABLE 4-23. CAPI_FAILOVER FIELDS. 69
TABLE 4-24. CAPI_FC_DRIVE_ERRORS FIELDS. 71
TABLE 4-25. CAPI_FC_INFO FIELDS. 72
TABLE 4-26. CAPI_FC_LOOP_POSITION FIELDS. 73
TABLE 4-27. CAPI_FC_INFO FIELDS. 74
TABLE 4-28. CAPI_FLEX_ID FIELDS. 75
TABLE 4-23. CAPI_FW_REVS FIELDS. 76
TABLE 4-29. CAPI_HOST_DESCRIPTOR FIELDS. 77
TABLE 4-30. CAPI_HOST_NICKNAMES FIELDS. 78
TABLE 4-31. CAPI_HOST_TABLE FIELDS. 79
TABLE 4-32. CAPI_IDENTIFIER FIELDS. 80
TABLE 4-33. CAPI_KNOWN_HOSTS FIELDS. 81
TABLE 4-34. CAPI_MAINT_CDB FIELDS. 82
TABLE 4-35. CAPI_MAINT_DATA_STRUCT FIELDS. 83
TABLE 4-36. CAPI_MEMBER_DRIVE FIELDS. 84
TABLE 4-37. CAPI_MEMORY FIELDS. 85
TABLE 4-38. CAPI_MIN_MAX_DRIVES_PER_RAID_LEVEL FIELDS. 86
TABLE 4-39: CAPI_NETWORK_INTERFACE FIELDS. 87
TABLE 4-40: CAPI_NETWORK_INTERFACE_UNIQUE_PARAMS FIELDS. 91
TABLE 4-41: CAPI_PACKET FIELDS. 92
TABLE 4-42: CAPI_PARTITION_REQUEST FIELDS. 94
TABLE 4-43. CAPI_RAID FIELDS. 96
TABLE 4-44. CAPI_ROUTER FIELDS. 97
TABLE 4-45. CAPI_SCSI_INFO FIELDS. 98

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 xi

TABLE 4-46. CAPI_SCSI_PARAMS FIELDS. 99
TABLE 4-47. CAPI_SERIAL_NUMS FIELDS. 100
TABLE 4-48. CAPI_UNIFIED_CONTROLLER FIELDS. 101
TABLE 4-49. CAPI_UNIFIED_CONTROLLER_PARAMS FIELDS. 105
TABLE 4-50. CAPI_UNIFIED_CREATE_ARRAY_SERIAL_NUMBER_STRUCT FIELDS. 110
TABLE 4-51. CAPI_UNIFIED_CREATE_ARRAY_STRUCT FIELDS. 111
TABLE 4-52. CAPI_UNIFIED_DRIVE FIELDS. 112
TABLE 4-53. CAPI_UNIFIED_KNOWN_HOSTS FIELDS. 113
TABLE 4-54. CAPI_UNIT_MAP FIELDS. 114
TABLE 6-1. REPLY CODE DESCRIPTIONS 328
TABLE 7-1. EVENT CODE DESCRIPTIONS 332
TABLE 8-1. RETURN CODE DESCRIPTIONS 339
TABLE 9-1. RETURN CODE DESCRIPTIONS 340
FIGURE 10-1. GENERAL CAPI ARCHITECTURE 343
FIGURE 10-2. EXAMPLE LMX PROTOCOL STACKS 344
FIGURE 10-3. LMX SOFTWARE DIAGRAM 344
TABLE 10-4. LMX_IOB FIELDS. 345
TABLE 10-5. LMX_STATUS_* TYPEDEF DESCRIPTIONS. 346
TABLE 10-6. LMX_IOB FIELDS: 348
TABLE 10-7. LMX_ENTRIES FIELD DESCRIPTIONS: 349
TABLE 10-8. FINDNEXTCONTROLLER PARAMETER DESCRIPTIONS: 349
FIGURE 10-9. INDEPENDENT LMX 351
FIGURE 10-10. SERIAL LMX 353
FIGURE 11-1. EXAMPLE CAPI PROTOCOL STACK 356
TABLE 11-1: INQUIRY DATA 358
TABLE 11-2: INQUIRY DATA DESCRIPTIONS 359
TABLE 11-3: WRITE BUFFER COMMAND CDB 360
TABLE 11-4: WRITE BUFFER CDB FIELD DESCRIPTIONS 360
TABLE 11-5: READ BUFFER COMMAND CDB 361
TABLE 11-6: READ BUFFER CDB FIELD DESCRIPTIONS 361
TABLE 12-1. CONTROL CHARACTER SEQUENCES 368
TABLE 12-2. INITIALIZE SYSTEM TO PERFORM SIMPLE DATA EXCHANGE 369
TABLE 12-3. PERFORM DATA TRANSACTION OF 513 BYTES 369
TABLE 12-4. OUT-OF-SEQUENCE ACK RECEIVED 369
TABLE 12-5. ACK TIMEOUT OCCURS 369
TABLE 12-6. BCC ERROR OCCURS ON THE DATA TRANSMISSION 370
TABLE 1 PASS THROUGH CDB 379
TABLE 2 PASS THROUGH ERRORS 380
TABLE 3 PASS THROUGH TIMEOUT CDB 381
TABLE 4 PASS THROUGH TIMEOUT ERRORS 381

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 1

◊◊◊◊ ◊◊◊◊ ◊◊◊◊

INTRODUCTION
This document is intended for software developers writing their own configuration and management
applications for Chaparral external RAID controllers and intelligent storage routers (referred to collectively
as �controllers� in this document).

Please see the note on the back of the title page for information about versions of CAPI.

CAPI Overview
The Configuration Application Programming Interface (CAPI) is a set of high-level functions that allow users
of Chaparral's external controllers (routers and RAID controllers) to quickly develop custom applications
that perform set up, configuration, and management tasks. The custom applications run on a separate
processor from the external controller. Chaparral has developed a single API and two implementations of
the communications software that underlies that API. this communications software is referred to as an
�LMX� (Link Manager Exchange). One LMX communicates with the controller through an �out-of-band� RS-
232 (serial) interface as shown in Figure 1-1. The other LMX communicates �in-band� through the SCSI or
Fibre Channel interface as shown in Figure 1-2. Both versions present the same API so that a user�s
application can run on either implementation without changes.

Chaparral provides a Software Developer�s Kit (SDK) that includes this document and sample code files.
These code files are provided as C source code. Some of the code files should be usable by an application
developer with little or no change. You simply compile these and link them with your application to provide
the interface to the Chaparral controllers. One of the code files provides the function interface for all the
CAPI functions defined in Chapter 5, CAPI Function Reference, and this should be usable with no changes.
If you are developing your application for a Windows NT 4 or Windows 2000 PC, then you should be able
to use the LMXs provided with the SDK with few or no changes. Some customization may be required for
other platforms, such as UNIX systems that use a different �endian� convention from a PC. The SDK also
includes a sample command-line-interface application. For a complete list of the code files that are included
with the SDK, see page 12.

Some developers prefer not to use our SDK, but instead choose to develop their own interface to Chaparral
controllers. We generally recommend against this, especially if you are developing a CAPI app that will run
on Windows NT or 2000 (since the sample code has been tested on Windows NT) or if you are developing
a complex application that will use many of the commands defined in the Function Reference in Chapter 5.
But if you prefer to design your own interface, see Chapter 18 for some information that will be useful to
you.

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

2 Chaparral document #07-0003-340

Figure 1-1. Controller System With RS-232 Configuration API

Figure 1-1 shows the RS-232 implementation of CAPI and a user's storage management application
running on a separate management processor, such as the enclosure manager for a remote storage
enclosure. The API can also run on the host system with a separate RS-232 connection from the host.

Figure 1-2. Controller System With SCSI Configuration API

Figure 1-2 shows a system using the SCSI protocol implementation of CAPI. This implementation provides
a storage management interface to the external controller via the same SCSI or Fibre Channel interface
that the host uses for data so that no separate RS-232 interface is required.

Configuration Processor

User�s Application

CAPI Client

Host Computer
Chaparral

External RAID
Controller or Router

SCSI / FC
connection

RS-232
Connection

Chaparral
External RAID

Controller or Router

SCSI / FC
connection

HOST SYSTEM

User�s Application

CAPI Client

ASPI (optional)

SCSI/FC Driver

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 3

Document Overview
♦ Chapter 2, CAPI Programming Concepts, provides an overview of key CAPI programming concepts,

including a description of the behavior of asynchronous CAPI functions and associated callbacks and a
description of how to port CAPI into various processors.

♦ Chapter 3, Typedefs and Defines, provides a listing of the typedefs used in the CAPI SDK.
♦ Chapter 4, Data Structures, provides a detailed description of the data structures that are passed

across the interface.
♦ Chapter 5, CAPI Function Reference, provides detailed descriptions of each CAPI function including 'C'

prototypes and descriptions of each function parameter.
♦ Chapter 6, Reply Code Reference, describes the replies received by the configuration application

through the callback routine.
♦ Chapter 7, Event Code Reference, describes the event codes received by the configuration application

through the callback routine.
♦ Chapter 8, Return Code Reference, describes the return codes received by the configuration

application through the callback routine.
♦ Chapter 9, Error Code Reference, describes the error codes.
♦ Chapter 10, Link Manager Exchange (LMX), describes the communications layer that is used to match

CAPI function calls to the appropriate underlying data exchange layer.
♦ Chapter 11, SCSI LMX, describes one of the LMXs provided with the SDK. It may be used to transport

CAPI messages between host computer and controller over either Fibre Channel or parallel SCSI
physical transports.

♦ Chapter 12, RS-232 LMX, describes another LMX that is included with the SDK. It may be used to
transport CAPI messages between a management computer and controller over an RS-232 interface.

♦ Chapter 13, Simplified RS-232 LMX, describes another RS-232 LMX.
♦ Chapter 14, Changes since CAPI2.x, describes some of the changes since the last major revision to

CAPI.
♦ Chapter 15, Capabilities, provides CAPI capability discussions related to some specific products.
♦ Chapter 16, Failover Notes, provides some notes related to failover.
♦ Chapter 17, Non-CAPI Pass Through Feature, describes a facility for communicating with back-end

devices through a Chaparral controller, but bypassing CAPI.
♦ Chapter 18, CAPI Interface Without Using the CAPI SDK, describes the messaging interface used to

communicate with CAPI.

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

4 Chaparral document #07-0003-340

◊◊◊◊ ◊◊◊◊ ◊◊◊◊

CAPI PROGRAMMING CONCEPTS

CAPI Basics
CAPI application programs (commonly referred to as �CAPI apps�) communicate with the CAPI Client
(provided by Chaparral as sample code) via function calls and a callback function, which are compiled and
linked with the customer�s code. The CAPI Client uses the Link Manager Exchange code layer (LMX) and
possibly a data exchange layer (low-level transport) to communicate over a remote link to the controller.
The LMX is customized to the appropriate communication protocol layer, which may be RS-232 serial,
parallel SCSI, or Fibre Channel. By changing the CAPI LMX and re-linking, the application source can
remain unchanged and independent of the link type used to communicate with the controller. (LMXs are
discussed further in Chapters 10 through 13.)

The CAPI interface consists of a set of CAPI functions, also referred to as CAPI commands, which are
passed by CAPI messages. The CAPI functions are defined in the CAPI Function Reference chapter. All
CAPI applications operate in a master/slave mode (also referred to as client/server). The customer�s
management application (running on a host computer) is the master (client) and CAPI software in the
Chaparral controller is the slave (server). The slave never sends an unexpected message to the master; it
only responds to commands from the master.

All CAPI functions return a CAPI_RETURN_CODE (see page 339) from the host LMX. Six commands
(CAPI_EnablePacketCompression, CAPI_EnablePacketCompressionMasterToSlave,
CAPI_RegisterCallback, CAPI_Initialize, CAPI_FindNextController, and CAPI_TimerTick) do not send
command packets to the controller; they are processed locally by the LMX on the host computer.
CAPI_Initialize uses a callback function to indicate success or failure; the other five commands indicate if
they have completed successfully with the function return code. All the other CAPI functions communicate
with the controller over the remote link and use a callback function to provide status from the controller.
For these commands, the return code indicates whether or not the command was sent out on the remote
link; it does not indicate the command succeeded. The callback routine provides the application with a
CAPI_REPLY_CODE (see page 328) and a CAPI_ERROR_CODE (see page 340). The reply code
describes the command sent to the controller, and the error code indicates if it started or completed
successfully.

At initialization time, the application provides the callback function to the LMX with the
CAPI_RegisterCallback call. Obviously, no commands that communicate over the remote link can be sent
before this function has been called. (The callback function is discussed further on page 6. Initialization is
discussed further on page 15.)

Commands that take many seconds or longer for the controller to complete require the application, through
the LMX, to periodically poll the controller for an event (by calling CAPI_GetLastEvent or
CAPI_U_GetLastEvent) to determine completion of the command. These commands are designated
�lengthy operation� in this specification. An example of a lengthy operation is CAPI_CreateArray;
completion is indicated by the event CAPI_EVENT_CREATE_ARRAY_COMPLETE. Percent complete status for
lengthy operations can be found using CAPI_GetPercentComplete. Note that lengthy operations will
complete quickly if their callback error code indicates failure.

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 5

Note: Creating an array with large disk drives can take many hours.

All lengthy operations perform in the same manner by responding quickly via the callback function and
providing the event status (CAPI_REPLY_CODE) and error code (CAPI_ERROR_CODE) as function
parameters to the callback function. At approximately the same time as the callback function is called, an
event is logged indicating that the command has started. Then, at some later time, a second event is
logged indicating that the command has completed. The event information is provided via a data pointer to
a data structure (CAPI_EVENT) containing the event code. (See the EVENT_CODE reference on page
332.) The event code name for the start of an operation will correspond to the reply code for that
operation; for example, CAPI_REPLY_CREATE_ARRAY_START and CAPI_EVENT_CREATE_ARRAY_START.

The callback function�s errorCode parameter must always be checked for command success. If the reply
to a CAPI_CreateArray (which has replyCode CAPI_REPLY_CREATE_ARRAY_START) has an error, then the
application should not expect to find the completion event (CAPI_EVENT_CREATE_ARRAY_COMPLETE would be
expected). This is because the controller could not start the create-array process due to some error.
(Lengthy operations are discussed further on page 7.)

Since a CAPI remote link can have only one outstanding operation at a time, if another thread (or interrupt
context) in the application makes a CAPI call while the link is busy, it receives a return code (not reply
code) of CAPI_STATUS_LINK_BUSY. This requires the application developer to coordinate CAPI calls if you are
using a separate thread to make calls to CAPI_GetLastEvent. For example, a developer might have an
interrupt timer set up to call CAPI_GetLastEvent every ten seconds using the method described in the
CAPI Events section on page 7. If the CAPI_GetLastEvent tries to get an event while the main thread is
making a CAPI call (such as CAPI_CreateArray) and gets a CAPI_STATUS_LINK_BUSY, it can sleep for
ten seconds and try again. On the other hand, if the main thread is trying to make a CAPI call (such as
CAPI_CreateArray) while CAPI_GetLastEvent has the link, then the main thread must retry the command
or return an error to the user that the link is busy. As currently implemented in the sample code in the SDK,
this paragraph applies to the SCSI LMX, but not the serial LMX. The serial LMX simply drops a second
command rather than returning a CAPI_STATUS_LINK_BUSY error, so a timeout and retry are necessary if you
are using a serial LMX. See the next paragraph.

As a general precaution against lost messages, you should have a timeout and retry a command if you
don�t receive a reply in a reasonable period of time. Good values to use for this timeout:
• 15 seconds for these commands: CAPI_SetControllerParams, CAPI_U_SetControllerParams,

CAPI_GetDebugData, CAPI_U_GetDebugData.
• 40 seconds for these commands: CAPI_PutOffline, CAPI_U_PutOffline, CAPI_ForceOffline,

CAPI_U_ForceOffline.
• 5 seconds for all other commands.

Unified CAPI
Unified CAPI (UCAPI) allows a CAPI application to interface with both controllers in a dual-controller
system via an interface to just one of these controllers. In other words, a unified view of a dual-controller
system is presented via the API, rather than requiring separate management interfaces to each controller.
This simplifies design of CAPI applications. Unified CAPI was introduced with CAPI 3.4. This approach is
recommended for CAPI applications being designed for RIO, Stratis RAID S3300 (Project �Rottweiler�), and
other dual-controller products that support CAPI 3.4. All of the �non-unified� commands (that is, function
calls) defined in this document continue to be supported in CAPI 3.4. For the most part, there is a one-to-
one correspondence of the non-unified (CAPI 3.2 and CAPI 3.3) commands with the unified versions. The
unified commands follow the non-unified commands in Chapter 5. We recommend that the unified
command be used whenever there is one available; that is, avoid mixing unified and non-unified commands
in the same application. Note that there is no unified version of the following commands because they only
go to the LMX on the host machine; they are not sent to a controller: CAPI_EnablePacketCompression,
CAPI_EnablePacketCompressionMasterToSlave, CAPI_RegisterCallback, CAPI_Initialize,
CAPI_FindNextController, and CAPI_TimerTick.

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

6 Chaparral document #07-0003-340

Reply to Function Calls
One of the first steps that an application must perform when initializing CAPI is to provide a pointer to its
callback function by calling CAPI_RegisterCallback. This requires a pointer to the callback function as a
parameter and the function must be declared with the format described below. In the supplied example
application, the callback function is myCallBack.

Callback Function
The prototype for the callback function is as follows:

void appCallBackappCallBackappCallBackappCallBack(CAPI_REPLY_CODE replyCode,replyCode,replyCode,replyCode,
 CAPI_ERROR_CODE errorCode,errorCode,errorCode,errorCode,
 CAPI_IDENTIFIER **** identifier,identifier,identifier,identifier,
 CAPI_U32 param1,param1,param1,param1,
 CAPI_U32 param2,param2,param2,param2,
 CAPI_U32 param3,param3,param3,param3,
 CAPI_U32 param4,param4,param4,param4,
 void **** pDataPtr);pDataPtr);pDataPtr);pDataPtr);

Table 2-1. CAPI callback function parameters
Parameter Description
replyCode This specifies the reason for the callback. Every callback is a reply to a previous

command from the application. Since all CAPI communications are synchronous (that is,
the app must wait for a reply to one command before sending a second command), this
member can be ignored if you wish; it just provides a �sanity check� that the reply
matches the command.

errorCode If this value is equal to anything other that CAPI_NO_ERROR, there was an error
executing the command. This is the key member of this struct that you should look at for
every callback. If the value is anything other that CAPI_NO_ERROR, your application
should not attempt to access any data pointed to by pDataPtr.

identifier This is a pointer to a data structure that provides the handle of the controller that sent
this callback (see Controller Handle on page 16). This structure may also identify the
arrayIndex and/or channelIndex and/or driveIndex, depending on the command (see the
comments next to the identifier item in the Callback table for each command in Chapter
5 to determine which members of this struct are valid for each command). These three
indices are not used by Unified CAPI applications; array and drive serial numbers are
used instead.

param1 This parameter provides additional information, if available, based on the reply code as
specified in the Callback table in Chapter 5.

param2 This parameter provides additional information, if available, based on the reply code as
specified in the Callback table in Chapter 5.

param3 This parameter provides additional information, if available, based on the reply code as
specified in the Callback table in Chapter 5.

param4 This parameter provides additional information, if available, based on the reply code as
specified in the Callback table in Chapter 5.

pDataPtr This parameter points to a data structure. This is used by CAPI commands that return
data. See in the CAPI Function Reference, Chapter 5, the dataPtr item in the Callback
table for each function to determine if it returns a data structure. The data structures are
defined in the Data Structures chapter. The structure referred to by this pointer is valid
only for the duration of the callback. The application should copy the data before
returning from the callback function.

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 7

CAPI Events
For completion status of lengthy operations, the application must poll for new events by calling
CAPI_GetLastEvent. The reply to this call is received by the application callback with replyCode equal to
CAPI_REPLY_GET_LAST_EVENT. The parameter, dataPtr, is a pointer of type CAPI_EVENT. The application should
check the sequenceNumber of the event to verify if the event is new. If several events have occurred since
the last call to CAPI_GetLastEvent (the application should save the sequenceNumber of the last processed
event), then the application can make calls to CAPI_GetEvent to fill in the gaps. The application should poll
for events at least every ten seconds and, if a new event is discovered, should immediately poll again to
expedite the processing of multiple events.

Because there can only be one outstanding CAPI call at a time, the application programmer is responsible
for coordinating calls to CAPI_GetLastEvent and to user-initiated CAPI calls.

Note: Do not assume that the sequence of events is guaranteed. The only exception is
operation start events, which precede operation complete events. For example,
CAPI_EVENT_CREATE_ARRAY_START will always precede
CAPI_EVENT_CREATE_ARRAY_COMPLETE.

Note: The error code in the event structure contains the information needed to determine
if lengthy operations (such as create array) are completed without errors. See
CAPI_EVENT for structure details.

Lengthy Operations
Every CAPI command is followed by a quick reply (within seconds) via the callback function. If a command
cannot complete the operation in this amount of time, it is referred to as a lengthy operation. Lengthy
operations reply within seconds, but only to communicate that the operation started (such as
CAPI_REPLY_CREATE_ARRAY_START). Also, the operation only starts if the error code on the reply is
CAPI_NO_ERROR. Operation completion should only be determined via the get event mechanism while
the CAPI_GetPercentComplete command can be used to find percent complete. The completion event
(such as CAPI_EVENT_CREATE_ARRAY_COMPLETE) error code indicates if the operation was
successful. Only one lengthy operation can be performed on an array at a time. But multiple lengthy
operations can be performed simultaneously; for example, CAPI_VerifyArray on two different arrays. To
allow a CAPI application to associate a command with a completion event, a uniqueId parameter is
included with the operation-started message and the same uniqueId is logged with the completion event.

Obtaining Information on the Health of a
System Via CAPI
There are two ways of monitoring the health of a system from a CAPI application: by examining the event
log and by examining the contents of various controller data structures. In all cases where a fault occurs,
information is available through both the event log and the controller structures. For some types of
information, no specific event occurs, so there is no event logged, but this information can be obtained from
the controller data structures. One example is environmental values (such as voltages and temperatures)
that are within normal operating ranges. Another example is drive error statistics; these can be obtained by
a call to CAPI_GetDriveErrorStatistics (new with RIO). (In this second example, if the drive error rate
exceeds a programmed threshold, an event will be logged.)

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

8 Chaparral document #07-0003-340

Event Log: See CAPI_GetEvent, CAPI_GetFirstEvent, and CAPI_GetLastEvent. When a fault occurs, an
event will be logged (with the criticality member of the CAPI_EVENT struct set to either
CAPI_EVENT_CRITICALITY_WARNING or CAPI_EVENT_CRITICALITY_ERROR). If and when a fault is
resolved, an event will also be logged (with criticality set to
CAPI_EVENT_CRITICALITY_INFORMATIONAL) in most (but not all) cases. Details for specific types of
faults are discussed below. All CAPI event types are defined with #define statements that begin
CAPI_EVENT_. A developer of a CAPI application will probably want to examine this list of event types
and decide which ones that developer wants to monitor, if any.

Structures: Additional health information is available in various controller structures, as detailed below. A
developer of a CAPI application will probably want to study these structures and decide which members of
these structures that developer wants to monitor, if any. When event
CAPI_EVENT_CONFIGURATION_HAS_CHANGED is logged, this is an indication that this is a good time
to examine these structures for health information, but it is more typical to write a CAPI application that
checks these structures on a regular basis (such as every 10 seconds) instead of monitoring
CAPI_EVENT_CONFIGURATION_HAS_CHANGED.

Here are details on some key types of health information and how to obtain it:

Environmentals:
By struct: Environmentals are available in the CAPI_CONTROLLER_ENVIRONMENTALS struct (and
CAPI_ADVANCED_ENVIRONMENTALS on more recent products), which may be obtained by calling
CAPI_UpdateController.

By event log: If an environmental value goes out of range, a warning (CAPI_EVENT_AD_WARNING) or
error (CAPI_EVENT_AD_FAILURE) event will be logged. If and when it goes back in range, a
CAPI_EVENT_AD_OK will be logged.

Array status:
By struct: Overall status for an array is available in the health member of the CAPI_ARRAY struct, which
may be examined by calling CAPI_GetArrayList.

By event log: For array failures, an event will be logged: CAPI_EVENT_ARRAY_OFFLINE or
CAPI_EVENT_ARRAY_CRITICAL. If and when this condition ends, an event will be logged:
CAPI_EVENT_RECONSTRUCT_ARRAY_COMPLETE or CAPI_EVENT_VERIFY_ARRAY_COMPLETE.

Channel status:
By struct: Overall status for a host or drive channel is available in the health and healthReason members
of the CAPI_CHANNEL struct. (These are new members beginning with RIO. Prior to RIO, there was no
explicit monitoring of channel health.)

By event log: If a disk channel fault is detected, an event will be logged:
CAPI_EVENT_DISK_CHANNEL_DEGRADED. There is no event logged when a host channel fails, nor
when the health of a channel goes back to normal. However, beginning with RIO,
CAPI_EVENT_CONFIGURATION_HAS_CHANGED is logged whenever health or healthReason
changes.

Module status (only for products with replaceable modules – only RIO at this writing):
By struct: For RIO, there are multiple modules in a system, and a failure of any of those modules results in
a status change that is available by calling CAPI_UpdateController and examining the moduleStatus
member of the struct for each replaceable module. (Search for moduleStatus in capi3.h to understand
details of this member.)

By event log: A module failure also results in logging an event, CAPI_EVENT_MODULE_HAS_FAILED.
When the module goes online (normally when the bad module is replaced), an event will be logged:
CAPI_EVENT_USER_PUT_ONLINE_COMPLETE, CAPI_EVENT_USER_FORCE_ONLINE_COMPLETE,

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 9

CAPI_EVENT_SYSTEM_PUT_ONLINE_COMPLETE, or
CAPI_EVENT_SYSTEM_FORCE_ONLINE_COMPLETE.

Board status (pre-RIO active-active RAID systems):
By struct: Board status is available by calling CAPI_UpdateController and examining failover.failedOver.
If this value is �TRUE� then the other controller has failed over and you can get additional information by
examining failover.failoverReason and failover.otherState.

By event log: One of the following events will indicate a board failure:
CAPI_EVENT_KILL_OTHER_CONTROLLER (this controller has detected a failure in the other controller
and has killed it), CAPI_EVENT_SHUTDOWN_CONTROLLER (this controller has shut itself down), or
CAPI_EVENT_FAILOVER (the other controller failed and its resources have been transferred to this
controller). If and when the other controller goes online (normally when the bad board is replaced), the
other controller will resume responsibility for its resources and both this controller and the other controller
will log CAPI_EVENT_FAILBACK.

Various other kinds of failures are logged. Some examples:
CAPI_EVENT_BATTERY_FAILURE,
CAPI_EVENT_BATTERY_END_OF_LIFE,
CAPI_EVENT_EMP_FAILURE,
CAPI_EVENT_BUFFER_CORR_ECC_ERR,
CAPI_EVENT_BUFFER_UNCORR_ECC_ERR,
CAPI_EVENT_DISK_DETECTED_ERROR,
CAPI_EVENT_SPARE_DRIVE_FAILURE, etc.

Controller Structure Updates
Note to CAPI 2.x users: To update information in CAPI 3.x may require a call to one or

more CAPI functions. Where this was accomplished with one call to
CAPI_UpdateController in CAPI2.x now requires calls to CAPI_UpdateController,
CAPI_GetArrayList, and/or CAPI_GetDriveList.

CAPI_GetConfigSequenceNumber has been added to aid in determining if an update is
necessary.

A CAPI application program is typically designed to set configuration data (also known as parameters) on a
controller with the following sequence:

• Get current values of parameters from the controller with CAPI �get� commands. Parameters are
returned in C data structures.

• Modify one or more parameters in those structures via a user interface.
• Pass those structures back to the controller with CAPI �set� commands.

CAPI_UpdateController or CAPI_U_GetControllerData should be called to get current information for a
controller. CAPI_GetArrayList (or CAPI_U_GetArrayList) and CAPI_GetDriveList (or
CAPI_U_GetDriveList) should be called to get current information about associated RAID arrays and
drives. CAPI_GetArrayPartitions (or CAPI_U_GetArrayPartitions) and CAPI_GetFreeArrayPartitions (or
CAPI_U_GetFreeArrayPartitions) should be called to get current information about the partitions within an
array. If a CAPI call is made that can potentially change the configuration of the controller, CAPI verifies
that the configuration request is made with up-to-date information. (Discussion of how this is done is in the
next section.) If the data is out-of-date, it returns an errorCode of
CAPI_ERROR_FAILURE_DUE_TO_CONFIG_CHANGE. A call to CAPI_UpdateController and/or
CAPI_GetArrayList and/or CAPI_GetDriveList (or the equivalent Unified CAPI commands) is then
necessary before a configuration change can be made.

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

10 Chaparral document #07-0003-340

For a list of which commands require which data to be up-to-date, see the CSN checking column in the
table in capicmdsup.c. (This column uses values enumerated and explained in capicmdsup.h.)

A controller may also log CAPI_EVENT_CONFIGURATION_HAS_CHANGED when a configuration
change occurs on the controller (such as create array start, create array complete, reconstruct complete,
and so on). A call to CAPI_UpdateController and/or CAPI_GetArrayList and/or CAPI_GetDriveList (or the
equivalent Unified CAPI commands) should then be made to get the latest information.

Typically, a CAPI application includes a process that periodically (for example, once every 10 seconds)
updates its copy of controller data. However, since external events (such as Fibre Channel LIP) can cause
the configuration to change between updates, a CAPI application should be designed to gracefully handle a
CAPI_ERROR_FAILURE_DUE_TO_CONFIG_CHANGE. The simplest approach is probably to report the
failure to the user and require the user to re-enter the parameters. This is the approach taken by the Disk
Array Administrator (also known as Menu User Interface or MUI). A more sophisticated approach would be
to get updated data from the controller and then re-apply the user�s changes to the structures and try again.

Controller Configuration Sequence Number
All three data structures (CAPI_CONTROLLER structure, CAPI_ARRAY list, and CAPI_DRIVE list) must
be current for a configuration change to take effect, or CAPI will reply with
CAPI_ERROR_FAILURE_DUE_TO_CONFIG_CHANGE. To determine this, the controller maintains a
configuration sequence number (CSN). A call to CAPI_GetConfigSequenceNumber can be made to
determine if the information is up-to-date.

Note that controllers that support active-active (AA) mode maintain unique configuration sequence
numbers for each controller. Controller A uses odd numbers and B uses even numbers, even when
operated in standalone mode. This method provides a simple way for CAPI applications to detect controller
failover: the configuration sequence number will change from odd to even or vice-versa, indicating the
application is now communicating with the other controller.

For Unified CAPI commands that return a CSN for both controllers, if the controller that the CAPI app is
communicating with is unable to communicate with the other controller then the CSN of the other controller
will be returned as 0xFFFFFFFF.

Each of the three main CAPI calls to retrieve data (CAPI_UpdateController, CAPI_GetArrayList, and
CAPI_GetDriveList, or the three Unified CAPI equivalents) return the configuration sequence number from
the controller. This is an unsigned 32-bit value that the controller increases by a value of one (or two, in
products that support AA mode) every time the configuration changes on the controller. The controller only
keeps one configuration sequence number (there is not a separate number for the controller structure, the
RAID arrays, and drive list). This number is reset to zero (for controller B) or one (for controller A) when the
controller reboots.

Param2 in the callback from CAPI_UpdateController, CAPI_GetArrayList, and CAPI_GetDriveList contains
the configuration sequence number. The configurationSequenceNumber can also be found as member
fields in CAPI_CONTROLLER, CAPI_ARRAY, and CAPI_DRIVE to assist the developer in further verifying
that the information is valid.

SDK Code Assists with Current Configuration
Information
The low-level code in the CAPI SDK will assist in making sure that configuration changes are not attempted
with incorrect or outdated data structures. When a CAPI_UpdateController (or CAPI_GetArrayList or
CAPI_GetDriveList) call is made to the controller, the controller will respond with a new
CAPI_CONTROLLER (or CAPI_ARRAY list or CAPI_DRIVE list). In addition, the low-level packet header
will contain the current configuration sequence number (it is also returned in param2 in the callback for

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 11

convenience and embedded in the structures). The CAPI SDK code will save this CSN in the
CONTROLLER_CONTEXT structure that the application program provided space for in the initialization
sequence. This is also done for CAPI_GetArrayList and CAPI_GetDriveList. When a subsequent
command is sent to the controller, the CAPI SDK code will copy all three of the configuration sequence
numbers it has (one for CAPI_UpdateController, one for CAPI_GetDriveList, and one for
CAPI_GetArrayList) from the CONTROLLER_CONTEXT structure and insert them in the packet header
(which is a structure of type CAPI_PACKET). If the CSNs are not the same or if the CSNs don�t match the
current CSN on the controller, a CAPI_ERROR_FAILURE_DUE_TO_CONFIG_CHANGE error will result.
The application program should then do an entire update of all three data structures/lists (call
CAPI_UpdateController, CAPI_GetDriveList, and CAPI_GetArrayList). (See the table in capicmdsup.c for
details of exactly which structs must be up-to-date for each CAPI command.) For Unified CAPI
applications, CAPI_U_GetControllerData, CAPI_U_GetArrayList, and CAPI_U_GetDriveList use these
same three configuration sequence numbers.

Portability
The CAPI sample code is written in strict ANSI C and the source is provided as part of the CAPI Software
Developer�s Kit (SDK) so that developers may build the API into any environment that has an ANSI-
compatible C compiler. To be able to successfully use the data structures described in this document, the
following conditions must be met:

♦ Your compiler must pack structures to the byte, and not insert any extra alignment
padding between fields (THIS REQUIRES A COMPILER OPTION IN MOST CASES).

♦ Your structures must be built in little-endian byte order (least significant bytes at lower
addresses.) For machines using big-endian byte ordering, you must change the way CAPI packets
are built (in the file capi2pak.c) so that the actual structures sent to the controller are in little-endian
byte order. For example, the structure below:

typedef struct
{

CAPI_U8 a;
CAPI_U16 b;
CAPI_U32 c;

} TEST;

TEST test;
test.a = 0xAA;
test.b = 0xABCD;
test.c = 0x12345678;

would be represented in memory (low addresses first) as:
AA CD AB 78 56 34 12

and sizeof(TEST) is exactly 7 bytes.

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

12 Chaparral document #07-0003-340

SDK Contents
The Chaparral Network Storage CAPI Software Development Kit (SDK) consists of:

♦ CAPI Functional Specification (this document)
♦ CAPI Client source code
♦ CAPI sample application source code

The following files are included in the CAPI Client code:
♦ aspi.c CAPI Internals. (16-bit SCSI support using ASPI. Not recommended for new

development.)
♦ aspidefs.h CAPI Internals. (16-bit SCSI support using ASPI. Not recommended for new

development.)
♦ aspi.h CAPI Internals. (16-bit SCSI support using ASPI. Not recommended for new

development.)
♦ capi.h Basic CAPI definitions. You may want to customize this for your app. Include in all

CAPI apps.
♦ capi_end.h Endian transformation macros. You may find these useful if you need to do endian

conversion.
♦ capi_event_reply.h CAPI_EVENT_ defines (see Chapter 7) and CAPI_REPLY_ defines (see Chapter

6). Include in all CAPI apps.
♦ capi2.h Basic CAPI definitions. (DEPRECATED � use capi3.h for new development.)
♦ capi2lmx.c CAPI Internals. Include in all CAPI apps.
♦ capi2lmx.h CAPI Internals. Include in all CAPI apps.
♦ capi2pak.c CAPI Internals. (CAPI functions that are defined in Chapter 5.) Include in all CAPI

apps.
♦ capi3.h Basic CAPI definitions. Include in all CAPI apps.
♦ capicmdsup.c For reference only. Do not include in CAPI apps.
♦ capicmdsup.h For reference only. Do not include in CAPI apps.
♦ capicust.h Customizing file. Customize this file for your environment and include in all CAPI

apps.
♦ capipak.h CAPI Internals. Include in all CAPI apps.
♦ capiu_defs.h Basic CAPI definitions for Unified CAPI. Include in all Unified CAPI apps.
♦ capiu_v1.h Basic CAPI definitions for Unified CAPI. Include in all Unified CAPI apps.
♦ commport.c 16-/32-bit Windows RS-232 support
♦ commport.h 16-/32-bit Windows RS-232 support
♦ Devioctl.h CAPI Internals. (Microsoft header file included in lmx_sc32.c.)
♦ dlm.c CAPI Internals. (RS-232 protocol)
♦ dlm.h CAPI Internals. (RS-232 support)
♦ dlmj.c CAPI Internals. (Simplified RS-232 protocol)
♦ dlmj.h CAPI Internals. (Simplified RS-232 support)
♦ environ.h CAPI Internals. (typedefs). Customize this file for your environment and include in

all CAPI apps.
♦ lmx.h CAPI Internals. Include in all CAPI apps.
♦ lmx232.c CAPI Internals. (RS-232 protocol)
♦ lmx232.h CAPI Internals. (RS-232 support)
♦ lmx232j.c CAPI Internals. (Simplified RS-232 protocol)
♦ lmx232j.h CAPI Internals. (Simplified RS-232 support)
♦ lmxscsi.c CAPI Internals. (16-bit SCSI using ASPI. Not recommended for new development.)
♦ lmxscsi.h CAPI Internals. (16-bit SCSI using ASPI. Not recommended for new development.)
♦ lmx_sc32.c CAPI Internals. (32-bit SCSI for Windows � uses IOCTL, not ASPI. Recommended

sample code for in-band LMX.)
♦ lmx_sc32.h CAPI Internals. (32-bit SCSI for Windows � uses IOCTL, not ASPI. Recommended

sample code for in-band LMX.)
♦ mt_call.h CAPI Internals. (RS-232 support. Included in dlm.h.)
♦ ntdddisk.h CAPI Internals. (Microsoft header file included in lmx_sc32.c.)

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 13

♦ ntddscsi.h CAPI Internals. (Microsoft header file included in lmx_sc32.c.)
♦ ntddstore.h CAPI Internals. (Microsoft header file included in ntdddisk.h.)
♦ scsidefs.h CAPI Internals. (SCSI definitions. Included in several other files.)
♦ sc_def32.h CAPI Internals. (SCSI definitions.)
♦ sizetest.c Prints sizes of various CAPI structs. For reference only; not intended to be

included as part of CAPI apps.
♦ wnaspi32.h CAPI Internals. (32-bit SCSI support using ASPI. Not recommended for new

development.)
♦ wnaspi32.lib CAPI Internals. (32-bit SCSI support using ASPI. Not recommended for new

development.)

The following files are included in the CAPI sample application, and are provided to demonstrate a CAPI
application that is a command-line interface (CLI):

♦ capicli.c Part of sample command-line interface CAPI app.
♦ capicli.h
♦ capimntc.c Sample code to implement call to CAPI_ScsiMaintenance.
♦ capitest.c Main part of sample command-line interface CAPI app.
♦ capitest.h
♦ makefile Borland makefile (to build the serial version).
♦ *.dsp Microsoft makefiles (project files). You will most likely want to use one of these

two project files:
♦ scsi32.dsp Microsoft project file for Visual C++ 6.0 to build an in-band CAPI app for Windows

that will work for parallel SCSI or Fibre Channel (uses DeviceIoControl calls, a.k.a.
IOCTL, not ASPI). Although the user interface is not very user-friendly, this project
will enable you to quickly generate and try a command-line user interface that
communicates over the host SCSI or Fibre Channel connection to your controller.

♦ rs232.dsp Microsoft project file for Visual C++ 6.0 to build an RS-232 CAPI app for Windows
(uses the simplified RS-232 LMX). Although the user interface is not very user-
friendly, this project will enable you to quickly generate and try a command-line
user interface that communicates over the serial connection to your controller.

Compiler Settings
The following compiler defines must be defined in the developer�s build environment:
♦ Always add CAPI, CAPI_MASTER, and CAPI3.
♦ Add USE_SERIAL_LMX and DLM (or, for the simplified RS-232 LMX, DLMJ) processor defines for

serial port (RS-232) support.
♦ Add USE_SCSI_LMX processor define for 16-bit ASPI SCSI support. (Not recommended for new

development. Use the IOCTL SCSI interface instead.)
♦ Add USE_SCSI32_LMX processor define for 32-bit IOCTL SCSI support.
♦ Add USE_CAPI_DLL, CAPI_DLL, and CAPI_WINDOWS_DLL processor defines to make a DLL.
♦ Add USE_CAPI_DLL and CAPI_WINDOWS_DLL processor defines to make the sample program to

communicate with the DLL.
♦ Add FIRMWARE_DOWNLOAD_ONLY if you want to compile the sample app as a program to just do

firmware downloads. NOTE: The code generated with this option will prompt for the controller that you
want to download to: A, B, or both. Only the �both� option is supported for in-band CAPI if you are
downloading to an active-active system. (This is because the controller has to be in a shutdown state to
accept new firmware, but for A-A systems, once you shut down a controller, the host connection to it is
lost since the surviving controller assumes the identity of the shut down contoller.)

SDK Notes

♦ For hints of places in the SDK code that you may wish to customize, search for the word �customize� in
the code.

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

14 Chaparral document #07-0003-340

♦ You must increase MAX_CONTROLLERS in capitest.c (the sample CAPI app) for multiple-controller
support.

♦ When using RS-232 communications, CAPI always returns a handle for the serial port implementation
even if a suitable controller is not connected. The connection can be verified by the first command sent.

♦ No prompt is given for comport speed in the DLL example.
♦ The sample CAPI application was tested using Borland 16-bit/32-bit compilers and Microsoft Visual

C++ 4.1/5.0/6.0 32-bit console application compilers.
♦ Windows95 caveat: If you are using an RS-232 link and you compiled with a Microsoft Windows

compiler (such as Visual C++), WIN32 serial communications are used; otherwise, direct serial UART
communications are used (see commport.c). If you are using the direct UART serial comm in a
Windows95 DOS system, you might get serial port overruns because it won�t be able to poll often
enough (also, port will become unusable when you exit).

♦ If your serial CAPI application leaves the controller�s RS-232 port in CAPI mode, you can put the
controller back into terminal (MUI) mode by either typing CTRL-P and CTRL-Z, or by rebooting the
controller while holding your hand on the spacebar of the terminal and running option 5.

♦ It has been observed that libraries made with Visual C++ 6.0 are not compatible with Visual C++ 5.0.

Link Manager Exchange
CAPI communicates to different links by means of a software layer referred to as the Link Manager
Exchange (LMX). LMX layers are modular and you only need to link in the LMX that you have selected for
your CAPI application (a .h file and a .c file). Appropriate compiler flags must also be set for each LMX (see
Compiler Settings, above). Chaparral provides the following LMXs as examples:
♦ Windows 32-bit SCSI (see Chapter 11)
♦ Windows 32-bit RS-232 (see Chapter 12)
♦ Windows 32-bit RS-232, simplified version (see Chapter 13)

See Chapter 10, Link Manager Exchange, on page 343 for information about writing additional custom
LMXs, such as UNIX SCSI, Macintosh SCSI, direct UART, RS-232, and so on.

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 15

Primitive Data Types
The CAPI must build data packets with specific size fields regardless of the native word size of the
configuration processor. The API source uses custom types for primitive data types which have specific
sizes of 8, 16, or 32 bits. These typedefs are contained in a separate header file called capicust.h as shown
Figure 2-1. This file is included in the SDK and developers must modify these types as appropriate for their
target hardware platform.

Figure 2-1. Primitive Typedefs Customized by the Developer
typedef char CAPI_S8; /* signed byte � exactly 8 bits */
typedef unsigned char CAPI_U8; /* unsigned byte � exactly 8 bits */
typedef short CAPI_S16; /* signed word � exactly 16 bits */
typedef unsigned short CAPI_U16; /* unsigned word � exactly 16 bits */
typedef long CAPI_S32; /* signed dword � exactly 32 bits */
typedef unsigned long CAPI_U32; /* unsigned dword � exactly 32 bits */
typedef CAPI_U8 CAPI_BOOL; /* TRUE or FALSE, - exactly 8 bits */
typedef char CAPI_CHAR; /* ASCII character- exactly 8 bits */
typedef unsigned long CAPI_TIME; /* number of seconds since 1/1/1970 */

Initialization Details
The recommended calling sequence for initializing the CAPI API includes the following:
1. If using serial port transport, initialize serial port hardware.
2. CAPI_EnablePacketCompression � optional
3. CAPI_EnablePacketCompressionMasterToSlave � optional
4. CAPI_RegisterCallback
5. CAPI_Initialize
6. Wait for initialization complete callback.
7. CAPI_FindNextController

♦ Continue calling CAPI_FindNextController until *lastTime equals TRUE. If *handle equals
CAPI_NULL_ID, then a controller was not found; otherwise, it is a valid handle and you can now make
regular API calls. (See below for a discussion of the handle.)

♦ For each call to CAPI_FindNextController, allocate memory for the controller and pass a pointer to a
CAPI_CONTROLLER_CONTEXT. This structure is used by the CAPI internals.

♦ Allocate a buffer at least as large as the size of a CAPI_RECEIVE_GENERAL_BUFFER_SIZE and
pass a pointer in capiBuffer. This is the buffer that CAPI receives data in. You can use the same buffer
for all controllers or allocate separate buffers. This buffer is returned as the CAPI general receive
buffer.

♦ Another option is to allocate a separate buffer for receiving events (at least as large as
CAPI_RECEIVE_EVENT_BUFFER_SIZE) or pass the same pointer as capiBuffer.

Note: The serial RS-232 version of LMX cannot determine if a controller is attached. The
application must determine this by attempting a CAPI API call such as
CAPI_UpdateController after CAPI_FindNextController is complete.

Note: The serial RS-232 version currently uses a bi-sync protocol that requires
CAPI_Initialize to be recalled if the controller is rebooted (such as in a firmware update
procedure).

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

16 Chaparral document #07-0003-340

Controller Handle
When function CAPI_FindNextController finds a controller, it returns a handle of type CAPI_HANDLE. This
handle should be viewed as an arbitrary 32-bit number. It must then be passed as a parameter with each
call to the CAPI functions defined in Chapter 5. This handle allows your application to tell the LMX which
controller in a dual-controller system you want the message to go to. If your CAPI application is designed
to manage multiple controllers, then this handle will be used to distinguish between the multiple controllers.
Note that for Unified CAPI commands, you should use the handle of the controller that you are
communicating with, not the handle of the controller that will implement the command; for those commands
that allow an application to specify the controller that will implement the command, that is specified with the
controllerId parameter on the function call. Normally, for Unified CAPI, you will only be communicating with
one of the two controllers in a dual-controller system. If you wish to have your application establish a
communications path with both controllers so you can continue managing your system even when there is
a failover, you should design your application so that it only uses the second controller for management in
the event of a failover.

When your application gets a callback from a controller, the handle that was passed with the command is
echoed back as the identifier.controllerHandle parameter passed to your callback function. (See Reply to
Function Calls on page 6.)

When your application gets events from a controller, the handle that was passed with the command is
echoed back as the id.controllerHandle member of the CAPI_EVENT struct. Note that for
CAPI_U_GetFirstEvent, CAPI_U_GetLastEvent, and CAPI_U_GetEvent, the returned handle is the one
that you passed with the command, which is not necessarily the handle of the controller that the events
came from.

CAPI Timer Tick
The application must call CAPI_TimerTick every ½ second (an interrupt timer can be used for this
purpose). This allows the internal LMX layer to time out on link errors. Note that this is not used by all
LMXs; this is not required for the SCSI LMX (lmx_sc32.c), but is required for the two serial LMXs (lmx232.c
and lmx232j.c).

Finding Controllers Example
After initialization, the application must repetitively call CAPI_FindNextController to obtain handles to
connected controllers until CAPI_NULL_ID is returned in the handle parameter. The first call needs to pass
TRUE in the firstTime parameter; otherwise, it should be FALSE. For this function, the application does not
need to wait for the callback function.

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 17

The application programmer can store all controller information in their own structure, such as
demonstrated in the following example:

typedef struct
{
 CAPI_HANDLE controllerHandle;
 CAPI_CONTROLLER controller;
 CAPI_CONTROLLER_CONTEXT controllerContext;

 // Define a receive buffer for data from the remote link.
 CAPI_U8 capiBuffer[CAPI_RECEIVE_GENERAL_BUFFER_SIZE];

 // An optional second buffer for receiving CAPI events so as not to
 // disturb the CAPI_CONTROLLER structure in the other buffer.
 CAPI_U8 eventBuffer[CAPI_RECEIVE_EVENT_BUFFER_SIZE];
} RAID_CONTROLLERRAID_CONTROLLERRAID_CONTROLLERRAID_CONTROLLER;

/*===*/
void FindControllersFindControllersFindControllersFindControllers(int *numFound, RAID_CONTROLLER *raidControllers)
/*===*/
{
 CAPI_BOOL firstTime;
 CAPI_BOOL lastcontroller;
 int I;
 CAPI_RETURN_CODE rc;

 for(I=0; I<MAX_CONTROLLERS; I++) // User defined MAX_CONTROLLERS
 raidController[I].controllerHandle = CAPI_NULL_ID;

 I = 0;
 printf(�Searching for external controllers...�);
 firstTime = TRUE; // Restart search with the first controller.
 lastController = FALSE;

 while(lastController == FALSE && I < MAX_CONTROLLERS)
 {
 rc = CAPI_FindNextController(firstTime, &lastController,
 &raidController[I].controllerHandle,
 &raidController[I].controllerContext,
 raidController[I].capiBuffer,
 raidController[I].eventBuffer);

 firstTime = FALSE; // Keep working down list of controllers.
 if(rc != CAPI_STATUS_GOOD) // If the command failed when sending
 break;
 if(raidController[I].controllerHandle != CAPI_NULL_ID)
 I++;
 }
 *numFound = I;
 if(numFound == 0)
 {
 printf(�Could not find any controllers!\n�);
 exit(0);
 }
 else
 {
 for(I=0; I<numFound; I++)
 printf(�Found controller %d with Handle %x \n�,
 I, raidController[I].controllerHandle);
 }
 return;
}

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

18 Chaparral document #07-0003-340

◊◊◊◊ ◊◊◊◊ ◊◊◊◊

TYPEDEFS AND DEFINES
The following section lists the typedefs and defines used in the data structures that will be described in
chapter 4. Each typedef is followed by the legal values for that type. Typedefs and defines are used
instead of enums to better maintain portability between different compilers. If a different compiler is used
for a CAPI application on a host computer from what is used for compiling the Chaparral firmware, the
handling of enums may be different in the two compilers, whereas defines are more portable.

Note: This list has not been updated for CAPI 3.3 and CAPI 3.4. We believe that this list
is of limited utility to a CAPI application developer since it is not an easily searchable table.
We recommend that you use your development environment to search the .h files in the
SDK for any #define that you have an interest in.

/**/
/* Constants: */
/**/
#define CAPI_HEADER_FILE_REV_CONTROL_VERSION "$Revision:: 147 $"

#define CAPI_VERSION_MAJOR 3 /* ie. v3.x */
#define CAPI_VERSION_MINOR 1

#define CAPI_ENVIRON_MAX_INQUIRY_BYTES 256
#define CAPI_ENVIRON_MAX_SENSE_BYTES 200
#define CAPI_ENVIRON_MAX_ENVIRON_DATA_LENGTH 256
#define CAPI_FC_WWID_SIZE 8
#define CAPI_HIGHEST_USABLE_UNIT_NUM 63
#define CAPI_INQ_MODEL_LEN 17
#define CAPI_INQ_REV_LEN 5
#define CAPI_INQ_VENDOR_LEN 9
#define CAPI_MAX_ARRAY_NAME 32
#define CAPI_MAX_BYTES_FOR_EVENT_CDB 16
#define CAPI_MAX_BYTES_FOR_EXTRA_EVENT_DATA 64
#define CAPI_MAX_DEVICES_FC_LOOP 128
#define CAPI_MAX_DIGITAL_KEY_BYTES 16
#define CAPI_MAX_DRIVE_CHANNELS_PER_CONTROLLER 8 /* Max back-end channels */
#define CAPI_MAX_DRIVES_PER_ARRAY 68 /* 64 + 4 dedicated spares */
#define CAPI_MAX_DRIVES_PER_CHANNEL 125
#define CAPI_MAX_DRIVES_PER_CONTROLLER 250
#define CAPI_MAX_ENVIRON_DEVICES 10
#define CAPI_MAX_EXPAND_DRIVES 4
#define CAPI_MAX_HOST_CHANNELS_PER_CONTROLLER 8 /* Max front-end channels */
#define CAPI_MAX_HOST_NAME 16
#define CAPI_MAX_HOST_TABLE 16
#define CAPI_MAX_NETWORK_STRING 32
#define CAPI_MAX_NUMBER_OF_ARRAY_STAT_BUCKETS 12
#define CAPI_MAX_PASSWORD_BYTES 8
#define CAPI_MAX_POOL_SPARES_PER_CONTROLLER 8
#define CAPI_MAX_RAID_LEVELS 12
#define CAPI_MAX_SERIAL_NUMBER_BYTES 32

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 19

#define CAPI_MAX_SINGLES_PER_CONTROLLER 10
#define CAPI_MAX_SPARES_PER_ARRAY 4
#define CAPI_MAX_STRING 20
#define CAPI_MAX_UNIT_NUM (CAPI_HIGHEST_USABLE_UNIT_NUM + 1)
#define CAPI_MAX_UNIT_MAP 128
#define CAPI_SYSTEM_STRING_MAX 80

#define CAPI_MAX_ARRAYS_PER_CONTROLLER 32
/* see maxArrays in CAPI_RAID for actual number supported by the particular RAID
 product. This is the max arrays *per* bank of arrays */
#define CAPI_MAX_PARTITIONS_PER_ARRAY 16
#define CAPI_MAX_ARRAY_PARTITIONS_PER_CONTROLLER 128 /* The max number of LUNs. */

/* This the maximum number of free partition area in an array: */
#define CAPI_MAX_FREE_PARTITIONS_PER_ARRAY (CAPI_MAX_PARTITIONS_PER_ARRAY + 1)

#define CAPI_PERFORMANCE_TUNING_FLAG_DUAL_FIBRE 0x00000001
#define CAPI_RECEIVE_EVENT_BUFFER_SIZE (sizeof(CAPI_EVENT)+sizeof(CAPI_PACKET))
#define CAPI_RECEIVE_GENERAL_BUFFER_SIZE (sizeof(CAPI_EXTRA_DATA)+sizeof(CAPI_PACKET))

/* Indicates the target ID is currently set to "soft", meaning that the
 * system chooses the target ID's value dynamically. Only supported for Fibre
 * Channel target IDs.
 */
#define CAPI_SOFT_TARGET_ID 0xFF

/*---*/
typedef CAPI_U8 CAPI_AD_ALARM_SIGNAL;
/*---*/
#define CAPI_AD_ALARM_SIGNAL_UNKNOWN 0
#define CAPI_AD_ALARM_SIGNAL_VCC 1
#define CAPI_AD_ALARM_SIGNAL_BACK 2
#define CAPI_AD_ALARM_SIGNAL_V12 3
#define CAPI_AD_ALARM_SIGNAL_V3 4
#define CAPI_AD_ALARM_SIGNAL_TEMPERATURE 5
#define CAPI_AD_ALARM_SIGNAL_CPU_TEMPERATURE 6
#define CAPI_AD_ALARM_SIGNAL_TEMPERATURE_2 7
#define CAPI_AD_ALARM_SIGNAL_V25_MAIN 8
#define CAPI_AD_ALARM_SIGNAL_V25_LAN 9

/*---*/
typedef CAPI_U8 CAPI_ADDRESSING_METHOD;
/*---*/
#define CAPI_ADDR_MODE_PERIPHERAL_DEVICE 0
#define CAPI_ADDR_MODE_LOGICAL_UNIT 1

/*---*/
typedef CAPI_U8 CAPI_ARRAY_HEALTH;
/*---*/
#define CAPI_ARRAY_FAULT_TOLERANT 0
#define CAPI_ARRAY_FAULT_TOLERANT_WITH_DOWN_DRIVES 1 /* RAID10 applicable */
#define CAPI_ARRAY_NOT_FAULT_TOLERANT 2
#define CAPI_ARRAY_OFFLINE 3

/*---*/
typedef CAPI_U8 CAPI_BATTERY_STATE;
/*---*/
#define CAPI_BATTERY_STATE_RESET 0
#define CAPI_BATTERY_STATE_FAST_CHARGE_INITIATED 1
#define CAPI_BATTERY_STATE_FAST_CHARGE_ACTIVE 2
#define CAPI_BATTERY_STATE_FAST_CHARGE_VERIFY 3
#define CAPI_BATTERY_STATE_CHARGER_PENDING 4
#define CAPI_BATTERY_STATE_FULL_CHARGED 5
#define CAPI_BATTERY_STATE_FAILURE 6

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

20 Chaparral document #07-0003-340

#define CAPI_BATTERY_STATE_TRICKLE_PENDING 7

/*---*/
typedef CAPI_U8 CAPI_BATTERY_STATUS;
/*---*/
#define CAPI_BATTERY_STATUS_GOOD 0
#define CAPI_BATTERY_STATUS_DEAD 1
#define CAPI_BATTERY_FAILURE_FAST_CHARGE 2
#define CAPI_BATTERY_FAILURE_OVERCHARGE 3
#define CAPI_BATTERY_FAILURE_OVERCURRENT 4
#define CAPI_BATTERY_FAILURE_CHARGER 5
#define CAPI_BATTERY_FAILURE_PACK_TEMP_OUT_OF_RANGE 6
#define CAPI_BATTERY_FAILURE_SYSTEM_TEMP_OUT_OF_RANGE 7
#define CAPI_BATTERY_FAILURE_VOLTAGE_OUT_OF_RANGE 8
#define CAPI_BATTERY_FAILURE_UNDER_VOLTAGE 9
#define CAPI_BATTERY_FAILURE_OVER_VOLTAGE 10
#define CAPI_BATTERY_FAILURE_PACK_NOT_INSTALLED 11
#define CAPI_BATTERY_FAILURE_PACK_SHORT_CIRCUIT 12

/*---*/
typedef CAPI_U8 CAPI_BUS_TYPE;
/*---*/
#define CAPI_BUS_UNKNOWN 0
#define CAPI_BUS_SE 1
#define CAPI_BUS_HVD 2
#define CAPI_BUS_LVD 3
#define CAPI_BUS_FC1 4
#define CAPI_BUS_FC2 5
#define CAPI_BUS_FC 6 /* Fibre Channel generic type */
#define CAPI_BUS_SCSI 7 /* SCSI generic type */

/*---*/
typedef CAPI_U8 CAPI_CHANNEL_STATE;
/*---*/
#define CAPI_CHANNEL_ACTIVE 0
#define CAPI_CHANNEL_PAUSED 1 /* active, but paused */
#define CAPI_CHANNEL_PASSIVE 2 /* passive (for A-A) */

/*---*/
typedef CAPI_U8 CAPI_CHANNEL_TYPE;
/*---*/
#define CAPI_CHANNEL_TYPE_HOST 0
#define CAPI_CHANNEL_TYPE_DRIVE 1

/*---*/
typedef CAPI_U8 CAPI_CONTROLLER_ID;
/*---*/
#define CAPI_CONTROLLER_B 0
#define CAPI_CONTROLLER_A 1
#define CAPI_CONTROLLER_BOTH 2
#define CAPI_CONTROLLER_UNKNOWN 3

/*---*/
typedef CAPI_U8 CAPI_CONTROLLER_MODE;
/*---*/
#define CAPI_CONTROLLER_MODE_UNKNOWN 0 /* unknown or invalid mode */
#define CAPI_CONTROLLER_MODE_STANDALONE_SINGLE_PORT 1 /* single controller, */
 /* single host port */
#define CAPI_CONTROLLER_MODE_STANDALONE_DUAL_PORT 2 /* single controller, */
 /* dual host ports */
#define CAPI_CONTROLLER_MODE_AA_SINGLE_PORT 3 /* active/active, single */
 /* host port */
#define CAPI_CONTROLLER_MODE_AA_DUAL_PORT 4 /* active/active, dual */
 /* host ports */

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 21

#define CAPI_CONTROLLER_MODE_ACTPAS_DUAL_PORT 5 /* active/passive, dual */
 /* host ports */
#define CAPI_CONTROLLER_MODE_AA_DUAL_PORT_MULTI_ID 6 /* active/active, dual */
 /* port with multi id */

/*---*/
typedef CAPI_U8 CAPI_DIRECTION;
/*---*/
#define CAPI_DIRECTION_NONE 0
#define CAPI_DIRECTION_IN 1
#define CAPI_DIRECTION_OUT 2

/*---*/
typedef CAPI_U8 CAPI_DISK_SETTING;
/*---*/
#define CAPI_DISK_SETTING_DONT_TOUCH 0
#define CAPI_DISK_SETTING_ENABLE 1
#define CAPI_DISK_SETTING_DISABLE 2

/*---*/
typedef CAPI_U8 CAPI_DRIVE_STATE;
/*---*/
#define CAPI_DRIVE_ONLINE 1
#define CAPI_DRIVE_OFFLINE 2
#define CAPI_DRIVE_MISSING 3

/*---*/
typedef CAPI_U8 CAPI_DRIVE_TYPE;
/*---*/
#define CAPI_DRIVE_TYPE_DISK 0
#define CAPI_DRIVE_TYPE_TAPE 1
#define CAPI_DRIVE_TYPE_PRINTER 2
#define CAPI_DRIVE_TYPE_PROCESSOR 3
#define CAPI_DRIVE_TYPE_WRITE_ONCE 4
#define CAPI_DRIVE_TYPE_CDROM 5
#define CAPI_DRIVE_TYPE_SCANNER 6
#define CAPI_DRIVE_TYPE_OPTICAL_MEMORY 7
#define CAPI_DRIVE_TYPE_MEDIUM_CHANGER 8
#define CAPI_DRIVE_TYPE_COMMUNICATIONS 9
#define CAPI_DRIVE_TYPE_GRAPHIC_1 10
#define CAPI_DRIVE_TYPE_GRAPHIC_2 11
#define CAPI_DRIVE_TYPE_CONTROLLER 12
#define CAPI_DRIVE_TYPE_ENCLOSURE 13
#define CAPI_DRIVE_TYPE_SIMPLIFIED_DISK 14
#define CAPI_DRIVE_TYPE_OPTICAL_CARD 15

/*---*/
typedef CAPI_U8 CAPI_DRIVE_USAGE;
/*---*/
#define CAPI_DRIVE_AVAILABLE 0
#define CAPI_DRIVE_MEMBER_OF_ARRAY 1
#define CAPI_DRIVE_DEDICATED_SPARE 2
#define CAPI_DRIVE_POOL_SPARE 3
#define CAPI_DRIVE_SINGLE 4
#define CAPI_DRIVE_LEFTOVER 5

/*---*/
typedef CAPI_U8 CAPI_EVENT_CRITICALITY;
/*---*/
#define CAPI_EVENT_CRITICALITY_INFORMATIONAL 0
#define CAPI_EVENT_CRITICALITY_WARNING 1
#define CAPI_EVENT_CRITICALITY_ERROR 2

/*---*/
typedef CAPI_U8 CAPI_EVENT_PROGRESS;

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

22 Chaparral document #07-0003-340

/*---*/
#define CAPI_EVENT_PROGRESS_INITIATED 1
#define CAPI_EVENT_PROGRESS_COMPLETED 2

/*---*/
typedef CAPI_U8 CAPI_FLEX_TYPE;
/*---*/
#define CAPI_FLEX_TYPE_SCSI 0x01
#define CAPI_FLEX_TYPE_FC_LOOP_ID 0x02
#define CAPI_FLEX_TYPE_FC_ADDR 0x04
#define CAPI_FLEX_TYPE_FC_WWN_NODE 0x08
#define CAPI_FLEX_TYPE_FC_WWN_PORT 0x10
#define CAPI_FLEX_TYPE_LUN 0x20
#define CAPI_FLEX_TYPE_BRIDGE_LUN 0x40
#define CAPI_FLEX_TYPE_ENVIRON_LUN 0x80

/*---*/
typedef CAPI_U8 CAPI_FORMAT_TYPE;
/*---*/
#define CAPI_FORMAT_TYPE_NO_FORMAT 0
#define CAPI_FORMAT_TYPE_ZERO_INIT_ONLY 1
#define CAPI_FORMAT_TYPE_ZERO_AND_LOWLEVEL 2
#define CAPI_FORMAT_TYPE_ONLINE_INIT 3

/*---*/
typedef CAPI_U32 CAPI_HANDLE;
/*---*/
#define CAPI_NULL_ID 0xFFFFFFFF

/* Indicates the LUN's value is currently unassigned (i.e. it's unavailable) */
#define CAPI_LUN_UNASSIGNED 0xFF

/*---*/
typedef CAPI_U8 CAPI_LINK_SPEED;
/*---*/
#define CAPI_LINK_SPEED_1GB 0
#define CAPI_LINK_SPEED_2GB 1
#define CAPI_LINK_SPEED_AUTO 2

/*---*/
typedef CAPI_U32 CAPI_MAINT_COMMAND;
/*---*/
#define CAPI_MAINT_USE_CDB 1
#define CAPI_MAINT_INQUIRY 2
#define CAPI_MAINT_TUR 3
#define CAPI_MAINT_FORMAT_UNIT 4
#define CAPI_MAINT_VERIFY 5
#define CAPI_MAINT_START_UNIT 6
#define CAPI_MAINT_STOP_UNIT 7
#define CAPI_MAINT_SEND_DIAGNOSTIC 8
#define CAPI_MAINT_MODE_SENSE 9
#define CAPI_MAINT_MODE_SELECT 10
#define CAPI_MAINT_CLEAR_METADATA 11

/*---*/
typedef CAPI_U32 CAPI_MAPPING_MODE;
/*---*/
#define CAPI_MAPPING_MODE_AUTO 0
#define CAPI_MAPPING_MODE_FIXED 1

/*---*/
typedef CAPI_U8 CAPI_RAID_LEVEL;
/*---*/
#define CAPI_RAID0 0
#define CAPI_RAID1 1

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 23

#define CAPI_RAID2 2
#define CAPI_RAID3 3
#define CAPI_RAID4 4
#define CAPI_RAID5 5
#define CAPI_RAID_VOLUME_SET 6
#define CAPI_RAID30 7
#define CAPI_RAID50 8
#define CAPI_RAID10 10

/*---*/
typedef CAPI_U8 CAPI_SCAN_SEQUENCE;
/*---*/
#define CAPI_SCAN_SEQUENCE_0 0 /* Channel 0, 1, 2, 3 ... */
#define CAPI_SCAN_SEQUENCE_1 1 /* Channel 1, 0, 2, 3 ...

customer special */
#define CAPI_SCAN_SEQUENCE_NONE 0xFF /* No channel scan */

/*---*/
typedef CAPI_U8 CAPI_SNMP_NOTIFICATION_FILTER;
/*---*/
#define CAPI_SNMP_NOTIFICATION_FILTER_INFO 0 /* give all events */
#define CAPI_SNMP_NOTIFICATION_FILTER_WARN 1 /* just warn and error */
#define CAPI_SNMP_NOTIFICATION_FILTER_ERR 2 /* just errors */

/*---*/
typedef CAPI_U8 CAPI_TOPOLOGY;
/*---*/
#define CAPI_TOPOLOGY_LOOP 0
#define CAPI_TOPOLOGY_POINT_TO_POINT 1
#define CAPI_TOPOLOGY_AUTO 2

/*---*/
typedef CAPI_U8 CAPI_UNIT_TYPE;
/*---*/
#define CAPI_UNIT_TYPE_ARRAY_LUN 1
#define CAPI_UNIT_TYPE_BRIDGE_LUN 2
#define CAPI_UNIT_TYPE_SAFTE_LUN 3
#define CAPI_UNIT_TYPE_SES_LUN 4

/*---*/
typedef CAPI_U8 CAPI_UTILITY_PRIORITY;
/*---*/
#define CAPI_UTILITY_PRIORITY_HIGH 0
#define CAPI_UTILITY_PRIORITY_MEDIUM 1
#define CAPI_UTILITY_PRIORITY_LOW 2

/*---*/
typedef CAPI_U8 CAPI_UTILITY_RUNNING;
/*---*/
#define CAPI_NO_UTILITY_RUNNING 0
#define CAPI_UTIL_LOW_LEVEL_FORMAT 1
#define CAPI_UTIL_ZERO_INITIALIZE 2
#define CAPI_UTIL_RECONSTRUCT 3
#define CAPI_UTIL_VERIFY 4
#define CAPI_UTIL_EXPAND 5

/*---*/
typedef CAPI_U8 CAPI_WB_CACHE_STATE;
/*---*/
#define CAPI_WB_CACHE_STATE_ENABLED 0
#define CAPI_WB_CACHE_STATE_DISABLED 1

/*---*/
typedef CAPI_U8 CAPI_OTHER_STATE;
/*---*/

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

24 Chaparral document #07-0003-340

#define CAPI_OS_ACTIVE_ACTIVE 0
#define CAPI_OS_DOWN 1
#define CAPI_OS_NOT_INSTALLED 2
#define CAPI_OS_UNDEFINED 3

/*---*/
typedef CAPI_U8 CAPI_FR_FAILOVER_REASON;
/*---*/
#define CAPI_FR_NA 0
#define CAPI_FR_FIRMWARE_INCOMPATIBLE 1
#define CAPI_FR_MODEL_INCOMPATIBLE 2
#define CAPI_FR_HEARTBEAT_LOST 3
#define CAPI_FR_MSG_TO_OTHER_FAILED 4
#define CAPI_FR_OTHER_NOT_PRESENT 5
#define CAPI_FR_CAPI_REQUESTED 6
#define CAPI_FR_FOC_REGISTER_ERROR 7
#define CAPI_FR_MEMORY_SIZE_INCOMPATIBLE 8
#define CAPI_FR_BOOT_HANDSHAKE_TIMEOUT 9
#define CAPI_FR_FIRMWARE_UPDATE 10
#define CAPI_FR_SHUTDOWN 11
#define CAPI_FR_REBOOTING 12
#define CAPI_FR_WRITE_UNIQUE_DATA 13
#define CAPI_FR_OTHER_ORPHAN_DIRTY 14
#define CAPI_FR_LOCK_MGR_LOST_COMM 15
#define CAPI_FR_SAME_SERIAL_NUMBER 16
#define CAPI_FR_CPLD_REVISION_MISMATCH 17
#define CAPI_FR_UNKNOWN 0x7f

/*---*/
typedef CAPI_U8 CAPI_INFOSHIELD_ACCESS;
/*---*/
#define CAPI_INFOSHIELD_ACCESS_ALL 0
#define CAPI_INFOSHIELD_ACCESS_NONE 1
#define CAPI_INFOSHIELD_ACCESS_INCLUDE_LIST 2
#define CAPI_INFOSHIELD_ACCESS_EXCLUDE_LIST 3

/*---*/
typedef CAPI_U8 CAPI_MIB_PORT_STATE;
/*---*/
#define CAPI_MIB_PORT_STATE_UNKNOWN 1
#define CAPI_MIB_PORT_STATE_ONLINE 2
#define CAPI_MIB_PORT_STATE_OFFLINE 3
#define CAPI_MIB_PORT_STATE_BYPASSED 4

/*---*/
typedef CAPI_U8 CAPI_MIB_PORT_STATUS;
/*---*/
#define CAPI_MIB_PORT_STATUS_UNKNOWN 1
#define CAPI_MIB_PORT_STATUS_UNUSED 2
#define CAPI_MIB_PORT_STATUS_OK 3
#define CAPI_MIB_PORT_STATUS_WARNING 4
#define CAPI_MIB_PORT_STATUS_FAILURE 5
#define CAPI_MIB_PORT_STATUS_NOTPARTICIPATING 6
#define CAPI_MIB_PORT_STATUS_INITIALIZING 7
#define CAPI_MIB_PORT_STATUS_BYPASS 8

/*---*/
typedef CAPI_U8 CAPI_SENSOR_STATUS;
/*---*/
#define CAPI_SENSOR_STATUS_UNKNOWN 1
#define CAPI_SENSOR_STATUS_OTHER 2
#define CAPI_SENSOR_STATUS_OK 3
#define CAPI_SENSOR_STATUS_WARNING 4
#define CAPI_SENSOR_STATUS_FAILED 5

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 25

/*---*/
typedef CAPI_U32 CAPI_ENCLOSURE_FEATURES;
/*---*/
 /* The internal Fibre Channel internal hubs are disabled. */
#define CAPI_ENCL_DISABLE_FC_INTERNAL_HUBS 1
 /* The internal Fibre Channel internal hubs will be connected */
 /* together into one large loop if a controller fails. */
#define CAPI_ENCL_ENABLE_CONNECT_INTERNAL_HUBS_ON_FO 2

/*---*/
typedef CAPI_U32 CAPI_ENCLOSURE_CAPABILITY;
/*---*/
/* If set, this controller resides in a separately supplied */
/* enclosure (as opposed to being a stand-alone product). */
#define CAPI_ENCL_CAPABILITY_RESIDES_IN_ENCLOSURE 0x0001

/* If set, the internal enclosure internal hubs can be configured */
/* to allow connection directly to the controller's ports. */
#define CAPI_ENCL_CAPABILITY_CHANGE_INTERNAL_HUBS 0x0002

/* If set, the internal enclosure internal hubs can be configured */
/* to be connected together into one large loop when a */
/* controller fails. */
#define CAPI_ENCL_CAPABILITY_CONNECT_INTERNAL_HUBS_ON_FO 0x0004

/* The Fibre Channel Port Bypass Circuits in the enclosure can */
/* be configured to run at either 1Gb/s or 2Gb/s. */
#define CAPI_ENCL_CAPABILITY_CHANGE_FC_SPEED 0x0008

/*---*/
/* Fibre Channel Hardware Version */
/*---*/
#define CAPI_FC_HW_VERSION_EMERALD 0x00000000
#define CAPI_FC_HW_VERSION_RIO 0x00000001

/*---*/
/* Commands use in CAPI_EnvironRead and CAPI_EnvironWrite */
/*---*/
typedef enum
{
 SAFTE_READ_ENCLOSURE_CFG_CMD = 0x00,
 SAFTE_READ_ENCLOSURE_STATUS_CMD = 0x01,
 SAFTE_READ_USAGE_STATS_CMD = 0x02,
 SAFTE_READ_DEV_INSERTIONS_CMD = 0x03,
 SAFTE_READ_DEV_SLOT_STATUS_CMD = 0x04,
 SAFTE_READ_GLOBAL_FLAGS_CMD = 0x05,
 SAFTE_WRITE_DEV_SLOT_STATUS_CMD = 0x10,
 SAFTE_SET_SCSI_ID_CMD = 0x11,
 SAFTE_PERFORM_SLOT_OPERATION_CMD= 0x12,
 SAFTE_SET_FAN_SPEED_CMD = 0x13,
 SAFTE_ACTIVATE_POWER_SUPPLY_CMD = 0x14,
 SAFTE_SEND_GLOBAL_FLAGS_CMD = 0x15
/*---*/
} SAFTE_CMD_ENUM;
/*---*/

The following typedefs are used in nearly all of the CAPI functions and their associated values are listed in
later sections.

typedef CAPI_U32 CAPI_EVENT_CODE;
typedef CAPI_U32 CAPI_RETURN_CODE;
typedef CAPI_U32 CAPI_REPLY_CODE;
typedef CAPI_U32 CAPI_ERROR_CODE;

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

26 Chaparral document #07-0003-340

◊◊◊◊ ◊◊◊◊ ◊◊◊◊

DATA STRUCTURES
The API communicates information about the configuration of controllers, channels, RAID arrays, and
devices to the application through a set of data structures. These structures are listed in this chapter and
may not contain the reserved fields used for byte alignment. The actual structures are in the CAPI SDK
files. Byte alignment fields are added to make the data structures portable between different processors
and different compilers used for your CAPI application running on a host computer and the Chaparral
firmware.

Note: Developers familiar with CAPI2.x should observe that there is now another level of
indirection to get to CAPI_DRIVE (physical drive) from CAPI_MEMBER_DRIVE (logical
array drive).

Note: See Chapter 2 for important information on how to get these structures and how
Configuration Sequence Numbers keep the data current. See, especially, the sections of
Chapter 2 titled Controller Structure Updates, Controller Configuration Sequence Number,
and SDK code assists with current configuration information.

The main structure is the CAPI_CONTROLLER (or, for unified commands, the
CAPI_UNIFIED_CONTROLLER), which describes a controller. It contains information such as the number
of initiator channels (disk) and target channels (host), cache size, firmware revision, current cache
parameters, and much more.

CAPI_CHANNEL structures are found in the CAPI_CONTROLLER structure. They describe both front-end
(target or host) channels, and back-end (initiator or device) channels. Provisions are made for both
traditional SCSI devices and Fibre Channel devices. The CAPI_CHANNEL struct contains information
such as the bus type and the current and maximum number of devices attached to the bus. This structure
contains an array of bytes called driveReference. Each element of this array is an index into the current
CAPI_DRIVE list (retrieved with a call to CAPI_GetDriveList or CAPI_U_GetDriveList). CAPI_DRIVE
describes each physical storage drive attached to that bus. CAPI_DRIVE provides information such as the
vendor and model name, drive type, capacity, SCSI ID, and Logical Unit Number (LUN) for each drive.

CAPI_ARRAY structures (retrieved with a call to CAPI_GetArrayList or CAPI_U_GetArrayList) describe
each RAID array on that controller. This structure contains all of the information that describes a RAID
array including a list of CAPI_MEMBER_DRIVE structures. This includes CAPI_DRIVE_LOCATION
identifiers for each member that identifies which of the drives in the CAPI_DRIVE array are logical
members of the array.

These data structures, along with additional structures used in CAPI function calls, are described in detail
in the remainder of this chapter.

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 27

Note: The CAPI_DRIVE_LOCATION includes a channelIndex field and a driveIndex field.
While the channelIndex field is the physical channel number, the driveIndex field is
not the physical drive ID (SCSI ID) of the drive, but rather an index value into the
channel structure. For example, if you have three drives on channel 0, and one drive
on channel 1, their respective CAPI_DRIVE_LOCATION values are (0,0), (0,1),
(0,2), and (1,0) regardless of their SCSI ID�s.

The index into the channel structure is further used to get the driveReference value
that corresponds with the location in the drive list retrieved with a call to
CAPI_GetDriveList.

 in CAPI 3.4:
Note that as of CAPI 3.4, new, Unified CAPI commands have been added. These

commands all take parameters that are array serial numbers instead of array indices
and drive serial numbers instead of channel and drive indices. This simplifies
design of CAPI applications by eliminating most of the need to be concerned with
the drive and array indices.

The Unified CAPI commands make use of newly organized Unified CAPI data structures
that divide the data that are gotten with CAPI_U_GetCotrollerData and the
parameters that are set with CAPI_U_SetControllerParams into two classes:
data/parameters that are common to both controllers in a dual-controller system and
data/parameters that can be unique per controller. To understand this organization,
see struct CAPI_UNIFIED_CONTROLLER and the substructures that are members
of this structure. (See, also, Unified CAPI on page 5.)

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

28 Chaparral document #07-0003-340

Controller Structure Diagram

The memberDrive specifies a CAPI_DRIVE_LOCATION, which specifies a channelIndex and a driveIndex.
The channelIndex is used to index into the driveChannel array in the CAPI_CONTROLLER structure.
The driveIndex is used to index into the driveReference array in the particular driveChannel.
The driveReference is used to index into the CAPI_DRIVE list.

CAPI_DRIVE list
 Retrieved with call to
 CAPI_GetDriveList

callback:
pDataPtr = first CAPI_DRIVE
param1 = number of drives
param2 = config. seq. number

CAPI_ARRAY list
Retrieved with call to
CAPI_GetArrayList

callback:
pDataPtr= first CAPI_ARRAY
param1 = number of RAID arrays
param2 = config. seq. number

CAPI_CONTROLLER structure
Retrieved with call to
CAPI_UpdateController

callback:
pDataPtr = CAPI_CONTROLLER
param1 = undefined
param2 = config. seq. number

CAPI_DRIVE

CAPI_DRIVE

CAPI_DRIVE

CAPI_DRIVE

CAPI_DRIVE

CAPI_ARRAY

CAPI_MEMBER_DRIVE
memberDrive[0]

CAPI_MEMBER_DRIVE
memberDrive[1]

CAPI_MEMBER_DRIVE
memberDrive[m]

CAPI_ARRAY

CAPI_MEMBER_DRIVE
memberDrive[0]

CAPI_MEMBER_DRIVE
memberDrive[1]

CAPI_MEMBER_DRIVE
memberDrive[j]

CAPI_CONTROLLER

CAPI_CHANNEL
driveChannel[0]

CAPI_U8
driveReference[0]

CAPI_U8
driveReference[1]

CAPI_U8
driveReference[2]

CAPI_U8
driveReference[n]

CAPI_CHANNEL
driveChannel[k]

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 29

CAPI Versions
Different Chaparral products support different versions of CAPI. If the major version (for example, the 3 in
version 3.4) is the same for two products, you should be able to easily design a single CAPI app that
manages both products, although the product with the lower minor version number (for example, the 4 in
version 3.4) will not have all the features of the product with the higher minor version number. Specifically,
there may be additional CAPI commands added for a higher version number and there may be additional
members in some of the data structures passed to and from CAPI commands, but the members that
existed in the lower version of CAPI are still in the same locations in the same structures.

When a new version of the CAPI SDK is released, typically the most recent Chaparral product(s) are
released simultaneously with the SDK and the version of CAPI that is running in the controller corresponds
to the SDK version. However, developers of new CAPI apps can use a more recent version of the CAPI
SDK to talk to older products, provided the major version number matches, and, of course, the app cannot
use the newest features that have been added to CAPI which are not supported on that product.

Conversely, if a CAPI app was developed using an older version of the CAPI SDK (for example, CAPI 3.2),
it can still be used for managing a newer product that supports a newer version of CAPI (for example,
CAPI3.4), but of course the app will not be able to take advantage of the newer features that have been
added to CAPI 3.4 in the product but which are not in the CAPI 3.2 SDK.

As of this writing (September 2002), the following products support the corresponding version of CAPI:
• CAPI 2.x: G5312, G7313, all Kxxxx.
• CAPI 3.4: RIO, Stratis RAID S3300 (JFF224). (Thus, the features marked � in CAPI 3.3� and �

in CAPI 3.4� in this document are supported by these products only.)
• CAPI 3.2: All other Chaparral products.

CAPI Capabilities
Different controller models have different capabilities that are reflected by capability masks found in the
CAPI_CONTROLLER structure (obtained with CAPI_UpdateController) and in the
CAPI_UNIFIED_CONTROLLER_UNIQUE_DATA structure (obtained with CAPI_U_GetControllerData).
Specifically, the members of these structures that indicate the capabilities are capabilities, capabilities2,
capabilities3, and enclosureCapabilities. A TRUE bit indicates the feature is supported. For example, to
determine if the controller supports the array statistics feature after receiving an updated controller pointer
via the CAPI_UpdateController call and resultant callback, this code fragment could be used:

appCallBack(replyCode, errorCode, id, param1, param2, param3, param4, dataPtr)
{
 CAPI_CONTROLLER *pController = (CAPI_CONTROLLER*)dataPtr;
 if (pController->capabilities & CAPI_CAPABILITY_ARRAY_STATS)
 {
 /* array statistics are supported */
 }
 else
 {
 /* array statistics are not supported */
 }
}

Some other members of these structures also indicate capabilities that your CAPI app may be interested
in.; specifically: numHostChannels, numDriveChannels, raidCapable, and routerCapable.

You may also wish to look at the revision numbers in these structs, such as firmwareRevision and
boardRevision since different versions of a product may require variations in the user interface. (See the
release notes for the product(s) that you are interfacing with.)

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

30 Chaparral document #07-0003-340

You may also have to do different things in your CAPI app if you are designing it to interface with products
that support different versions of CAPI. See above under CAPI Versions (page 29).

Capabilities supported by some specific products are listed in Chapter 15.

Table 4-1. CAPI Capabilities

Capability Bit Description
CAPI_CAPABILITY_ARRAY_NAME The naming of arrays with both the CAPI_CreateArray and the

CAPI_ChangeArrayName commands.

CAPI_CAPABILITY_ARRAY_STATS Array statistics (a limited set defined by product-specific
documentation).

CAPI_CAPABILITY_AUTO_VERIFY_FIX
Automatically fixing of parity mismatches during a verify operation.
Generally, controllers assume the parity to be wrong and not the
data; however, this is product-specific.

CAPI_CAPABILITY_DEDICATED_SPARE Dedicated spares. That means that the spare drive is available only
to an array that it is assigned to.

CAPI_CAPABILITY_DRIVE_STATS Drive statistics (a limited set defined by product-specific
documentation).

CAPI_CAPABILITY_FORMAT_AT_CREATION Array initialization at array creation time.

CAPI_CAPABILITY_LAST_VERIFY_LAST_RECON Filling in the time stamps of the last verify and reconstruct
operations.

CAPI_CAPABILITY_NO_FORMAT_AT_CREATION The controller supports the ability to disable array initialization at
array creation time.

CAPI_CAPABILITY_NO_VERIFY_FIX_OPTION
The use of the disableAutoFix parameter in the CAPI_VerifyArray
command. This ensures that the controller does not fix parity
inconstancies if any are found.

CAPI_CAPABILITY_ONLINE_CAPACITY_EXPAND Online capacity expansion feature.
CAPI_CAPABILITY_RAID0 RAID level 0, as defined by the RAID Advisory Board (RAB).
CAPI_CAPABILITY_RAID1 RAID level 1, as defined by the RAB.
CAPI_CAPABILITY_RAID2 RAID level 2, as defined by the RAB
CAPI_CAPABILITY_RAID3 RAID level 3, as defined by the RAB.
CAPI_CAPABILITY_RAID4 RAID level 4, as defined by the RAB.
CAPI_CAPABILITY_RAID5 RAID level 5, as defined by the RAB.
CAPI_CAPABILITY_RAID10 RAID level 10, as defined by the RAB.
CAPI_CAPABILITY_RAID30 RAID level 30, as defined by the RAB.
CAPI_CAPABILITY_RAID50 RAID level 50, as defined by the RAB.
CAPI_CAPABILITY_RAID_VOLUME_SET Volume sets, which is a concatenation of disks.
CAPI_CAPABILITY_READ_AHEAD_CACHE Controller read-ahead caching is supported.
CAPI_CAPABILITY_SAFTE SAF-TE environmental processors.
CAPI_CAPABILITY_SES SCSI-3 Enclosure Services command set.
CAPI_CAPABILITY_SOFTWARE_TERMINATION Software SCSI termination settings.

CAPI_CAPABILITY_SPARE_POOL Pool spares. This means that spare drives are available to any array
that needs it, provided the spare drive is large enough.

CAPI_CAPABILITY_WRITE_BACK_CACHE Controller write-back caching is supported.
CAPI_CAPABILITY_2_2GB_FC_SPEED_SUPPORT 2 GB Fibre Channel is supported.
CAPI_CAPABILITY_2_ABORT_CREATE_ARRAY Allows the user to abort an array creation in progress.
CAPI_CAPABILITY_2_ADVANCED_NETWORK_INTF Internal Chaparral use only.

CAPI_CAPABILITY_2_ADVANCED_UNIT_MAPPING
Ability to use CAPI_SetAdvancedUnitMapping and
CAPI_GetAdvancedUnitMapping to map front end channels to back
end devices or arrays.

CAPI_CAPABILITY_2_ARRAY_PARTITIONS Allows partitioning (i.e. subdividing) the storage with an array into
separate �partitions,� each of which have their own LUN.

CAPI_CAPABILITY_2_AUTO_FC_SPEED_SUPPORT Automatic detection of Fibre Channel Speed is supported.
CAPI_CAPABILITY_2_AUTO_FC_TOPOLOGY_SUPPORT Auto Fibre Channel Topology detection is supported.

CAPI_CAPABILITY_2_BATTERY_PERCENT_CHARG.ED The filling in of batteryPercentCharged in the
CAPI_CONTROLLER_ENVIRONMENTALS structure.

CAPI_CAPABILITY_2_DEV_MEM_EXPORT_PROTOCOL Supports configuring the memory buffer space used by the SCSI

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 31

Capability Bit Description
Device Memory Export Protocol (DMEP). In a nutshell, DMEP is a
SCSI protocol mechanism to support file sharing (i.e. clustering) on a
SCSI device by multiple hosts.

CAPI_CAPABILITY_2_DISK_SMART_SUPPORT Support SMART on the disk channel devices.
CAPI_CAPABILITY_2_DRIVE_SERIAL_NUMBERS Filling in of unique serial numbers for physical drives.

CAPI_CAPABILITY_2_DYNAMIC_POOL_SPARES

If enabled, drives marked as �Available� by the controller may be
picked up automatically by the controller and used as pool spares, if
a critical array needs a spare drive and no dedicated spare or pool
spare is available.

CAPI_CAPABILITY_2_FAILOVER_ACTIVE_ACTIVE The controller is capable of active/active fault-tolerant configuration.
CAPI_CAPABILITY_2_FIRMWARE_DOWNLOAD CAPI_UpdateFirmware.
CAPI_CAPABILITY_2_HOST_SMART_SUPPORT Report SMART events to the host.

CAPI_CAPABILITY_2_INFOSHIELD
Allows access to controller LUNs to be managed using lists of host
World Wide Names (WWNs). Only supported on products with Fibre
Channel front ends.

CAPI_CAPABILITY_2_MANUAL_RECONSTRUCT

The CAPI_ReconstructArray command. Many controllers do not
need to support this command because they allow a reconstruct
utility to start automatically if a spare drive is available. To manually
start a reconstruct operation on these controllers, you must issue a
CAPI_AddDedicatedSpare or CAPI_AddPoolSpare (if supported).

CAPI_CAPABILITY_2_MAP_SINGLE_DEVICE True pass-through operation to back-end devices without putting
metadata on the device.

CAPI_CAPABILITY_2_MULTIPLE_HOST_CHANNELS Capable of supporting multiple host channels.
CAPI_CAPABILITY_2_MULTIPLE_HOST_ID Capable of supporting multiple host target ids.
CAPI_CAPABILITY_2_NEW_ARRAY_AVAIL_IMMED Redundant arrays are available for I/O before init completes
CAPI_CAPABILITY_2_ONLINE_ARRAY_INIT Controller has online array initialization feature.
CAPI_CAPABILITY_2_PAUSE_INDIVIDUAL_BUS The ability to pause individual disk buses.
CAPI_CAPABILITY_2_RESCAN_INDIVIDUAL_BUS The ability to rescan individual disk buses.
CAPI_CAPABILITY_2_SCSI_MAINT_COMMANDS CAPI_ScsiMaintenance is supported.
CAPI_CAPABILITY_2_SECURITY_LOG_IN_OUT CAPI_LogIn and CAPI_LogOut are supported.
CAPI_CAPABILITY_2_SOFT_DOWN_DRIVE Unused
CAPI_CAPABILITY_2_TEST_SPARES CAPI_TestSpares is supported.
CAPI_CAPABILITY_2_UNIT_AUTO_SETTING Controller can automatically assign unit numbers (LUNs).
CAPI_CAPABILITY_3_FC_BACKEND in CAPI 3.4 Fibre Channel drives.
CAPI_CAPABILITY_3_MASTER_TO_SLAVE_COMPRESSION

 in CAPI 3.4
Controller can uncompress CAPI commands received from a CAPI
application.

CAPI_CAPABILITY_3_RAID51 in CAPI 3.4 RAID level 51 as defined by the RAID Advisory Board (RAB).
CAPI_CAPABILITY_3_REPLACEABLE_MODULE in
CAPI 3.4

Controller is used as part of a system with replaceable modules (for
example, RIO).

CAPI_CAPABILITY_3_SUPPORT_16_ENVIRON_LUNS
in CAPI 3.4

Controller can handle up to 16 Enclosure Management Processors.
If this bit is not set, controller can handle up to 10 Enclosure
Management Processors.

CAPI_ENCL_CAPABILITY_RESIDES_IN_ENCLOSURE If set, this controller resides in a separately supplied enclosure (as
opposed to being a stand-alone product).

CAPI_ENCL_CAPABILITY_CHANGE_INTERNAL_HUBS If set, the internal enclosure internal hubs can be configured to allow
connection directly to the controller's ports.

CAPI_ENCL_CAPABILITY_CONNECT_INTERNAL_HUBS_ON
_FO

If set, the internal enclosure internal hubs can be configured to be
connected together into one large loop when a controller fails.

CAPI_ENCL_CAPABILITY_CHANGE_FC_HOST_SPEED If set, the Fibre Channel host port circuits in the enclosure can be
configured to run at either 1Gb/s or 2Gb/s.

CAPI_ENCL_CAPABILITY_CHANGE_FC_DRIVE_SPEED
 in CAPI 3.4

If set, the Fibre Channel drive port circuits in the enclosure can be
configured to run at either 1Gb/s or 2Gb/s. (Note that Rottweiler
supports drive speed change via a hardware enclosure setting, not
via CAPI, so this capability bit is not set for Rottweiler.)

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

32 Chaparral document #07-0003-340

CAPI_ADD_ARRAY_STRUCT
The CAPI_ADD_ARRAY_STRUCT structure is used to pass parameters when creating and expanding
arrays. For non-unified commands, this structure is used, but it is hidden from the CAPI application since
the members of this struct are loaded from the parameters of the CAPI_CreateArray or CAPI_ExpandArray
function. For unified commands, this structure is passed into the CAPI_U_CreateArray and
CAPI_U_ExpandArray functions as part of the CAPI_UNIFIED_CREATE_ARRAY_STRUCT structure,
which is a parameter to these two functions.

typedef struct
{
 CAPI_DRIVE_LOCATION driveList[CAPI_MAX_DRIVES_PER_ARRAY];
 CAPI_U32 numDrives;
 CAPI_U32 numSpares;
 CAPI_RAID_LEVEL raidLevel;
 CAPI_U32 minDriveSize;
 CAPI_U32 dataChunkSize;
 CAPI_U32 numDrivesPerLowLevelContainer;
 CAPI_U32 unitNum;
 CAPI_CONTROLLER_ID preferredOwner;
 CAPI_UTILITY_PRIORITY priority;
 CAPI_FORMAT_TYPE formatType;
 CAPI_CHAR arrayName[CAPI_MAX_ARRAY_NAME];
 CAPI_CACHE_PARAMS cacheParams;
} CAPI_ADD_ARRAY_STRUCTCAPI_ADD_ARRAY_STRUCTCAPI_ADD_ARRAY_STRUCTCAPI_ADD_ARRAY_STRUCT;

Table 4-2. CAPI_ADD_ARRAY_STRUCT fields.
Parameter Description
driveList[] List of drives to include in or add to the array. Note that

CAPI_MAX_DRIVES_PER_ARRAY includes the dedicated spares.
The number of drives in driveList must be numDrives + numSpares.
The first drives in the list must be the drives to use in the array, and the
last drives in the list must be the spare drives. This member is not used
for Unified CAPI commands; instead, the driveList member of
CAPI_UNIFIED_CREATE_ARRAY_STRUCT is used.

numDrives Number of member drives to include in or add to the array. Does not
include spare drives.

numSpares Number of spare drives to include or add.
raidLevel See legal values for CAPI_RAID_LEVEL in capi3.h.

(Not used for CAPI_U_ExpandArray.)
minDriveSize The size of each member in the array, in 512-byte blocks. The

size of the smallest drive in the array determines the maximum
value for this field, but a smaller value may be used. A value of
0 uses the default (the smallest drive in the array).
(Not used for CAPI_U_ExpandArray.)

dataChunkSize Data chunk size in kilobytes in a RAID 3, 4, or 5 array. (Chunk size is
the stripe size on one drive.) Must be one of: 16, 32, 64.
(Not used for CAPI_U_ExpandArray.)

numDrivesPerLowLevelContainer Specifies the number of member drives in the lower-level container.
This is only applicable to RAID 30 and RAID 50; a value of 0 can be
used for other RAID levels. Lower-level containers are the underlying
RAID 5 (for RAID 50) or RAID 3 (for RAID 30) arrays that are striped
together to make a two-level RAID 50 or RAID 30 array. All of the
lower-level containers within a two-level array must have the same
number of drives.
(Not used for CAPI_U_ExpandArray.)

unitNum Logical unit number (LUN). If a valid unused LUN is specified, the
array will be created with one partition that uses all of the space

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 33

in the array (this is done for backward compatibility with CAPI
applications that don�t support array partitions). If
CAPI_NULL_ID is specified, then the array will be created
without any partitions; to use the free area in the array, partitions
must be added using the CAPI_AddArrayPartition or
CAPI_U_AddArrayPartition function.
(Not used for CAPI_U_ExpandArray.)

preferredOwner Specifies which controller should be the preferred owner of this array.
(Not used for CAPI_U_ExpandArray.)

priority Specifies the priority that the utility that this struct is passed to should
have.
(Not used.)

formatType See under formatType in the description of the CAPI_CreateArray
function for a list of allowed format types.
(Not used for CAPI_U_ExpandArray.)

arrayName A NULL-terminated string containing the name of the array. If a valid
LUN is specified, then the single partition created for the array will have
the same name as the array. Although there are
CAPI_MAX_ARRAY_NAME characters in this string (32 at this writing),
strings longer than CAPI_MAX_STRING (20 at this writing) are
truncated.
(Not used for CAPI_U_ExpandArray.)

cacheParams This member is not used. It should be set to all zeros. Use
CAPI_SetCacheParams, CAPI_U_SetCacheParams,
CAPI_SetArrayPartitionCacheParams, or
CAPI_U_SetArrayPartitionCacheParams to set cache
parameters.

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

34 Chaparral document #07-0003-340

CAPI_ADVANCED_NETWORK_INTERFACE

typedef struct _CAPI_ADVANCED_NETWORK_INTERFACE
{
 CAPI_NETWORK_INTERFACE netIf;

 /*
 * VALUES SET BY THE LAN SUBSYSTEM ONLY. * VALUES SET BY THE LAN SUBSYSTEM ONLY. * VALUES SET BY THE LAN SUBSYSTEM ONLY. * VALUES SET BY THE LAN SUBSYSTEM ONLY.
 * These values should not be set by any customer-developed CAPI
 * application.
 *
 * Note that the first 4 members below are common, per-system,
 * and their values can be read by a CAPI application by calling
 * CAPI_GetAdvancedNetworkInterface (or by calling CAPI_U_GetControllerData
 * and then examining the CAPI_NETWORK_INTERFACE_COMMON_DATA struct
 * in the CAPI_UNIFIED_CONTROLLER_COMMON_DATA struct).
 */
 CAPI_U8 snmpVersionMajor;
 CAPI_U8 snmpVersionMinor;
 CAPI_U8 snmpVersionMinorMinor;
 CAPI_U8 snmpVersionChar;

 /*
 * The following members are unique per controller
 * and their values can be read by a CAPI application by calling
 * CAPI_GetAdvancedNetworkInterface (or by calling CAPI_U_GetControllerData
 * and then examining the equivalent values for controllers A and B in
 * the CAPI_NETWORK_INTERFACE_UNIQUE_DATA struct in the
 * CAPI_UNIFIED_CONTROLLER_UNIQUE_DATA struct).
 */
 CAPI_CHAR firmwareRevisionString[CAPI_MAX_STRING];
 CAPI_CHAR firmwareBuildTimeDate[CAPI_MAX_NETWORK_STRING]; /* this format:
 Apr 5 2001 13:17:07 */
 CAPI_CHAR firmwareBaselevel[CAPI_MAX_STRING];
 CAPI_CHAR lanLoaderRevision[CAPI_MAX_STRING];
 CAPI_U8 fwRevisionMajor;
 CAPI_U8 fwRevisionMinor;
 CAPI_U8 fwRevisionMinMin;

 /* End of values set by the LAN Subsystem only. */

 /*
 * VALUES THAT MAY BE MODIFIED BY CAPI APPLICATIONSVALUES THAT MAY BE MODIFIED BY CAPI APPLICATIONSVALUES THAT MAY BE MODIFIED BY CAPI APPLICATIONSVALUES THAT MAY BE MODIFIED BY CAPI APPLICATIONS
 * (using CAPI_SetAdvancedNetworkInterface or CAPI_U_SetControllerParams).
 */
 CAPI_BOOL snmpTrapsEnable;
 CAPI_IP_ADDRESS_MODE ipAddressMode;
 CAPI_CHAR snmpWriteCommunity[CAPI_MAX_NETWORK_STRING];
 CAPI_CHAR snmpReadCommunity[CAPI_MAX_NETWORK_STRING];
 CAPI_SNMP_NOTIFICATION_FILTER snmpEventFilter;
 CAPI_SNMP_NOTIFICATION_FILTER snmpTrapFilter;
 CAPI_U32 snmpEventMaxToDisplay;
 CAPI_CHAR systemName[CAPI_SYSTEM_STRING_MAX];
 CAPI_CHAR systemContact[CAPI_SYSTEM_STRING_MAX];
 CAPI_CHAR systemLocation[CAPI_SYSTEM_STRING_MAX];
 CAPI_CHAR systemInfo[CAPI_SYSTEM_STRING_MAX];
 CAPI_CHAR ftpUser[CAPI_MAX_NETWORK_STRING];
 CAPI_CHAR ftpPassword[CAPI_MAX_NETWORK_STRING];
 CAPI_BOOL ftpFwDownloadDisable;
 CAPI_CHAR telnetPassword[CAPI_MAX_NETWORK_STRING];
 CAPI_U8 telnetTimeout;
 CAPI_BOOL telnetDisable;
 CAPI_BOOL dhcpEnable;
 CAPI_U8 pollInterval;
 CAPI_BOOL httpDisable;
 CAPI_BOOL snmpDisable;

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 35

 CAPI_BOOL debugEnable;

 /* remote notification */
 CAPI_U32 monitoredEvents[CAPI_NUM_MONITORED_EVENTS];
 CAPI_CHAR email1[CAPI_SYSTEM_STRING_MAX];
 CAPI_CHAR email2[CAPI_SYSTEM_STRING_MAX];
 CAPI_CHAR email3[CAPI_SYSTEM_STRING_MAX];
 CAPI_CHAR email4[CAPI_SYSTEM_STRING_MAX];
 CAPI_CHAR comment[CAPI_NUM_COMMENT_LINES*CAPI_SYSTEM_STRING_MAX];
 CAPI_U32 pollingPeriod;
 CAPI_U8 numberOfMessagesSentPerEvent;
 CAPI_BOOL remoteNotificationEnable;
 CAPI_REMOTE_NOTIFICATION_SELECTION remoteNotificationSelection;
 CAPI_U8 remoteNotificationTimeZone;
 CAPI_CHAR serverName[CAPI_MAX_NETWORK_STRING];
 CAPI_U32 serverPort;

 /* wbi passwords */
 CAPI_CHAR wbiMonitorPassword[CAPI_MAX_NETWORK_STRING];
 CAPI_CHAR wbiManagePassword[CAPI_MAX_NETWORK_STRING];

 /* domain name (for remote notification) */
 CAPI_CHAR domainName[CAPI_MAX_NETWORK_STRING];
} CAPI_ADVANCED_NETWORK_INTERFACECAPI_ADVANCED_NETWORK_INTERFACECAPI_ADVANCED_NETWORK_INTERFACECAPI_ADVANCED_NETWORK_INTERFACE;

Table 4-3. CAPI_ADVANCED_NETWORK_INTERFACE fields.
Parameter Description
snmpVersionMajor Reports SNMP version supported by this code (v2.00c). Major is

the first char = 2. This field is read only.
snmpVersionMinor Reports SNMP version supported by this code (v2.00c). Minor is

the second char = 0. This field is read only.
snmpVersionMinorMinor Reports SNMP version supported by this code (v2.00c). MinorMinor

is the third char = 0. This field is read only.
snmpVersionChar Reports SNMP version supported by this code (v2.00c). Char is the

fourth char = �c�. This field is read only.

firmwareRevisionString Reports the LAN firmware version. Example: �rff288_M311R06�.
This field is read only.

firmwareBuildTimeDate Reports the LAN firmware time and Date. Example: �Apr 5 2001
13:17:07�. This field is read only.

firmwareBaselevel Reports the LAN firmware baselevel version. Example:
�rff288_M311R06�. This will differ from the firmwareRevisionString if
the code release is a patch release rather than a general availability
release. This field is read only.

lanLoaderRevision Reports the LAN loader version. Example: �M7012�. This field is
read only.

fwRevisionMajor Reports the first char of the revision number. Example: for
rff288_M314R06 it is 3. This field is read only.

fwRevisionMinor Reports the second char of the revision number. Example: for
rff288_M314R06 it is 1. This field is read only.

fwRevisionMinMin Reports the third char of the revision number. Example: for
rff288_M314R06 it is 4. This field is read only.

snmpTrapsEnable The control to allow SNMP traps to be enabled. If SNMP traps are
enabled, then the snmpTrapHost should be set to the IP address
that traps will be sent to. FALSE = traps disabled. TRUE = traps
enabled.

ipAddressMode Controls the IP address mode to be used. Currently not
implemented. Only two-IP-address mode is supported, meaning
that each controller has its own unique IP address.

snmpWriteCommunity SNMP community string for writes. Used as password protection for
SNMP sets to the controller. Default is �private�.

snmpReadCommunity SNMP community string for reads. Used as password protection for

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

36 Chaparral document #07-0003-340

SNMP gets to the controller. Default is �public�.
snmpEventFilter Controls what events are kept for the SNMP event table. Possible

settings are:
 CAPI_EVENT_CRITICALITY_INFORMATIONAL 0
 CAPI_EVENT_CRITICALITY_WARNING 1
 CAPI_EVENT_CRITICALITY_ERROR 2
Default is: CAPI_EVENT_CRITICALITY_INFORMATIONAL

snmpTrapFilter Controls what events will cause traps to be sent. Possible settings
are the same as snmpEventFilter.
Default is: CAPI_EVENT_CRITICALITY_ERROR

snmpEventMaxToDisplay Controls number of events to save and display with SNMP. Not
implemented.

systemName Text field used to add description of the system. Also used for
SNMP.

systemLocation Text field used to add location of system. Also used for SNMP.
systemContact Text field used to add contact for system. Also used for SNMP.
systemInfo Text field used to add other information for the system. Also used

for SNMP.

ftpUser User name for logging in to FTP. Default user name is �flash�.
ftpPassword Password for logging into FTP. Default password is �flash�.
ftpFwDownloadDisable Control to allow or disable FTP firmware download. FALSE is

enabled. TRUE is disabled. Default is enabled.

telnetPassword Password for logging into telnet server. Default is empty string.
telnetTimeout Timeout in minutes for automatically logging out a user if there has

been no activity. Default is 60 minutes. Allowable range is 0-255. 0
means don�t ever timeout.

telnetDisable Control to disable telnet access. FALSE = enabled. TRUE =
disabled. Default is enabled.

dhcpEnable Control to enable/disable DHCP. Not implemented.
pollInterval Control to allow setting polling interval for LAN updated. Not

implemented.

httpDisable Control to enable/disable HTTP access. FALSE = enabled. TRUE
= disabled. Default is enabled.

snmpDisable Control to enable/disable SNMP access. FALSE = enabled. TRUE
= disabled. Default is enabled.

debugEnable Control is to enable/disable debug access over Ethernet. TRUE =
enabled. FALSE = disabled. Default is disabled.

monitoredEvents List of monitored events used to cause Remote Notification.
email1 First e-mail address to send Remote Notification to.
email2 Second address to send Remote Notification to.
email3 Third e-mail address to send Remote Notification to.
email4 Fourth e-mail address to send Remote Notification to.
comment Text field where message may be entered that will be sent with the

Remote Notification message.
pollingPeriod Control to allow changing the polling period for remote notification.

Not implemented.
numberOfMessagesSentPer
Event

Control to allow sending multiple messages per Remote Notification
event. Not implemented. For a remote notification event, one email
is sent per event.

remoteNotificationEnable Control to enable or disable Remote Notification. TRUE = enabled.
FALSE = disabled. Default is disabled.

remoteNotificationSelection Control to allow Remote Notification on any major category of event.
Event categories are:
 INFORMATIONAL 0x01
 WARNING 0x02
 ERROR 0x04

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 37

These are bit fields so that any or all may be set simultaneously.
remoteNotificationTimeZone This is the time zone setting for inclusion with the Remote

Notification email. There are 72 possible settings, 0-71.
serverName Name or IP address of mail server to use for Remote Notification.

Example: 172.22.1.31. Note: some systems will not resolve external
mail server correctly because there is no authentication.

serverPort Port number to use for Remote Notification. Not used.
domainName Domain name to use for Remote Notification. Not used for some

hosts (for example, Microsoft Windows).

wbiMonitorPassword Password used to access the RAIDar Web browser interface for
monitor mode. Default password is �monitor�.

wbiManagePassword Password used to access the RAIDar Web browser interface for
monitor/manage mode. Default password is �manage�.

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

38 Chaparral document #07-0003-340

CAPI_ARRAY
The CAPI_ARRAY structure describes one RAID array on an external RAID controller.

typedef struct
{
 CAPI_U64 blockCapacity;
 CAPI_U32 unitNum;
 CAPI_U32 numDrives;
 CAPI_U32 numSpares;
 CAPI_U32 dataChunkSize;
 CAPI_U32 minDriveSize;
 CAPI_TIME creationTimeStamp;
 CAPI_CACHE_PARAMS cacheParams;
 CAPI_ARRAY_STATS arrayStats;
 CAPI_MEMBER_DRIVE memberDrive[CAPI_MAX_DRIVES_PER_ARRAY];
 CAPI_CHAR name[CAPI_MAX_ARRAY_NAME];
 CAPI_U8 serialNumber[CAPI_MAX_SERIAL_NUMBER_BYTES];
 CAPI_U8 serialNumberLength;
 CAPI_ARRAY_HEALTH health;
 CAPI_UTILITY_RUNNING utilityRunning;
 CAPI_RAID_LEVEL raidLevel;
 CAPI_U8 targetId;
 CAPI_CONTROLLER_ID preferredOwner;
 CAPI_U8 containerNumber;
 CAPI_U8 numArrayPartitions;
 CAPI_U32 configSequenceNumber;
 CAPI_U64 largestFreePartitionSpace;
 CAPI_U8 numDrivesPerLowLevelArray;
 CAPI_CONTROLLER_ID currentOwner;
} CAPI_ARRAYCAPI_ARRAYCAPI_ARRAYCAPI_ARRAY;

Table 4-4. CAPI_ARRAY fields.
Parameter Description
blockCapacity The capacity of the RAID array in 512-byte blocks.
unitNum Identifies the SCSI LUN that is presented to the host, if the array has one

and only one partition that occupies the entire array.
numDrives The number of member drives in the array excluding spares.
numSpares The number of spare drives dedicated to this array.
dataChunkSize The stripe size on one drive in Kbytes for a RAID 0, 10, 3, 4, 5, or 50 array.
minDriveSize The minimum size drive, in sectors, in this array.
creationTimeStamp The time the array was created (seconds since 1/1/1970)
cacheParams The CACHE_PARAMS structure associated with this array. Use

CAPI_SetCacheParams to change this. This information is only valid if the
array has one and only one partition that occupies the entire array.

arrayStats The statistics for the array. This information is only valid if the array has one
and only one partition that occupies the entire array.

memberDrive A list of CAPI_MEMBER_DRIVE structures that include member and spare
drive CAPI_DRIVE_LOCATION structures.

name The ASCII character name of the array assigned by the user during array
creation (null terminated string).

serialNumber The serial number for the array that is assigned by the controller during
array creation and uniquely identifies the array. Not null terminated.

serialNumberLength The valid number of serial number bytes.
health The current state of the array.
utilityRunning Indicates whether a utility is currently running on the array and if so, which

one.
raidLevel Indicates the type of RAID array.
targetId Identifies the targetId or FC id presented to the host

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 39

preferredOwner Indicates whether this array prefers to be owned by controller A or B
containerNumber For internal use by Chaparral controller software.
numArrayPartitions The number of Array Partitions contained in this array.
configSequenceNumber Identifies the controller configuration sequence number this array

information is current for.
largestFreePartitionSpace Size of the largest free partition area in the array in (512 byte) logical blocks.

numDrivesPerLowLevelArray The number of drives per low level (i.e. subordinate) array in this array.
Currently this indicates the number of drives in each subordinate RAID-5
array contained in a RAID-50 array.

currentOwner
 in CAPI 3.4

Current owner of the array. One of: CAPI_CONTROLLER_A or
CAPI_CONTROLLER_B.

NOTE: The list of drives in the memberDrive field contains array member drives,
immediately followed by dedicated spare drives. Spares run the same utilities.

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

40 Chaparral document #07-0003-340

CAPI_ARRAY_PARTITION
The CAPI_ARRAY_PARTITION structure describes one �partition� (or piece) of an array.

typedef struct
{
 CAPI_U64 startLba;
 CAPI_U64 sizeLba;
 CAPI_U32 unitNum;
 CAPI_CHAR name[CAPI_MAX_ARRAY_NAME];
 CAPI_U8 arraySerialNumber[CAPI_MAX_SERIAL_NUMBER_BYTES];
 CAPI_U8 partitionSerialNumber[CAPI_MAX_SERIAL_NUMBER_BYTES];
 CAPI_ARRAY_STATS stats;
 CAPI_CACHE_PARAMS cacheParams;
 CAPI_U32 containerOffset;
 CAPI_U32 realContainerNumber;
 CAPI_U8 targetId;
 CAPI_CONTROLLER_ID preferredOwner;
 CAPI_U8 arrayIndex;
 CAPI_INFOSHIELD_ACCESS infoShieldAccess;
} CAPI_ARRAY_PARTITIONCAPI_ARRAY_PARTITIONCAPI_ARRAY_PARTITIONCAPI_ARRAY_PARTITION;

Table 4-5. CAPI_ARRAY_PARTITION fields.
Parameter Description
startLba The starting Logical Block Address (LBA) relative to the start of the array.

This value is in 512 byte blocks.
sizeLba The size of the partition in logical (512 byte) blocks.
unitNum Identifies the SCSI LUN that is presented to the host for this partition.
name The ASCII character name of the partition assigned by the user during

partition creation (null terminated string).
arraySerialNumber The serial number for the array to which this partition belongs. Not null

terminated.
partitionSerialNumber The serial number for thepartition that is assigned by the controller during

partition creation and uniquely identifies the partition. Not null terminated.
stats The statistics for the partition.
cacheParams The CACHE_PARAMS structure associated with this partition. Use

CAPI_SetCacheParams to change these settings for all partitions in the
array.

containerOffset For internal use by Chaparral software.
realContainerNumber For internal use by Chaparral software.
targetId Identifies the targetId or FC id presented to the host.
preferredOwner Indicates whether this array prefers to be owned by controller A or B.
arrayIndex Relative index of array that owns this partition. This value may change as

other arrays are added and deleted.
infoShieldAccess InfoShield access type for the LUN associated with this partition. Valid only

for products with a Fibre Channel front-end.
CAPI_INFOSHIELD_ACCESS_ALL, CAPI_INFOSHIELD_ACCESS_NONE,
CAPI_INFOSHIELD_ACCESS_INCLUDE_LIST, and
CAPI_INFOSHIELD_ACCESS_EXCLUDE_LIST are the InfoShield access
types.

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 41

CAPI_ARRAY_STATS
The CAPI_ARRAY_STATS structure describes the I/O statistics of an array or array partition. It is included
as a member of structures CAPI_ARRAY and CAPI_ARRAY_PARTITION.

typedef struct
{

CAPI_U32 numReads;
CAPI_U32 numWrites;
CAPI_U32 totalSectorsRead;
CAPI_U32 totalSectorsWritten;
CAPI_U32 readBuckets[CAPI_MAX_NUMBER_OF_ARRAY_STAT_BUCKETS];
CAPI_U32 writeBuckets[CAPI_MAX_NUMBER_OF_ARRAY_STAT_BUCKETS];
CAPI_ARRAY_STATS_HOST hostStat[CAPI_MAX_HOST_CHANNELS_PER_CONTROLLER];

} CAPI_ARRAY_STATSCAPI_ARRAY_STATSCAPI_ARRAY_STATSCAPI_ARRAY_STATS;

Table 4-6. CAPI_ARRAY_STATS fields.

Parameter Description
numReads Specifies the number of host read requests.
numWrites Specifies the number of host write requests.
totalSectorsRead Specifies the total number of blocks read on the array/partition.
totalSectorsWritten Specifies the total number of blocks written to the array/partition.
readBuckets Provides a histogram of the number of read I/Os of various I/O sizes.
writeBuckets Provides a histogram of the number of write I/Os of various I/O sizes.
hostStat Provides detail for the specified host channel.

Note: Certain RAID controllers may support only a subset of array statistics. There is a
capability bit to determine if array statistics are supported. See the controller’s
documentation to determine which particular parameters are supported.

The controller keeps track of the number and size of host read and write requests in
the readBuckets and writeBuckets fields. The buckets record the following:

bucket 0 – number of 1-sector I/O requests
bucket 1 – number of I/O requests between 2 and 3 sectors, inclusive
bucket 2 – number of I/O requests between 4 and 7 sectors, inclusive
bucket 3 – number of I/O requests between 8 and 15 sectors, inclusive

and so on. Each bucket records a number of I/O requests starting at 2 to the power
of the bucket index, up through I/O requests 1 less than the next bucket’s starting
sector. The last bucket holds all requests >= its starting size.

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

42 Chaparral document #07-0003-340

CAPI_ARRAY_STATS_HOST
The CAPI_ARRAY_STATS_HOST structure describes the I/O statistics on the array/partition for the
specified host channel.

typedef struct
{

CAPI_U16 queueDepth;
CAPI_U32 lastRequestSize;

} CAPI_ARRAY_STATS_HOST;CAPI_ARRAY_STATS_HOST;CAPI_ARRAY_STATS_HOST;CAPI_ARRAY_STATS_HOST;

Table 4-7. CAPI_ARRAY_STATS_HOST fields.

Parameter Description
queueDepth Specifies the number of active host I/Os for this array.
lastRequestSize Size in sectors of the last host I/O request to this array. Zero if last host

I/O request was a command other than read or write.

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 43

CAPI_CACHE_PARAMS
The CAPI_CACHE_PARAMS structure describes the write-back and read look-ahead cache parameters
that can be modified per array.

typedef struct
{

CAPI_U32 readAheadSize;
CAPI_U32 flushPeriod;
CAPI_BOOL readAheadEnable;
CAPI_BOOL writeBackEnable;

} CAPI_CACHE_PARAMSCAPI_CACHE_PARAMSCAPI_CACHE_PARAMSCAPI_CACHE_PARAMS;

Table 4-8. CAPI_CACHE_PARAMS fields.
Parameter Description
readAheadSize The amount of additional data, in bytes, that is pre-fetched into cache

on read commands.
flushPeriod The maximum number of milliseconds that data remains in write-back

cache before it is written back to the array.
readAheadEnable Enable read ahead cache. TRUE = enable, FALSE = disable.
writeBackEnable Enable write-back cache. TRUE = enable, FALSE = disable.

Note: Not all controllers support changing or reporting these settings. Fields will
return CAPI_NULL_ID if not supported.

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

44 Chaparral document #07-0003-340

CAPI_CHANNEL
The CAPI_CHANNEL structure describes a front-end or back-end SCSI or Fibre Channel interface.

 Users of CAPI 2.x should note:

CAPI_CHANNEL is used for both front-end (target or host) channels and back-end
(initiator or disk) channels. Channel indices will not change except with reboot.

CAPI_DRIVEs are not contained in CAPI_CHANNEL, rather an array of bytes
(driveReference) is used to index into a drive list retrieved with a call to CAPI_GetDriveList.

maxSpeed is no longer a #define but rather a value which is the number of megabytes
transferred per second.

typedef struct
{
 CAPI_BOOL enabled;
 CAPI_BOOL canDisable;
 CAPI_U8 driveReference[CAPI_MAX_DRIVES_PER_CHANNEL];
 union
 {
 CAPI_SCSI_INFO scsiInfo;
 CAPI_FC_INFO fibreInfo;
 } i;
 CAPI_CHANNEL_PARAMS params;
 CAPI_CHANNEL_PARAMS currentParams;
 CAPI_BUS_TYPE busType;
 CAPI_CHANNEL_STATE state;
 CAPI_U8 maxDrives;
 CAPI_U8 numDrives;
 CAPI_U8 hwChannelNumber;
 CAPI_U8 hwModuleDisplayNumber;
 CAPI_U8 hwModuleNumber;
 CAPI_U32 iosCounter;
 CAPI_U32 sectorsCounter;
 CAPI_CHANNEL_HEALTH health;
 CAPI_CHANNEL_HEALTH_REASON healthReason;
} CAPI_CHANNELCAPI_CHANNELCAPI_CHANNELCAPI_CHANNEL;

Table 4-9. CAPI_CHANNEL fields.
Parameter Description
enabled TRUE if channel is enabled. (See also the disable member of

CAPI_CHANNEL_PARAMS.)
canDisable TRUE if channel is capable of being disabled (always TRUE for host

channels, FALSE for drive channels). (See also the disable member of
CAPI_CHANNEL_PARAMS.)

driveReference An array of bytes used to index into list of drives retrieved via
CAPI_GetDriveList.

scsiInfo SCSI-only information pertaining to this channel only.
fibreInfo Fibre Channel-only information pertaining to this channel only.
params Settings for this channel that can be changed with a call to

CAPI_SetChannelParams.
currentParams Some settings may require a reboot before becoming effective. This

structure is the settings that are in effect now. Use the params structure
above for read-modify-write calls to CAPI_SetChannelParams, not this
structure.

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 45

busType Describes the bus type (type of SCSI or FC interface) for this channel.
state Specifies if the channel is active or if it is paused for drive

insertion/removal.
maxDrives Specifies the maximum number of drives that can be supported on the

bus.
numDrives Specifies the number of drives currently connected to the bus.
hwChannelNumber Specifies the actual controller disk channel number. For example, the

CAPI channel index may be zero, but the hardware silk screen may refer
to this as channel one. Hardware disk channel numbers do not have to
be zero based or contiguous.

hwModuleDisplayNumber
 in CAPI 3.4

The hardware module number (silk-screened) for this channel.
This is only valid if the hardware supports replaceable modules.

hwModuleNumber
 in CAPI 3.4

The internal module number (zero based) for this channel.
This is only valid if the hardware supports replaceable modules.

iosCounter
 in CAPI 3.4

A CAPI drive I/O statistics counter: Count of I/O commands received by
this device.

sectorsCounter
 in CAPI 3.4

A CAPI drive I/O statistics counter: Transfer count for this device (in units
of 512 bytes).

health
 in CAPI 3.4

See the #defines for CAPI_CHANNEL_HEALTH in capi3.h.

healthReason
 in CAPI 3.4

See the #defines for CAPI_CHANNEL_HEALTH_REASON in capi3.h.

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

46 Chaparral document #07-0003-340

CAPI_CHANNEL_COMMON_DATA in CAPI 3.4

This structure is used for Unified CAPI as part of the data that are gotten with CAPI_U_GetControllerData.
This struct contains variables that are equivalent to variables with the same names that are in the
CAPI_CHANNEL struct that are the same for both controllers. See CAPI_CHANNEL for details of the
members of this struct.

typedef struct
{
 CAPI_BUS_TYPE busType;
 CAPI_U8 maxDrives;
} CAPI_CHANNEL_COMMON_DATACAPI_CHANNEL_COMMON_DATACAPI_CHANNEL_COMMON_DATACAPI_CHANNEL_COMMON_DATA;

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 47

CAPI_CHANNEL_PARAMS
This structure contains settable channel configuration information for the given channel. This structure is
used for both drive and host channels, but not all members are used for both drive and host channels.

Some of the members of this structure are unique per channel and some are common to all channels. The
description field in the table below states which members are common and which are unique. This struct is
a member of the CAPI_CHANNEL struct. Two arrays of CAPI_CHANNEL structs are included in the
CAPI_CONTROLLER struct; one for drive channels and one for host channels. The common members
contain the same data in every element of this array. The common members apply to host channels only;
no common members are used for drive channels. When using this struct to set channel parameters for
drives via the CAPI_SetChannelParams function, these common members are ignored.

(This struct is not used for Unified CAPI commands; the members of this struct are included in separate
common and unique parameters structures.)

Note: CAPI 3 originally supported a maximum of 10 Enclosure Management Processors (also referred to
as EMPs or environmental processors or environmental units or environmental devices). Then, with CAPI
3.3, we identified a requirement for supporting at least 16 EMPs (needed for the RIO product). The support
for 16 EMPs breaks the backward compatibility with applications written for the old (10 EMP) structure. We
have added a capability bit to the CAPI_CONTROLLER structure to indicate that the product supports 16
LUNs for the EMPs (CAPI_CAPABILITY_3_SUPPORT_16_ENVIRON_LUNS). Any product that supports
16 EMP LUNs will set this bit. If 16 EMPs are supported, you must use the bitmaps below
(environUnitEnableBitmap and environUnitAutoSettingEnableBitmap) to set the EMPs, otherwise only 10
EMPs are supported and you must use the arrays of BOOLs below (environUnitEnable[] and
environUnitAutoSettingEnable[]) to set the EMPs.

typedef struct
{
 union
 {
 CAPI_SCSI_PARAMS scsiParams;
 CAPI_FC_PARAMS fibreParams;
 } p;

 CAPI_U8 id;
 CAPI_U8 numIds;

 CAPI_BOOL capiUnitEnable;
 CAPI_BOOL capiUnitAutoSettingEnable;
 CAPI_U16 capiUnitNum;

 CAPI_U8 capiTargetId;
 CAPI_BOOL disable;

 CAPI_BOOL environUnitEnable[CAPI_MAX_ENVIRON_DEVICES];
 CAPI_U16 environUnitEnableBitmap;
 CAPI_BOOL environUnitAutoSettingEnable[CAPI_MAX_ENVIRON_DEVICES];
 CAPI_U16 environUnitAutoSettingEnableBitmap;
 CAPI_U8 environUnitNum[CAPI_NEW_MAX_ENVIRON_DEVICES];
} CAPI_CHANNEL_PARAMSCAPI_CHANNEL_PARAMSCAPI_CHANNEL_PARAMSCAPI_CHANNEL_PARAMS;

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

48 Chaparral document #07-0003-340

Table 4-10. CAPI_CHANNEL_PARAMS fields.
Parameter Description
scsiParams Unique. SCSI applicable settable parameters.
fibreParams Unique. Fibre Channel applicable settable parameters.
id Unique. Settable ID (SCSI or Fibre Loop): SCSI target ID

or Fibre Channel target loop ID for host channels; SCSI
initiator ID or Fibre Channel initiator loop ID for disk
channels.

numIds Unique. Number of ids (for channels that support multiple
ids). (Used only for reverse router products.)

capiUnitEnable Common. Enable CAPI LUN.
capiUnitAutoSettingEnable Common. Enable automatic setting for CAPI LUN.
capiUnitNum Common. Use to set the LUN which CAPI communicates

via SCSI/FC. (Called �CAPI LUN� or �controller LUN� or
�bridge LUN� various places in the code and
documentation; all these terms are synonyms.)

capiTargetId Common. Use to set the SCSI ID which CAPI
communicates via SCSI/FC. (Used only for reverse router
products.)

disable Unique. Set to TRUE to disable this channel only if
canDisable in CAPI_CHANNEL is TRUE.

environUnitEnable Common. Enable EMP pass-through LUN (for SAF-TE or
SES).
Use this if only 10 EMP LUNs are supported.

environUnitEnableBitmap
 in CAPI 3.4

Common. Enable EMP pass-through LUN (for SAF-TE or
SES).
Use this if 16 EMP LUNs are supported.

environUnitAutoSettingEnable Common. Enable automatic setting for EMP LUN.
Use this if only 10 EMP LUNs are supported.

environUnitAutoSettingEnableBitmap
 in CAPI 3.4

Common. Enable automatic setting for EMP LUN.
Use this if 16 EMP LUNs are supported.

environUnitNum Common. EMP LUN number. Only the first 10 elements of
this array are valid unless 16 EMP LUNs are supported.

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 49

CAPI_CHANNEL_UNIQUE_DATA in CAPI 3.4

This structure is used for Unified CAPI as part of the data that are gotten with CAPI_U_GetControllerData.
This struct contains variables that are equivalent to variables with the same names that are in the
CAPI_CHANNEL struct that are different for the two controllers. Exception: hwChannelDisplayNumber
here is equivalent to hwChannelNumber in CAPI_CHANNEL. See CAPI_CHANNEL for details of the
members of this struct.

Note that this struct does not contain the "params" or "currentParams" members of CAPI_CHANNEL since
they are in the CAPI_UNIFIED_CONTROLLER_UNIQUE_PARAMS struct for Unified CAPI.

typedef struct
{
 CAPI_BOOL enabled;
 CAPI_BOOL canDisable;
 union
 {
 CAPI_SCSI_INFO scsiInfo;
 CAPI_FC_INFO fibreInfo;
 } i;
 CAPI_CHANNEL_STATE state;
 CAPI_U8 numDrives;
 CAPI_U8 hwChannelDisplayNumber;
 CAPI_U8 hwModuleDisplayNumber;
 CAPI_U8 hwModuleNumber;
 CAPI_CHANNEL_HEALTH health;
 CAPI_CHANNEL_HEALTH_REASON healthReason;
} CAPI_CHANNEL_UNIQUE_DATACAPI_CHANNEL_UNIQUE_DATACAPI_CHANNEL_UNIQUE_DATACAPI_CHANNEL_UNIQUE_DATA;

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

50 Chaparral document #07-0003-340

CAPI_CHANNEL_UNIQUE_PARAMS in CAPI 3.4

This structure is used for Unified CAPI as part of the parameters that are passed with
CAPI_U_SetControllerParams. This struct contains variables that are equivalent to variables with the
same names that are in the CAPI_CHANNEL_PARAMS struct. However, note that the per-channel
parameters are in an array here (see struct CAPI_PER_CHANNEL_PARAMS) and note that the data type
used for capiUnitNum and environUnitNum is larger to support possible future expansion.

Note that all CAPI channel parameters are unique per controller, so there is no
"CAPI_CHANNEL_COMMON_PARAMS" struct.

typedef struct
{
 CAPI_PER_CHANNEL_PARAMS hostPerChannelParams[CAPI_MAX_HOST_CHANNELS_PER_CONTROLLER];
 CAPI_PER_CHANNEL_PARAMS drivePerChannelParams[CAPI_MAX_DRIVE_CHANNELS_PER_CONTROLLER];

 /*
 * The remainder of the members of this structure are common for all
 * host channels owned by a controller board.
 * These members do not apply to drive channels; there are no common
 * parameters for drive channels.
 */

 CAPI_BOOL capiUnitEnable;
 CAPI_BOOL capiUnitAutoSettingEnable;
 CAPI_U32 capiUnitNum; /* This is U8 or U16 in other places,
 * but we make it U32 for possible
 * future support of max possible
 * value. */

 /*
 * Note that environUnitNum uses U32 instead of U8 for possible
 * future support of the maximum possible unit number value.
 */
 CAPI_U16 environUnitEnableBitmap;
 CAPI_U16 environUnitAutoSettingEnableBitmap;
 CAPI_U32 environUnitNum[CAPI_NEW_MAX_ENVIRON_DEVICES];

} CAPI_CHANNEL_UNIQUE_PARAMSCAPI_CHANNEL_UNIQUE_PARAMSCAPI_CHANNEL_UNIQUE_PARAMSCAPI_CHANNEL_UNIQUE_PARAMS;

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 51

CAPI_CONTROLLER
The CAPI_CONTROLLER describes a Chaparral controller. This is the primary structure used for getting
information about a controller. For Unified CAPI commands, this structure has been replaced by
CAPI_UNIFIED_CONTROLLER.

Note to CAPI 2.x users: CAPI_CONTROLLER no longer contains CAPI_DRIVE
structures. Those are retrieved separately with calls to the CAPI_GetDriveList
function. Host channels are now of type CAPI_CHANNEL (same as disk channels).
activeEnvironUnitNum and activeCapiUnitNum are contained in
CAPI_CHANNEL_PARAMS.

typedef struct
{

CAPI_U32 configSequenceNumber;
CAPI_U32 cacheSize;
CAPI_U32 numHostChannels;
CAPI_U32 numDriveChannels;
CAPI_TIME timeDate;
CAPI_CAPABILITY capabilities;
CAPI_CAPABILITY capabilities2;
CAPI_MEMORY memorySizeSlotA;
CAPI_MEMORY memorySizeSlotB;
CAPI_MEMORY memorySizeSlotC;
CAPI_MEMORY memorySizeSlotD;
CAPI_CONTROLLER_PARAMS controllerParams;
CAPI_CONTROLLER_PARAMS currentControllerParams;
CAPI_CONTROLLER_ENVIRONMENTALS environmentals;
CAPI_FAILOVER failover;
CAPI_CHANNEL hostChannel[CAPI_MAX_HOST_CHANNELS_PER_CONTROLLER];
CAPI_CHANNEL driveChannel[CAPI_MAX_DRIVE_CHANNELS_PER_CONTROLLER];
CAPI_CHAR manufacturer[CAPI_MAX_STRING];
CAPI_CHAR model[CAPI_MAX_STRING];
CAPI_CHAR firmwareRevision[CAPI_MAX_STRING];
CAPI_CHAR baselevelRevision[CAPI_MAX_STRING];
CAPI_CHAR boardRevision[CAPI_MAX_STRING];
CAPI_CHAR cpldRevision[CAPI_MAX_STRING];
CAPI_CHAR loaderRevision[CAPI_MAX_STRING];
CAPI_U8 serialNumber[CAPI_MAX_SERIAL_NUMBER_BYTES];
CAPI_U8 serialNumberLength;
CAPI_U32 aaVersion;
CAPI_U8 backplaneType;
CAPI_U8 daughterBoard0Type;
CAPI_U8 daughterBoard1Type;
CAPI_U8 linkType;
CAPI_BOOL raidCapable;
CAPI_BOOL routerCapable;
CAPI_RAID raid;
CAPI_ROUTER router;
CAPI_CHAR cpld2Revision[CAPI_MAX_STRING];
CAPI_U32 maxDmepMemoryBufferSize;
CAPI_U32 swFeaturesAllowed;
CAPI_ENCLOSURE_CAPABILITY enclosureCapabilities;
CAPI_CAPABILITY capabilities3;
CAPI_PRODUCT_SPECIFIC_UNION productSpecific;
CAPI_U8 currentNodeWWN[CAPI_FC_WWID_SIZE];
CAPI_U8 sfpPresent;
CAPI_U8 hostRXSignalOK;
CAPI_U8 hostTXSignalOK;

} CAPI_CONTROLLERCAPI_CONTROLLERCAPI_CONTROLLERCAPI_CONTROLLER;

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

52 Chaparral document #07-0003-340

Table 4-11. CAPI_CONTROLLER fields.
Parameter Description
configSequenceNumber
cacheSize Specifies the controller�s cache size in Kbytes.
numHostChannels Specifies the number of front-end disk channels.
numDriveChannels Specifies the number of back-end disk channels.
timeDate Time of creation in time_t format.
capabilities A bit mask that specifies capabilities of the controller.
capabilities2 An extension of the capabilities field above to allow for more bit masks.
memorySizeSlotA Specifies the amount of memory in slot A in Mbytes.
memorySizeSlotB Specifies the amount of memory in slot B in Mbytes.
memorySizeSlotC Specifies the amount of memory in slot C in Mbytes.
memorySizeSlotD Specifies the amount of memory in slot D in Mbytes.
controllerParams Dynamic variables (user settable):

Controller parameter information that may have been updated by CAPI,
and therefore may not reflect the current, in-use parameters. This is
the "pending" configuration. When setting parameters, some
parameters go into effect immediately, others do not take effect until a
reboot. Once all parameters have gone into effect, controllerParams
and currentControllerParams will contain identical data. When a CAPI
app sets parameters, it should use this struct as the starting point, then
change some of these parameters as desired, then write this struct
back to the controller by calling CAPI_SetControllerParams.

currentControllerParams Controller Parameter information for the currently executing
cofiguration. This is sometimes known as the "active" params.

environmentals Read-only enclosure environmental statistics.
failover A structure describing details of failover and other controller status.
hostChannel Front-end host channels on this controller - array indexing # is NOT the

actual hardware channel number, use
hostChannel[].hwChannelNumber

driveChannel Back-end drive channels on this controller - array indexing # is NOT the
actual hardware channel number, use
hostChannel[].hwChannelNumber

manufacturer Contains the manufacturer as a null terminated ASCII string.
model Contains the model as a null terminated ASCII string.
firmwareRevision Contains the firmware revision as a null terminated ASCII string.
baselevelRevision Contains the base-level revision as a null terminated ASCII string.
boardRevsion Contains the board revision as a null terminated ASCII string.
cpldRevsion Contains the cpld revision as a null terminated ASCII string.
loaderRevsion Contains the loader revision as a null terminated ASCII string.
serialNumber Contains the serial number as a null terminated ASCII string.
serialNumberLength Valid number of serial number characters.
aaVersion Active-Active compatibility version number
backplaneType Identifies the type of backplane.
daughterBoard0Type Identifies the type of daughter board 0.
daughterBoard1Type Identifies the type of daughter board 1.
linkType Type of the CAPI link
raidCapable TRUE if capable of performing as a RAID product
routerCapable TRUE if capable of performing as a ROUTER product
raid CAPI_RAID information for raid product
router CAPI_ROUTER information for router product
cpld2Revision Contains the cpld revision as a null terminated ASCII string.
maxDmepMemoryBuffer
Size

Maximum memory buffer size (in bytes) for SCSI Device Memory
Export Protocol (DMEP)

swFeaturesAllowed Software features allowed.
enclosureCapabilities Capabilities of this enclosure, as determined by the backplane type of

the enclosure.
capabilities3

 in CAPI 3.4
An extension of the capabilities and capabilities2 fields above to allow
for more bit masks.

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 53

productSpecific
 in CAPI 3.4

This is a union of structs, where there is one struct defined for each
product and this struct contains product-specific information.

currentNodeWWN
 in CAPI 3.4

Node WWN for this controller.

sfpPresent
 in CAPI 3.4

Host channel SFP is present. A bitmask where each bit is a boolean
where 1 = TRUE; bit 0 (the LSB) corresponds to host channel 0 and bit
1 corresponds to host channel 1.
Currently used only for Rottweiler.

hostRXSignalOK
 in CAPI 3.4

Signal from host is being received OK. A bitmask where each bit is a
boolean where 1 = TRUE; bit 0 (the LSB) corresponds to host channel
0 and bit 1 corresponds to host channel 1.
Currently used only for Rottweiler.

hostTXSignalOK
 in CAPI 3.4

Transmitter for sending signal to host is OK. A bitmask where each bit
is a boolean where 1 = TRUE; bit 0 (the LSB) corresponds to host
channel 0 and bit 1 corresponds to host channel 1.
Currently used only for Rottweiler.

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

54 Chaparral document #07-0003-340

CAPI_CONTROLLER_CONTEXT
CAPI_CONTROLLER_CONTEXT is used by the CAPI internals to keep controller-specific data in the
application�s data space. The application writer does not need to understand how it is used, but must
allocate the space and provide a pointer via CAPI_FindNextController.

typedef struct
{

LMX_CONTEXT lmxContext;
LMX_IOB lmxIob;
CAPI_BOOL linkBusy;
CAPI_U8 *receiveCapiBuffer;
CAPI_U8 *receiveEventBuffer;
CAPI_U32 configSequenceNumber;
CAPI_U8 linkType;
void *firmwareImage;
CAPI_S32 firmwareRemaining;
CAPI_U32 firmwareChunkSize;
CAPI_U32 firmwareIteration;
CAPI_U32 driveListConfigSequenceNumber;
CAPI_U32 arrayListConfigSequenceNumber;

} CAPI_CONTROLLER_CONTEXTCAPI_CONTROLLER_CONTEXTCAPI_CONTROLLER_CONTEXTCAPI_CONTROLLER_CONTEXT;

Table 4-12. CAPI_CONTROLLER_CONTEXT fields.
Parameter Description
lmxContext Used for LMX internals.
lmxIob Used for LMX internals.
linkBusy Specifies the link control.
receiveCapiBuffer Specifies the receive buffer pointer.
receiveEventBuffer Specifies the receive buffer pointer.
configSequenceNumber Specifies the last configuration sequence number.
linkType Specifies the link type.
firmwareImage This void pointer points to the beginning of a buffer containing the

firmware image to be downloaded.
firmwareRemaining Tells how much of the buffer remains to be transferred.
firmwareChunkSize This is the size of the chunk of the image file sent to the controller

during each data phase.
firmwareIteration Used to keep track of firmware chunks when downloading code.
driveListConfigSequen
ceNumber

Specifies the last configuration sequence number.

arrayListConfigSeque
nceNumber

Specifies the last configuration sequence number.

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 55

CAPI_CONTROLLER_ENVIRONMENTALS
This structure contains environmental information for the given controller.

typedef struct
{

CAPI_U32 gpioBits;
CAPI_U16 voltageA;
CAPI_U16 voltageB;
CAPI_U16 voltageC;
CAPI_U16 voltageD;
CAPI_U16 voltageE;
CAPI_S16 temperatureA;
CAPI_S16 temperatureB;
CAPI_S16 temperatureC;
CAPI_S16 temperatureD;
CAPI_S16 temperatureE;
CAPI_U16 batteryVoltage;
CAPI_BATTERY_STATUS batteryStatus;
CAPI_BATTERY_STATE batteryState;
CAPI_WB_CACHE_STATE wbCacheState;
CAPI_U8 batteryMonthsOld;
CAPI_SENSOR_STATUS voltageAstatus;
CAPI_SENSOR_STATUS voltageBstatus;
CAPI_SENSOR_STATUS voltageCstatus;
CAPI_SENSOR_STATUS voltageDstatus;
CAPI_SENSOR_STATUS voltageEstatus;
CAPI_SENSOR_STATUS temperatureAstatus;
CAPI_SENSOR_STATUS temperatureBstatus;
CAPI_SENSOR_STATUS temperatureCstatus;
CAPI_SENSOR_STATUS temperatureDstatus;
CAPI_SENSOR_STATUS temperatureEstatus;
CAPI_SENSOR_STATUS batteryVoltageStatus;

} CAPI_CONTROLLER_ENVIRONMENTALSCAPI_CONTROLLER_ENVIRONMENTALSCAPI_CONTROLLER_ENVIRONMENTALSCAPI_CONTROLLER_ENVIRONMENTALS;

Table 4-13. CAPI_CONTROLLER_ENVIRONMENTALS fields.
Parameter Description
gpioBits State of the back-plane�s general purpose I/O bits.
voltageA, System voltages, in tenths. (e.g., 105 equals 10.5 volts).
voltageB, same
voltageC, same
voltageD, same
voltageE same
temperatureA, System temperatures, in tenths, Celsius. (e.g., 300 equals 30 degrees).
temperatureB, same
temperatureC, same
temperatureD, same
temperatureE same
batteryVoltage On-board battery voltage, in hundredths.
batteryStatus Status of an on-board battery.
batteryState State of the on-board battery.
wbCacheState Specifies if write-back caching is enabled.
batteryMonthsOld Age of battery in months.
voltageAstatus sensor status of type CAPI_SENSOR_STATUS
voltageBstatus sensor status of type CAPI_SENSOR_STATUS
voltageCstatus sensor status of type CAPI_SENSOR_STATUS
voltageDstatus sensor status of type CAPI_SENSOR_STATUS
voltageEstatus sensor status of type CAPI_SENSOR_STATUS
temperatureAstatus sensor status of type CAPI_SENSOR_STATUS

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

56 Chaparral document #07-0003-340

temperatureBstatus sensor status of type CAPI_SENSOR_STATUS
temperatureCstatus sensor status of type CAPI_SENSOR_STATUS
temperatureDstatus sensor status of type CAPI_SENSOR_STATUS
temperatureEstatus sensor status of type CAPI_SENSOR_STATUS
batteryVoltageStatus sensor status of type CAPI_SENSOR_STATUS

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 57

CAPI_CONTROLLER_PARAMS
This structure contains the user-settable parameters for a controller. To set new parameters, the
application should read the values using CAPI_UpdateController and write new values using
CAPI_SetControllerParams.

typedef struct
{

CAPI_U32 environPollInterval;
CAPI_U32 performanceTuningFlags;
CAPI_BOOL externalTargetIdControl;
CAPI_BOOL environTemperatureEnable;
CAPI_BOOL environAutoSlotFlags;
CAPI_BOOL environAutoGlobalFlags;
CAPI_BOOL alarmMute;
CAPI_BOOL disableBatteryOption;
CAPI_UTILITY_PRIORITY utilityPriority;
CAPI_DISK_SETTING driveWriteBackCache;
CAPI_DISK_SETTING driveSMART;
CAPI_BOOL standAlone;
CAPI_BOOL dualPort;
CAPI_BOOL cacheLock;
CAPI_BOOL routerEnable;
CAPI_BOOL raidEnable;
CAPI_CONTROLLER_MODE controllerMode;
CAPI_CONTROLLER_RAID_PARAMS cpRaid;
CAPI_CONTROLLER_ROUTER_PARAMS cpRouter;
CAPI_NETWORK_INTERFACE net;
CAPI_U32 debugLogConfig;
CAPI_U32 dmepMemoryBufferSize;
CAPI_U32 swFeaturesDisabled;
CAPI_ENCLOSURE_FEATURES enclosureFeatureFlags;
CAPI_FULL_POPULATED_CONFIG fullPopConfig;

} CAPI_CONTROLLER_PARAMSCAPI_CONTROLLER_PARAMSCAPI_CONTROLLER_PARAMSCAPI_CONTROLLER_PARAMS;

Table 4-14. CAPI_CONTROLLER_PARAMS fields.
Parameter Description
environPollInterval Displays the environmental processor (also known as Enclosure

Management Processor or EMP � SAF-TE �SEP� or SES �ESP�) polling
intervals in seconds.

performanceTuningFlags Product specific.
externalTargetIdControl Set to TRUE if the external enclosure is providing the SCSI target ID.
environTemperatureEnable Insert the controller�s temperature in the environmental package.
environAutoSlotFlags Allows Enclosure Management Processor (EMP � SAF-TE �SEP� or

SES �ESP�) to set slot flags.
environAutoGlobalFlags Allows Enclosure Management Processor (EMP � SAF-TE �SEP� or

SES �ESP�) to set global flags.
alarmMute Enable/disable the controller�s onboard alarm.
disableBatteryOption If TRUE, ignore condition of battery and run in write-back mode.
utilityPriority Priority of all utilities on this controller.
driveWriteBackCache Indicates the global disk drive write-back cache setting.
driveSMART Indicates the global disk drive SMART setting.
standAlone Set to TRUE if this is a stand-alone controller. Ignored for

�CAPI_COMMAND_SET_CONTROLLER_PARAMS� unless
�controllerMode� is set to �CAPI_CONTROLLER_MODE_UNKNOWN�.

dualPort Set to TRUE is this controller supports dual host ports. Ignored for
�CAPI_COMMAND_SET_CONTROLLER_PARAMS� unless
�controllerMode� is set to �CAPI_CONTROLLER_MODE_UNKNOWN�.

cacheLock Set to TRUE to lock �mode page Write-Back� alteration for all devices.

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

58 Chaparral document #07-0003-340

routerEnable Set to TRUE to enable ROUTER functionality (may not be supported).
raidEnable Set to TRUE to enable RAID functionality (may not be supported).
controllerMode Controller operating mode (see typedefs).
cpRaid Settable parameters applicable to RAID products.
cpRouter settable parameters applicable to ROUTER products
net settable parameters applicable to products with LAN connectivity
debugLogConfig internal use only
dmepMemoryBufferSize Memory buffer size (in bytes) for SCSI Device Memory Export Protocol

(DMEP)
swFeaturesDisabled Software features disabled.
enclosureFeatureFlags Current controller enclosure features that can be enabled or disabled.
fullPopConfig

 in CAPI 3.4
Used to indicate the configuration of systems that have different
configuration options. For RIO, this is used to indicate if a fully
configured system has 2 or 4 Data Gates.

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 59

CAPI_CONTROLLER_RAID_PARAMS
RAID product settable parameters.

typedef struct
{

CAPI_U32 createArrayBackoffPercent;
CAPI_U8 dynamicSpare;

} CAPI_CONTROLLER_RAID_PARAMSCAPI_CONTROLLER_RAID_PARAMSCAPI_CONTROLLER_RAID_PARAMSCAPI_CONTROLLER_RAID_PARAMS;

Table 4-15. CAPI_CONTROLLER_RAID_PARAMS fields.
Parameter Description
createArrayBackoffPercent The controller can support the ability to make RAID arrays smaller

than the full size of the member drives. This value is the percentage
(in tenths of percentage) the array should be made smaller. When
creating RAID arrays, the application can apply this percentage when
filling in the minDriveSize parameter in the CAPI_CreateArray call.
The RAID controller doesn�t actually apply the percentage for the
application, it just remembers the percentage amount.

dynamicSpare 0 = off, else = interval (min.) between rescans

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

60 Chaparral document #07-0003-340

CAPI_CONTROLLER_ROUTER_PARAMS
Router product settable parameters.

typedef struct
{
 CAPI_MAPPING_MODE mappingMode;
 CAPI_BOOL scanSequenceValid;
 CAPI_ADDRESSING_METHOD addressingMethod;
 CAPI_U8 scanDelay;
 CAPI_U8 scanSequence [CAPI_MAX_DRIVE_CHANNELS_PER_CONTROLLER];
} CAPI_CONTROLLER_ROUTER_PARAMS;CAPI_CONTROLLER_ROUTER_PARAMS;CAPI_CONTROLLER_ROUTER_PARAMS;CAPI_CONTROLLER_ROUTER_PARAMS;

Table 4-16. CAPI_CONTROLLER_ROUTER_PARAMS fields.
Parameter Description
mappingMode Front-end LUN mapping mode
scanSequenceValid Set to TRUE if scanSequence is valid.
addressingMethod 0 = peripheral device, 1 = logical unit
scanDelay Backend Channel scan delay
scanSequence Back-end channel scan sequence or order.

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 61

CAPI_DRIVE
This structure contains the physical drive description.

typedef struct
{

CAPI_U32 blockCapacity;
CAPI_U8 serialNumber[CAPI_MAX_SERIAL_NUMBER_BYTES];
CAPI_U8 serialNumberLength;
CAPI_CHAR vendor[CAPI_INQ_VENDOR_LEN];
CAPI_CHAR model[CAPI_INQ_MODEL_LEN];
CAPI_CHAR revision[CAPI_INQ_MODEL_LEN];
CAPI_DRIVE_USAGE howUsed;
CAPI_U8 channel;
CAPI_U8 secondaryChannel;
CAPI_U8 containerIndex;
CAPI_U8 memberIndex;
CAPI_DRIVE_TYPE driveType;
CAPI_UTILITY_RUNNING utilityRunning;
CAPI_BOOL blinking;
CAPI_U16 busSpeed;
CAPI_U8 scsiId;
CAPI_U8 lun;
CAPI_BOOL smartCapable;
CAPI_BOOL dualPorted; /* TRUE if dual ported */
CAPI_BOOL seeErrorStats; /* drive error stats contains interesting
data */
CAPI_U8 fcControlBits; /* FC only: byte3 of FC interface mode
page (19h) */
CAPI_FLEX_ID Fcid1;
CAPI_FLEX_ID Fcid2;
CAPI_U32 configSequenceNumber;
CAPI_U32 iosCounter;
CAPI_U32 sectorsCounter;
CAPI_CONTROLLER_ID currentOwner;
CAPI_U8 driveIndex;

} CAPI_DRIVECAPI_DRIVECAPI_DRIVECAPI_DRIVE;

Table 4-17. CAPI_DRIVE fields.
Parameter Description
blockCapacity Contains the size of the drive, in 512-byte blocks, 2 terabyte maximum.
serialNumber ASCII drive serial number (null-terminated string).
serialNumberLength Valid number of serial number bytes.
vendor Contains the drive�s vendor name as a null-terminated ASCII string.
model Contains the drive�s model name as a null-terminated ASCII string.
revision Contains the drive�s firmware revision as a null-terminated ASCII string.
howUsed Set to usage type (available, member of array, pool spare, etc.)
channel Identifies the channel on the controller where the drive resides.
secondaryChannel Fibre Channel channelIndex (for dual ported device)
containerIndex Identifies the array index if the drive is a member of the array.
memberIndex Identifies the member index if the drive is a member of the array.
driveType Specifies the SCSI device type.
utiliityRunning Identifies the utility running on the array.
blinking

 in CAPI 3.4
Drive is blinking because CAPI_BlinkDrive or CAPI_U_BlinkDrive has been
called.

busSpeed Speed of transfers in MB/Sec. (1MB = 1,000,000 bytes)
scsiId Contains the SCSI ID of the drive.
lun Contains the SCSI LUN of the drive.
smartCapable Identifies if the drive supports SMART (Self Monitoring and Reporting

Technology).

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

62 Chaparral document #07-0003-340

dualPorted
 in CAPI 3.4

TRUE if drive is dual-ported, else FALSE. If drive is capable of being connected
as dual-ported but only one port is connected, this will be FALSE.

seeErrorStats
 in CAPI 3.4

Drive error stats contain interesting data. (Get this data by calling
CAPI_GetDriveErrorStats or CAPI_U_GetDriveErrorStats.)

fcControlBits
 in CAPI 3.4

Fibre Channel only: byte 3 of FC interface mode page (19h).

Fcid1 Fibre Channel id
Fcid2 Fibre Channel id (for dual-ported device)
configSequenceNumber The controller configuration sequence number that this drive information is

current for.
iosCounter

 in CAPI 3.4
A CAPI drive I/O statistics counter: Count of I/O commands received by this
device.

sectorsCounter
 in CAPI 3.4

A CAPI drive I/O statistics counter: Transfer count for this device (in units of 512
bytes).

currentOwner
 in CAPI 3.4

One of: CAPI_CONTROLLER_A, CAPI_CONTROLLER_B.

driveIndex
 in CAPI 3.4

Identifies the drive number within the channel where the drive resides. In other
words, this is equivalent to an index into the driveReference array in the
driveChannel array in the CAPI_CONTROLLER struct. (See also the channel
member, above.) For Unified CAPI applications, there should be no need to use
this member since drives are always referenced by serial number.

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 63

CAPI_DRIVE_ERROR_STATS in CAPI 3.3

This structure contains error statistics for a single drive and is used by CAPI_GetDriveErrorStats and
CAPI_U_GetDriveErrorStats.

typedef struct
{
 struct
 {
 union
 {
 CAPI_FC_DRIVE_ERRORS fc;
 CAPI_SCSI_DRIVE_ERRORS scsi;
 } u;
 CAPI_U32 smartEventCount;
 CAPI_U32 ioTimeoutCount;
 CAPI_U32 noResponseCount;
 } port[2];
} CAPI_DRIVE_ERROR_STATSCAPI_DRIVE_ERROR_STATSCAPI_DRIVE_ERROR_STATSCAPI_DRIVE_ERROR_STATS;

Table 4-18. CAP_DRIVE_ERROR_STATS fields.
Parameter Description
fc See definition of struct CAPI_FC_DRIVE_ERRORS.
scsi Currently there are no members defined in struct

CAPI_SCSI_DRIVE_ERRORS.
smartEventCount The number of SMART events the drive has reported. SMART stands

for Self Monitoring And Reporting Technology. A SMART event is an
impending error condition detected by a disk drive. The drive reports
SCSI sense data with a sense code of 0b (hex) or 5d (hex).

ioTimeoutCount The number of times the drive accepted an I/O request but did not
complete it in the allotted time. The allotted time depends on the
product; an appropriate time applies to each product.

noResponseCount The number of times the drive has not responded to an I/O request.
This is different from ioTimeoutCount because to get an I/O timeout, the
drive must at least accept the I/O request initially.

port[2] This is an array of size 2 because all these statistics are recorded per
drive port and the drive may be dual-ported.

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

64 Chaparral document #07-0003-340

CAPI_DRIVE_LOCATION
This structure provides the index to a SCSI drive relative to its controller.

typedef struct
{

CAPI_U32 channelIndex;
CAPI_U32 driveIndex;

} CAPI_DRIVE_LOCATIONCAPI_DRIVE_LOCATIONCAPI_DRIVE_LOCATIONCAPI_DRIVE_LOCATION;

Table 4-19. CAP_DRIVE_LOCATION fields.
Parameter Description
channelIndex The physical channel number that specifies the index into the channel

array (driveChannel[]) in the CAPI_CONTROLLER structure for the
back-end drive channel that the drive is connected to.

driveIndex Specifies the index into the drive array (driveReference[]) in the
CAPI_CHANNEL structure for the drive. Note: This is not the SCSI ID.

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 65

CAPI_ENVIRON_PROCESSOR_DATA
This structure describes the data that is returned in the callback from the CAPI_EnvironRead and
CAPI_U_EnvironRead functions and pointed to by dataPtr. It also defines the data structure that is used as
the buffer parameter in the CAPI_EnvironWrite and CAPI_U_EnvironWrite functions.

typedef struct
{
 CAPI_U8 data[CAPI_ENVIRON_MAX_ENVIRON_DATA_LENGTH];
} CAPI_ENVIRON_PROCESSOR_DATACAPI_ENVIRON_PROCESSOR_DATACAPI_ENVIRON_PROCESSOR_DATACAPI_ENVIRON_PROCESSOR_DATA;

Table 4-20. CAPI_ENVIRON_PROCESSOR_DATA fields.
Parameter Description
data Contains the data received from the calls to CAPI_EnvironRead. It also

is used to pass data into the CAPI_EnvironWrite function.

For a complete description of the layout of the SAF-TE data in this structure, please refer to the SCSI
Accessed Fault-Tolerant Enclosures Interface Specification. (This implies that the data would only be SAF-
TE data. I think that is could be SAF-TE or SES, depending on the capability of that particular Chaparral
controller. If true, then maybe this section could use a bit more info written�)

When using this structure in the CAPI_EnvironWrite and CAPI_U_EnvironWrite commands as the buffer
parameter, the first byte of this structure is the first byte of write data. That is, the first byte does not contain
the write buffer�s Operation Code. The write buffer�s Operation Code is passed as the environCommand
parameter to the CAPI function and is inserted into the actual command sent to the EMP by the controller.

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

66 Chaparral document #07-0003-340

CAPI_ENVIRON_PROCESSOR_INFO
This structure describes the data that is returned by the CAPI_FindNextEnvironProcessor and
CAPI_U_FindNextEnvironProcessor functions.

typedef struct
{
 CAPI_U8 empId;
 CAPI_U8 busId;
 CAPI_U8 targetId;
 CAPI_U8 lun;
 union
 {
 CAPI_U8 inquiry[CAPI_ENVIRON_MAX_INQUIRY_BYTES];
 struct
 {
 CAPI_U8 scsiStatus;
 CAPI_U16 controllerStatus;
 CAPI_U8 senseData[CAPI_ENVIRON_MAX_SENSE_BYTES];
 } e;
 } u;
} CAPI_ENVIRON_PROCESSOR_INFOCAPI_ENVIRON_PROCESSOR_INFOCAPI_ENVIRON_PROCESSOR_INFOCAPI_ENVIRON_PROCESSOR_INFO;

Table 4-21. CAPI_ENVIRON_PROCESSOR_INFO fields.
Parameter Description
empId This is the CAPI index of the Enclosure Management Processor (EMP)

used in the CAPI_FindNextEnvironProcessor call.
busId Controller disk bus on which EMP is connected.
targetId SCSI ID or Loop ID of the environ processor (also know as Enclosure

Management Processor or EMP).
lun This EMP�s LUN.
inquiry If the CAPI_FindNextEnvironProcessor command returns

CAPI_NO_ERROR, this field contains the standard inquiry page�s data.
As defined by SCSI, the first byte defines the device type (SES or SAF-
TE).

scsiStatus If the CAPI_FindNextEnvironProcessor command returns
CAPI_ERROR_COMMAND_FAILED, this field contains the SCSI
status byte from the EMP.

controllerStatus Unused.
senseData If the CAPI_FindNextEnvironProcessor command returns

CAPI_ERROR_COMMAND_FAILED, this field contains sense data
from the EMP.

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 67

CAPI_EVENT
CAPI_EVENT describes an event that occurred on the external controller. The event may have happened
asynchronously (such as a drive failure) or might be the result of a command issued by the application
(such as create array complete).

Note: arrayIndex in the CAPI_EVENT should never be used because it is only valid for a
particular configuration.

typedef struct
{
 CAPI_U32 sequenceNumber;
 CAPI_TIME timeStamp;
 CAPI_EVENT_CODE eventCode;
 CAPI_ERROR_CODE errorCode;
 CAPI_EVENT_CRITICALITY criticality;
 CAPI_IDENTIFIER id;
 CAPI_U32 deviceId;
 CAPI_U32 param1;
 CAPI_U32 param2;
 CAPI_U32 param3;
 CAPI_U32 param4;
 union
 {
 CAPI_U8 extraEventData[CAPI_MAX_BYTES_FOR_EXTRA_EVENT_DATA];
 CAPI_SERIAL_NUMS serialNumbers;
 CAPI_FW_REVS fwRevs;
 }u;
 CAPI_U8 cdb[CAPI_MAX_BYTES_FOR_EVENT_CDB];
 CAPI_U32 uniqueId;
 CAPI_U32 unitNum;
 CAPI_CONTROLLER_ID controller;
} CAPI_EVENTCAPI_EVENTCAPI_EVENTCAPI_EVENT;

Table 4-22. CAPI_EVENT fields.
Parameter Description
sequenceNumber The controller applies an ever increasing ordinal number to each event that

occurs on the controller. A value of zero indicates an empty event log.
timeStamp Number of seconds since January 1, 1970.
eventCode Lists the event code, such as CAPI_EVENT_CREATE_ARRAY_COMPLETE.
errorCode If errorCode equals CAPI_NO_ERROR, then the operation completed

successfully; otherwise, see Error Code Reference on page 8-1.
criticality Specifies if the event is either informational, a warning, or an error.
id controllerHandle always valid; channelIndex, arrayIndex, and driveIndex

sometimes valid (if not equal to CAPI_NULL_ID).
deviceId The CAPI_IDENTIFIER does not specify an actual SCSI ID but rather an index into a channel array,

The deviceId can be used to obtain the SCSI ID that identifies the device that generated the event,
which is useful because the CAPI_IDENTIFIER may not be valid after a configuration change.

param1 � param4 Four event-specific data fields.
extraEventData Event-specific data.
serialNumbers A structure containing array and drive serial numbers for those events pertaining

to arrays and drives.
fwRevs A structure containing the main and baselevel version strings (for some events)
Cdb Contains the CDB that triggered the event. This is only valid for

CAPI_EVENT_DISK_CHANNEL_ERROR and
CAPI_EVENT_DISK_DETECTED_ERROR.

uniqueId This field is the value that is set in the uniqueId parameter in certain commands. It
allows a CAPI application to direct events received to the appropriate controller

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

68 Chaparral document #07-0003-340

sub-application.
unitNum The LUN associated with this event. Useful with downed drive events.
controller

 in CAPI 3.4
Identifies which controller had this event in its event log. Used for unified
commands. One of: CAPI_CONTROLLER_A, CAPI_CONTROLLER_B.

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 69

CAPI_FAILOVER
This structure is used to hold Active-Active controller failover knowledge. Most of the information in this
structure is about the other controller. The other controller is in the opposite ID slot (A or B).

typedef struct
{
 CAPI_CONTROLLER_ID failoverId;
 CAPI_BOOL failedOver;
 CAPI_U8 otherCapiUnitNum;
 CAPI_U8 placeholderUnitNum;
 CAPI_U8 otherSerialNumber[CAPI_MAX_SERIAL_NUMBER_BYTES];
 CAPI_CHAR otherFirmwareRevision[CAPI_MAX_STRING];
 CAPI_CHAR otherLoaderRevision[CAPI_MAX_STRING];
 CAPI_CHAR otherModel[CAPI_MAX_STRING];
 CAPI_U8 otherTargetId;
 CAPI_CONTROLLER_ID otherId;
 CAPI_OS_OTHER_STATE otherState;
 CAPI_FR_FAILOVER_REASON failoverReason;
 CAPI_U32 otherAAVersion;
 CAPI_U8 otherEnvironUnitNum[CAPI_MAX_ENVIRON_DEVICES];
 CAPI_U8 otherNodeWWN[CAPI_FC_WWID_SIZE];
 CAPI_U8 otherPortWWN
 [CAPI_MAX_HOST_CHANNELS_PER_CONTROLLER / 2][CAPI_FC_WWID_SIZE];
 CAPI_BOOL placeholderUnitValid;
 CAPI_U8 newOtherEnvironUnitNum[CAPI_NEW_MAX_ENVIRON_DEVICES];
} CAPI_FAILOVERCAPI_FAILOVERCAPI_FAILOVERCAPI_FAILOVER;

Table 4-23. CAPI_FAILOVER fields.
Parameter Description
FailoverId Identifies this controller; one of: CAPI_CONTROLLER_A or

CAPI_CONTROLLER_B.
FailedOver TRUE if the other controller has failed and this controller is servicing its

LUNs. (This may not happen until several seconds after otherState goes
to CAPI_OS_DOWN.)

otherCapiUnitNum Contains the value of the controller LUN for the other controller.
PlaceholderUnitNum Contains the placeholder LUN for the other controller�s controller LUN. A

placeholder LUN is used when a surviving controller does not know the
value of the other controller�s controller LUN.

OtherSerialNumber Contains the serial number of the other controller as a null terminated
ASCII string.

otherFirmwareRevision Contains the revision of firmware running in the other controller as a null
terminated ASCII string.

otherLoaderRevision Contains the revision of loader code running in the other controller as a
null terminated ASCII string.

otherModel Contains the model of the other controller as a null terminated ASCII
string.

OtherTargetId Identifies the SCSI target ID or FC ID presented to the host for LUNs
belonging to the other controller.

otherId Identifies the other controller (either A or B)
otherState Contains the Active-Active related state of the controller.
failoverReason If the other controller�s state is �CAPI_OS_DOWN�, contains the reason

the other controller is in this state (if known).
otherAAVersion Contains the Active-Active compatibility version number of the other

controller. This value must match the value in the other controller to run
Active-Active controllers.

otherEnvironUnitNum Array of environmental LUN (also know as EMP LUN) values for the other
controller.
Use this if only 10 environmental LUNs are supported; that is, if

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

70 Chaparral document #07-0003-340

CAPI_CAPABILITY_3_SUPPORT_16_ENVIRON_LUNS is not set.
otherNodeWWN Contains Node WWN of other controller
otherPortWWN Contains Port WWN�s of other controller. Divide total host channels by 2,

since to support failover, half must be assigned to the other controller:
placeholderUnitValid TRUE if placeholder LUN in use, else FALSE. See Failover Notes in

Chapter 16.
newOtherEnvironUnitNum

 in CAPI 3.4
Array of environmental LUN (also known as EMP LUN) values for the
other controller.
Use this if 16 environmental LUNs are supported; that is, if
CAPI_CAPABILITY_3_SUPPORT_16_ENVIRON_LUNS is set.

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 71

CAPI_FC_DRIVE_ERRORS in CAPI 3.3

This structure contains error data specific to Fibre Channel drives. Used as a member of
CAPI_DRIVE_ERROR_STATS.

typedef struct
{
 CAPI_FC_LESB_DATA lesb;
 CAPI_U32 protocolErrorCount;
} CAPI_FC_DRIVE_ERRORSCAPI_FC_DRIVE_ERRORSCAPI_FC_DRIVE_ERRORSCAPI_FC_DRIVE_ERRORS;

Table 4-24. CAPI_FC_DRIVE_ERRORS fields.
Parameter Description
lesb Link Error Status Block. This is a data structure defined by the FC-FS

(Fibre Channel Framing and Signaling) specification. It contains very-
low-level Fibre Channel error information maintained by the drive. See
CAPI_FC_LESB_DATA in capi3.h.

protocolErrorCount A count of frame and CRC errors. This is a count kept by the controller
and may not match the LESB data

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

72 Chaparral document #07-0003-340

CAPI_FC_INFO
This structure contains Fibre Channel information.

typedef struct
{

CAPI_BOOL FCLinkUp;
CAPI_U8 FCActiveTopology;
CAPI_U8 FCConfigTopology;
CAPI_U8 FCClassOfService;
CAPI_FC_LOOP_POSITION loopPositionalMap;
CAPI_U16 maxSpeed;
CAPI_U8 FCLoopId;
CAPI_U32 FCAddr;
CAPI_U8 FCNodeWWN[CAPI_FC_WWID_SIZE];
CAPI_U8 FCPortWWN[CAPI_FC_WWID_SIZE];
CAPI_U8 HardwareVersion;
CAPI_U8 HardwareVariant;
CAPI_U8 FCLibRevMajor;
CAPI_U8 FCLibRevMinor;
CAPI_U8 FCLibRevFix;
CAPI_LINK_SPEED FCActiveLinkSpeed;
CAPI_LINK_SPEED FCConfigLinkSpeed;
CAPI_MIB_PORT_STATE mibState;
CAPI_MIB_PORT_STATUS mibStatus;
CAPI_BOOL externalFCLinkUp;

} CAPI_FC_INFOCAPI_FC_INFOCAPI_FC_INFOCAPI_FC_INFO;

Table 4-25. CAPI_FC_INFO fields.
Parameter Description
FCLinkUp Fibre channel link state
FCActiveTopolgy Currently active Fibre Channel topology
FCConfigTopolgy Configured Fibre Channel topology
FCClassOfService FCC class of service
loopPositionalMap An array of loop ID�s reflecting position in loop
maxSpeed max capable speed in MB/sec.
FCLoopId Currently active loop ID.
FCAddr Currently active fibre channel address.
FCNodeWWN Contains the node�s world-wide name.
FCPortWWN Contains the port�s world-wide name.
HardwareVersion Chaparral use only (vendor�s FC chip version)
HardwareVariant Chaparral use only (vendor�s FC chip variant)
FCLibRevMajor Chaparral use only
FCLibRevMinor Chaparral use only
FCLibRevFix Chaparral use only
FCActiveLinkSpeed Current active FC Link Speed: 0 = 1G, 1 = 2G, 2 = AUTO
FCConfigLinkSpeed Configured FC Link Speed: 0 = 1G, 1 = 2G, 2 = AUTO
mibState Port state as defined by FibreAlliance MIB 2.2
mibStatus Port status as defined by FibreAlliance MIB 2.2
externalFCLinkUp

 in CAPI 3.4
TRUE if there is a live external device.

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 73

CAPI_FC_LOOP_POSITION
This structure is used with the CAPI_FC_INFO structure.

typedef struct
{
 CAPI_U8 numIDs;
 CAPI_U8 loopMasterID;
 CAPI_U8 map[CAPI_MAX_DEVICES_FC_LOOP];
} CAPI_FC_LOOP_POSITIONCAPI_FC_LOOP_POSITIONCAPI_FC_LOOP_POSITIONCAPI_FC_LOOP_POSITION;

Table 4-26. CAPI_FC_LOOP_POSITION fields.
Parameter Description
numIDs The number of IDs on the loop.
loopMasterID The ID of the loop master.
map[] Array of loop IDs that show the physical topology of the loop. That is,

the order of the IDs in this array matches the order of the devices on
the loop. The number of valid elements in this array is numIDs.

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

74 Chaparral document #07-0003-340

CAPI_FC_PARAMS
Settable Fibre Channel parameters.

typedef struct
{
 CAPI_BOOL forcePrivateLoop;
 CAPI_TOPOLOGY topology;
 CAPI_LINK_SPEED linkSpeed;
 CAPI_U8 multiTargetId[16];
} CAPI_FC_PARAMSCAPI_FC_PARAMSCAPI_FC_PARAMSCAPI_FC_PARAMS;

Table 4-27. CAPI_FC_INFO fields.

Parameter Description
forcePrivateLoop Set to TRUE to force private loop. This is not currently supported on

any Chaparral products.
topology Topology of Fibre Channel connection. Applies to both host and disk

channels, but current Chaparral disk products only support loop mode
on disk channels.

linkSpeed 0 = 1G, 1 = 2G, 2 = AUTO. Applies to host channels and disk
channels.

multiTargetId 128-bit bit map of enabled IDs (if multiple IDs are supported). Applies
to host channels only, not disk channels. This is not currently
supported on any Chaparral products.

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 75

CAPI_FLEX_ID
The CAPI_FLEX_ID structure is used to describe Fibre Channel and SCSI devices and hosts.

typedef struct
{
 CAPI_FLEX_TYPE type;
 CAPI_U32 channelIndex;
 CAPI_U32 deviceId;
 CAPI_U8 FCNodeWWN[CAPI_FC_WWID_SIZE];
 CAPI_U8 FCPortWWN[CAPI_FC_WWID_SIZE];
 CAPI_U32 unitNum;
} CAPI_FLEX_IDCAPI_FLEX_IDCAPI_FLEX_IDCAPI_FLEX_ID;

Table 4-28. CAPI_FLEX_ID fields.
Parameter Description
type A bit-mask of CAPI_FLEX_TYPE that describes which fields are valid
channelIndex A CAPI channel index.
deviceId Either a traditional SCSI ID or an FC ADDRESS (see �type�)
FCNodeWWN World-wide Fibre Channel Node ID
FCPortWWN World-wide Fibre Channel Port ID
unitNum SCSI LUN value

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

76 Chaparral document #07-0003-340

CAPI_FW_REVS
The CAPI_FW_REVS structure is used to describe controller firmware revisions within a CAPI_EVENT.

Note that this is only the Storage Controller firmware version and does not include the LAN Subsystem
firmware version nor the loader firmware version.

typedef struct
{
 CAPI_U8 fwVersion[16];
 CAPI_U8 baseVersion[16];
} CAPI_FW_REVSCAPI_FW_REVSCAPI_FW_REVSCAPI_FW_REVS;

Table 4-23. CAPI_FW_REVS fields.
Parameter Description
fwVersion Storage Controller firmware version. The letters B and A in this field refer

to Beta and Alpha code, respectively.
baseVersion The base Storage Controller firmware version. In pre-release builds, this

is usually the same string as fwVersion. In released builds, this string
shows the release candidate number, while fwVersion does not.

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 77

CAPI_HOST_DESCRIPTOR
The CAPI_HOST_DESCRIPTOR is used to describe a host. This struct is used for arrays of known hosts
and for arrays of host nicknames.

typedef struct
{
 CAPI_FLEX_ID hostId;
 CAPI_U8 name[CAPI_MAX_HOST_NAME];
 CAPI_U32 age;
 CAPI_CONTROLLER_ID controllerId;
} CAPI_HOST_DESCRIPTORCAPI_HOST_DESCRIPTORCAPI_HOST_DESCRIPTORCAPI_HOST_DESCRIPTOR;

Table 4-29. CAPI_HOST_DESCRIPTOR fields.
Parameter Description
hostId A flexible ID that describes the host.
name A symbolic name that the user may assign to the host (nickname).
age A value used to keep track of when this instance of

CAPI_HOST_DESCRIPTOR was added to an array of
CAPI_HOST_DESCRIPTOR structs. This is a timestamp (seconds since
January 1, 1970). in CAPI 3.4 (Prior to CAPI 3.4, this was a counter
that incremented with each addition rather than a timestamp.)

controllerId
 in CAPI 3.4

Used to indicate whether controller A, B, or both knows about this host.
(Valid only when CAPI_U_GetKnownHosts is called with controllerId set
to CAPI_CONTROLLER_BOTH.)

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

78 Chaparral document #07-0003-340

CAPI_HOST_NICKNAMES in CAPI 3.3

The CAPI_HOST_NICKNAME structure is used to identify the hosts that have been assigned nicknames
by calling CAPI_AddHostNickname or CAPI_U_AddHostNickname.

typedef struct
{
 CAPI_U8 numHosts;
 CAPI_HOST_DESCRIPTOR host[CAPI_MAX_HOST_TABLE];
} CAPI_HOST_NICKNAMESCAPI_HOST_NICKNAMESCAPI_HOST_NICKNAMESCAPI_HOST_NICKNAMES;

Table 4-30. CAPI_HOST_NICKNAMES fields.
Parameter Description
numHosts The number of hosts in the list.
host The list of host IDs with their nicknames.

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 79

CAPI_HOST_TABLE
The CAPI_HOST_TABLE is used to include or exclude a host from access to a particular LUN.

typedef struct
{
 CAPI_BOOL include;
 CAPI_BOOL all;
 CAPI_U8 numHosts;
 CAPI_BOOL portInfoShield;
 CAPI_U8 portNumber;
 CAPI_FLEX_ID hostId[CAPI_MAX_HOST_TABLE];
} CAPI_HOST_TABLECAPI_HOST_TABLECAPI_HOST_TABLECAPI_HOST_TABLE;

Table 4-31. CAPI_HOST_TABLE fields.
Parameter Description
include If TRUE, this list is a list of hosts to include for access to the LUN,

otherwise this is a list of hosts to exclude.
all If TRUE, the list is ignored and all hosts are either included or excluded.
numHosts The number of hosts in the list.
portInfoShield If TRUE, then the portNumber must be taken into account for determining

access (i.e. only requests on the specified port number will qualify).
portNumber The port number that the request must come in on.
hostId A flexible ID that describes the host.

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

80 Chaparral document #07-0003-340

CAPI_IDENTIFIER
This structure is passed to the application's callback routine to specify a combination of controller, channel,
array, or drive related to an event.

typedef struct
{

CAPI_HANDLE controllerHandle;
CAPI_U32 arrayIndex;
CAPI_U32 channelIndex;
CAPI_U32 driveIndex;

} CAPI_IDENTIFIERCAPI_IDENTIFIERCAPI_IDENTIFIERCAPI_IDENTIFIER;

Table 4-32. CAPI_IDENTIFIER fields.
Parameter Description
controllerHandle The CAPI_HANDLE received during initialization from calls to

CAPI_FindNextController.
arrayIndex The index into the CAPI_ARRAY structure array in the

CAPI_CONTROLLER structure for the related RAID array.
CAPI_NULL_ID if no array is specified.

channelIndex The physical channel number. This is the index into the
CAPI_CHANNEL array in the CAPI_CONTROLLER structure for the
related drive channel. CAPI_NULL_ID if no channel is specified.

driveIndex The index into the CAPI_DRIVE array in the CAPI_CHANNEL structure
for the related drive. CAPI_NULL_ID if no drive is specified. NOTE: This
is not the SCSI ID.

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 81

CAPI_KNOWN_HOSTS
The CAPI_KNOWN_HOSTS structure is used to identify the hosts that are known to the controller as a
result of a host accessing the controller.

Note: As of CAPI 3.4, CAPI_MAX_HOST_TABLE has been increased from 16 to 64.

typedef struct
{
 CAPI_U8 numHosts;
 CAPI_HOST_DESCRIPTOR host[CAPI_MAX_HOST_TABLE];
} CAPI_KNOWN_HOSTSCAPI_KNOWN_HOSTSCAPI_KNOWN_HOSTSCAPI_KNOWN_HOSTS;

Table 4-33. CAPI_KNOWN_HOSTS fields.
Parameter Description
numHosts The number of hosts in the list.
host The list of hosts that are known to the controller.

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

82 Chaparral document #07-0003-340

CAPI_MAINT_CDB
This structure is used by the CAPI_ScsiMaintRetrieveData and CAPI_U_GetScsiMaintenanceData
functions to pass a SCSI command descriptor block to a back-end device.

typedef struct
{

CAPI_U8 cdbArray[16];
} CAPI_MAINT_CDBCAPI_MAINT_CDBCAPI_MAINT_CDBCAPI_MAINT_CDB;

Table 4-34. CAPI_MAINT_CDB fields.
Parameter Description
cdbArray The SCSI CDB.

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 83

CAPI_MAINT_DATA_STRUCT
This structure is used with the CAPI_ScsiMaintRetrieveData and CAPI_U_GetScsiMaintenanceData
functions.

typedef struct _CAPI_MAINT_DATA_STRUCT
{

CAPI_U8 data[CAPI_MAX_MAINT_DATA_SIZE];
} CAPI_MAINT_DATA_STRUCTCAPI_MAINT_DATA_STRUCTCAPI_MAINT_DATA_STRUCTCAPI_MAINT_DATA_STRUCT;

Table 4-35. CAPI_MAINT_DATA_STRUCT fields.
Parameter Description
data Contains the SCSI maintenance data.

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

84 Chaparral document #07-0003-340

CAPI_MEMBER_DRIVE
This structure describes the physical channel and index (not the SCSI ID) of the drive in the channel
structure.

typedef struct
{

CAPI_DRIVE_LOCATION driveLocation;
CAPI_UTILITY_RUNNING utilityRunning;
CAPI_DRIVE_STATE state;

} CAPI_MEMBER_DRIVECAPI_MEMBER_DRIVECAPI_MEMBER_DRIVECAPI_MEMBER_DRIVE;

Table 4-36. CAPI_MEMBER_DRIVE fields.
Parameter Description
driveLocation Specifies the physical drive.
utilityRunning Indicates whether a utility is currently running on the array and if so,

which one.
state Drive state.

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 85

CAPI_MEMORY
This structure describes the current memory setup of a given memory slot.

typedef struct
{

CAPI_U16 size;
CAPI_BOOL ECCprotected;

} CAPI_MEMORYCAPI_MEMORYCAPI_MEMORYCAPI_MEMORY;

Table 4-37. CAPI_MEMORY fields.
Parameter Description
size Memory size in MB (1MB = 1,048,576 bytes)
ECCprotected Set to true if ECC protection on this memory

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

86 Chaparral document #07-0003-340

CAPI_MIN_MAX_DRIVES_PER_RAID_LEVEL
This structure describes the minimum and maximum number of drives that are allowed based on the RAID
level.

typedef struct
{

CAPI_U8 minDrives;
CAPI_U8 maxDrives;

} CAPI_MIN_MAX_DRIVES_PER_RAID_LEVELCAPI_MIN_MAX_DRIVES_PER_RAID_LEVELCAPI_MIN_MAX_DRIVES_PER_RAID_LEVELCAPI_MIN_MAX_DRIVES_PER_RAID_LEVEL;

Table 4-38. CAPI_MIN_MAX_DRIVES_PER_RAID_LEVEL fields.
Parameter Description
minDrives Specifies the minimum number of drives allowed per the RAID level.
maxDrives Specifies the maximum number of drives allowed per the RAID level.

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 87

CAPI_NETWORK_INTERFACE
This structure describes the controller�s LAN Subsystem (also known as LAN processor) configuration.

Note: field names have been changed since CAPI 3.1 (underscores removed to be consistent with
standard CAPI naming conventions).

typedef struct
{
 CAPI_BOOL connection;
 CAPI_BOOL status;
 CAPI_U8 hwRevision;
 CAPI_U8 fwRevisionChar;
 CAPI_U8 fwRevisionMajor;
 CAPI_U8 fwRevisionMinor;
 CAPI_U8 physicalAddr[6];
 CAPI_U8 currentIp[4];
 CAPI_U8 defaultIp[4];
 CAPI_U8 currentMask[4];
 CAPI_U8 defaultMask[4];
 CAPI_U8 snmpTrapHostIp[4];
 CAPI_U8 gateway[4];
} CAPI_NETWORK_INTERFACECAPI_NETWORK_INTERFACECAPI_NETWORK_INTERFACECAPI_NETWORK_INTERFACE;

Table 4-39: CAPI_NETWORK_INTERFACE fields.
Parameter Description
connection Chaparral internal use only
status 0 = LAN Subsystem not ready or not installed; 1 = LAN Subsystem

installed
hwRevision Chaparral internal use only
fwRevisionChar Chaparral internal use only
fwRevisionMajor LAN Subsystem major firmware revision
fwRevisionMinor LAN Subsystem minor firmware revision
physicalAddr LAN Subsystem�s MAC address (read only � not settable by CAPI

apps)
currentIp LAN Subsystem�s current IP address (read only)
defaultIp �Pending� value used by CAPI apps for setting the currentIp
currentMask LAN Subsystem�s current IP subnet mask (read only)
defaultMask �Pending� value used by CAPI apps for setting the currentMask
snmpTrapHost IP address that SNMP traps will be sent to (settable by CAPI apps)
gateway gateway IP address (settable by CAPI apps)

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

88 Chaparral document #07-0003-340

CAPI_NETWORK_INTERFACE_COMMON_DATA
 in CAPI 3.4

This structure is used for Unified CAPI as part of the data that is gotten with CAPI_U_GetControllerData.
The members of this structure are equivalent to members of CAPI_NETWORK_INTERFACE and
CAPI_ADVANCED_NETWORK_INTERFACE that are common for both controller boards. See the
descriptions of those structures for details of the members of this struct.

Some members of this struct are set by the LAN Subsystem but they are not settable by customer CAPI
applications.

typedef struct
{
 CAPI_BOOL connection;
 CAPI_U8 snmpVersionMajor;
 CAPI_U8 snmpVersionMinor;
 CAPI_U8 snmpVersionMinorMinor;
 CAPI_U8 snmpVersionChar;
} CAPI_NETWORK_INTERFACE_COMMON_DATACAPI_NETWORK_INTERFACE_COMMON_DATACAPI_NETWORK_INTERFACE_COMMON_DATACAPI_NETWORK_INTERFACE_COMMON_DATA;

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 89

CAPI_NETWORK_INTERFACE_COMMON_PARAMS
 in CAPI 3.4

This structure is used for Unified CAPI as part of the parameters that are passed with
CAPI_U_SetControllerParams. The members of this structure are equivalent to members of
CAPI_NETWORK_INTERFACE and CAPI_ADVANCED_NETWORK_INTERFACE that are common for
both controller boards. See the descriptions of those structures for details of the members of this struct.

The members of this struct are settable by the LAN Subsystem and by customer CAPI applications via
CAPI_U_SetControllerParams.

typedef struct
{
 CAPI_IP_ADDRESS_MODE ipAddressMode;
 CAPI_BOOL snmpTrapsEnable;
 CAPI_U8 snmpTrapHostIp[4];
 CAPI_CHAR snmpWriteCommunity[CAPI_MAX_NETWORK_STRING];
 CAPI_CHAR snmpReadCommunity[CAPI_MAX_NETWORK_STRING];
 CAPI_SNMP_NOTIFICATION_FILTER snmpEventFilter;
 CAPI_SNMP_NOTIFICATION_FILTER snmpTrapFilter;
 CAPI_U32 snmpEventMaxToDisplay;
 CAPI_CHAR systemName[CAPI_SYSTEM_STRING_MAX];
 CAPI_CHAR systemContact[CAPI_SYSTEM_STRING_MAX];
 CAPI_CHAR systemLocation[CAPI_SYSTEM_STRING_MAX];
 CAPI_CHAR systemInfo[CAPI_SYSTEM_STRING_MAX];
 CAPI_CHAR ftpUser[CAPI_MAX_NETWORK_STRING];
 CAPI_CHAR ftpPassword[CAPI_MAX_NETWORK_STRING];
 CAPI_BOOL ftpFwDownloadDisable;
 CAPI_CHAR telnetPassword[CAPI_MAX_NETWORK_STRING];
 CAPI_U8 telnetTimeout;
 CAPI_BOOL telnetDisable;
 CAPI_BOOL dhcpEnable;
 CAPI_U8 pollInterval;
 CAPI_BOOL httpDisable;
 CAPI_BOOL snmpDisable;
 CAPI_BOOL debugEnable;
 CAPI_U32 monitoredEvents[CAPI_NUM_MONITORED_EVENTS];
 CAPI_CHAR email1[CAPI_SYSTEM_STRING_MAX];
 CAPI_CHAR email2[CAPI_SYSTEM_STRING_MAX];
 CAPI_CHAR email3[CAPI_SYSTEM_STRING_MAX];
 CAPI_CHAR email4[CAPI_SYSTEM_STRING_MAX];
 CAPI_CHAR comment[CAPI_NUM_COMMENT_LINES * CAPI_SYSTEM_STRING_MAX];
 CAPI_U32 pollingPeriod;
 CAPI_U8 numberOfMessagesSentPerEvent;
 CAPI_BOOL remoteNotificationEnable;
 CAPI_U8 remoteNotificationSelection;
 CAPI_U8 remoteNotificationTimeZone;
 CAPI_CHAR serverName[CAPI_MAX_NETWORK_STRING];
 CAPI_U32 serverPort;
 CAPI_CHAR domainName[CAPI_MAX_NETWORK_STRING];
 CAPI_CHAR wbiMonitorPassword[CAPI_MAX_NETWORK_STRING];
 CAPI_CHAR wbiManagePassword[CAPI_MAX_NETWORK_STRING];
} CAPI_NETWORK_INTERFACE_COMMON_PARAMSCAPI_NETWORK_INTERFACE_COMMON_PARAMSCAPI_NETWORK_INTERFACE_COMMON_PARAMSCAPI_NETWORK_INTERFACE_COMMON_PARAMS;

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

90 Chaparral document #07-0003-340

CAPI_NETWORK_INTERFACE_UNIQUE_DATA
 in CAPI 3.4

This structure is used for Unified CAPI as part of the data that is gotten with CAPI_U_GetControllerData.
The members of this structure are equivalent to members of CAPI_NETWORK_INTERFACE and
CAPI_ADVANCED_NETWORK_INTERFACE that are unique for each controller board. See the
descriptions of those structures for details of the members of this struct.

Some members of this struct are set by the LAN Subsystem but they are not settable by customer CAPI
applications.

typedef struct
{
 CAPI_BOOL status;
 CAPI_U8 hwRevision;
 CAPI_U8 fwRevisionChar;
 CAPI_U8 physicalAddr[6];
 CAPI_CHAR firmwareRevisionString[CAPI_MAX_STRING];
 CAPI_CHAR firmwareBuildTimeDate[CAPI_MAX_NETWORK_STRING];
 CAPI_CHAR firmwareBaselevel[CAPI_MAX_STRING];
 CAPI_CHAR lanLoaderRevision[CAPI_MAX_STRING];
 CAPI_U8 fwRevisionMajor;
 CAPI_U8 fwRevisionMinor;
 CAPI_U8 fwRevisionMinMin;
} CAPI_NETWORK_INTERFACE_UNIQUE_DATACAPI_NETWORK_INTERFACE_UNIQUE_DATACAPI_NETWORK_INTERFACE_UNIQUE_DATACAPI_NETWORK_INTERFACE_UNIQUE_DATA;

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 91

CAPI_NETWORK_INTERFACE_UNIQUE_PARAMS
 in CAPI 3.4

This structure is used for Unified CAPI as part of the parameters that are passed with
CAPI_U_SetControllerParams. The members of this structure are equivalent to members of
CAPI_NETWORK_INTERFACE and CAPI_ADVANCED_NETWORK_INTERFACE that are unique for
each controller board.

The members of this struct are settable by the LAN Subsystem and by customer CAPI applications via
CAPI_U_SetControllerParams.

typedef struct
{
 CAPI_U8 ipAddress[4];
 CAPI_U8 ipSubnetMask[4];
 CAPI_U8 gateway[4];
} CAPI_NETWORK_INTERFACE_UNIQUE_PARAMSCAPI_NETWORK_INTERFACE_UNIQUE_PARAMSCAPI_NETWORK_INTERFACE_UNIQUE_PARAMSCAPI_NETWORK_INTERFACE_UNIQUE_PARAMS;

Table 4-40: CAPI_NETWORK_INTERFACE_UNIQUE_PARAMS fields.
Parameter Description
ipAddress The LAN processor's IP address.

When this struct is instantiated in the
pendingControllerUniqueParams struct, ipAddress is
equivalent to defaultIp in CAPI_NETWORK_INTERFACE.
When this struct is instantiated in the
currentControllerUniqueParams struct, ipAddress is equivalent
to currentIp in CAPI_NETWORK_INTERFACE.
Format is Big-Endian; ex. 172.22.2.1 = 0xAC160201

ipSubnetMask The LAN processor's IP subnet mask.
When this struct is instantiated in the
pendingControllerUniqueParams struct, ipSubnetMask is
equivalent to defaultMask in CAPI_NETWORK_INTERFACE.
When this struct is instantiated in the
currentControllerUniqueParams struct, ipSubnetMask is
equivalent to currentMask in CAPI_NETWORK_INTERFACE.
Format is Big-Endian; ex. 255.255.255.0 = 0xFFFFFF00

gateway The LAN processor's IP gateway.
When this struct is instantiated in the
pendingControllerUniqueParams struct or the
currentControllerUniqueParams struct, gateway is equivalent
to gateway in CAPI_NETWORK_INTERFACE. In other
words, when a CAPI application calls
CAPI_U_GetControllerData it will get the same value for
gateway in both the pending and unique params structures
since there are not separate values for this member of
CAPI_NETWORK_INTERFACE.
Format is Big-Endian; ex. 172.22.2.1 = 0xAC160201

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

92 Chaparral document #07-0003-340

CAPI_PACKET
This structure is used as the header of all messages passed between a CAPI application and a controller.
Normally, a CAPI app developer does not need to be concerned with this structure since they are removed
from this by the LMX; that is, this structure is filled in automatically when an app calls one of the API
functions defined in this document, and when a reply is received by an app from a controller, the key
members of this structure are copied into parameters passed to the application�s callback function.

However, if a CAPI app developer needs to develop an LMX or modify an existing one, this information
may be useful.

typedef struct
{
 CAPI_U8 control;
 CAPI_U8 byteOrder;
 CAPI_U8 capiVersionMajor;
 CAPI_U8 capiVersionMinor;
 CAPI_COMPRESSION_TYPE requestCompressionType;
 CAPI_COMPRESSION_TYPE packetCompressionType;
 CAPI_U8 eventOrCommand;
 CAPI_U8 signatureString[4];
 CAPI_U32 includeStructType;
 CAPI_U32 commandCode;
 CAPI_IDENTIFIER identifier;
 CAPI_U32 configSequenceNumber;
 CAPI_ERROR_CODE errorCode;
 CAPI_U32 param1;
 CAPI_U32 param2;
 CAPI_U32 param3;
 CAPI_U32 param4;
 CAPI_U32 packetLength;
 CAPI_U32 arrayListConfigSequenceNumber;
 CAPI_U32 uniqueId;
 CAPI_U32 driveListConfigSequenceNumber;
} CAPI_PACKETCAPI_PACKETCAPI_PACKETCAPI_PACKET;

Table 4-41: CAPI_PACKET fields.
Parameter Description
control Not used.
byteOrder Not implemented.
capiVersionMajor Major version (for example, the �3� in �3.4�).
capiVersionMinor Minor version (for example, the �4� in �3.4�).
requestCompressionType The type of compression that this command is requesting be

used on the reply to this command.
packetCompressionType The type of compression used on the data sent with this

message.
eventOrCommand 0 = command (message going from host to controller);

1 = reply (message going from controller to host).
signatureString[4] The ASCII string �CAPI� to aid in confirming that messages are

CAPI commands.
includeStructType Identifies the data type of the data (if any) that follows this

packet header; one of the INCLUDE_� values defined in
capipak.h.

commandCode The command code passed with a CAPI command (host-
>controller) or the reply code passed with a CAPI reply
(controller->host). See chapter 6 for a list of reply codes.

identifier See structure definition for CAPI_IDENTIFIER. The
controllerHandle member of this structure is used for every
message, but the other members are only used for some

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 93

commands and replies.
configSequenceNumber See Controller Configuration Sequence Number on page 10.
errorCode Success/failure code. Used for replies only. See Chapter 9

for a list of error codes.
param1 through param4 General purpose parameters used for both commands and

replies.
packetLength Total packet size, including both this header and any data that

follows this header.
arrayListConfigSequenceNumber See Controller Configuration Sequence Number on page 10.
uniqueId Not implemented.
driveListConfigSequenceNumber See Controller Configuration Sequence Number on page 10.

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

94 Chaparral document #07-0003-340

CAPI_PARTITION_REQUEST
This structure is used to describe an array partition when calling functions CAPI_AddArrayPartition,
CAPI_U_AddArrayPartition, CAPI_ChangeArrayPartitionGeometry, and
CAPI_U_ChangeArrayPartitionGeometry.

typedef struct
{
 CAPI_U64 startLba;
 CAPI_U64 sizeLba;
 CAPI_CHAR name[CAPI_MAX_ARRAY_NAME];
 CAPI_U8 unitNum;
 CAPI_U8 arraySerialNumber[CAPI_MAX_SERIAL_NUMBER_BYTES];
 CAPI_U8 partitionSerialNumber[CAPI_MAX_SERIAL_NUMBER_BYTES];
} CAPI_PARTITION_REQUESTCAPI_PARTITION_REQUESTCAPI_PARTITION_REQUESTCAPI_PARTITION_REQUEST;

Table 4-42: CAPI_PARTITION_REQUEST fields.
Parameter Description
startLba Starting Logical Block Address (LBA) of the partition relative to the

first LBA (i.e. 0) of the array. The starting LBA must reside in a free
(i.e. unpartitioned) area of the array. (Used for both adding partition
and changing partition geometry.)

sizeLba Size of the partition in (512 byte) logical blocks. The size of the
partition must be such that it resides completely within a free area of
the array. (Used for both adding partition and changing partition
geometry.)

name[] The ASCII character name of the partition assigned by the user
during array creation (null terminated string). (Used for adding
partition only.)

unitNum Identifies the SCSI LUN that is presented to the host. (Used for
adding partition only.)

arraySerialNumber[] The serial number of the array to which the partition belongs (or in
which it will be created). Not null terminated. (Used for both adding
partition and changing partition geometry.)

partitionSerialNumber[] The serial number for the partition that is assigned by the controller
when adding a partition and which uniquely identifies the partition.
Not null terminated. (Used for changing partition geometry only.)

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 95

CAPI_PER_CHANNEL_PARAMS in CAPI 3.4

This structure is used for Unified CAPI as part of the parameters that are passed with
CAPI_U_SetControllerParams. It contains variables that are equivalent to variables with the same names
that are in the CAPI_CHANNEL_PARAMS struct. The CAPI_PER_CHANNEL_PARAMS structure was
created for UCAPI since that seemed like a good time to clean up an idiosyncrasy: some of the members of
CAPI_CHANNEL_PARAMS were per-channel but others were per-controller; the per-controller variables
were unnecessarily repeated in each instance of CAPI_CHANNEL_PARAMS and this could lead to
confusion.

See CAPI_CHANNEL_PARAMS for details of the members of this struct.

typedef struct
{
 union
 {
 CAPI_SCSI_PARAMS scsiParams;
 CAPI_FC_PARAMS fibreParams;
 } p;

 CAPI_U8 id;
 CAPI_BOOL disable;
} CAPI_PER_CHANNEL_PARAMSCAPI_PER_CHANNEL_PARAMSCAPI_PER_CHANNEL_PARAMSCAPI_PER_CHANNEL_PARAMS;

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

96 Chaparral document #07-0003-340

CAPI_RAID
This structure contains information on the current configuration of all of the arrays on the controller.

typedef struct
{

CAPI_U32 maxChunkSize;
CAPI_U32 minChunkSize;
CAPI_U32 numDrives;
CAPI_U32 numPoolSpares;
CAPI_U32 numArrays;
CAPI_MIN_MAX_DRIVES_PER_RAID_LEVEL minMaxPerRaidLevel[CAPI_MAX_RAID_LEVELS];
CAPI_MEMBER_DRIVE poolSpare[CAPI_MAX_POOL_SPARES_PER_CONTROLLER * 2];
CAPI_U8 maxOwnedArraysPerController;
CAPI_U8 maxArrays;
CAPI_U8 numArrayBanks;
CAPI_U8 maxArrayBanks;

} CAPI_RAIDCAPI_RAIDCAPI_RAIDCAPI_RAID;

Table 4-43. CAPI_RAID fields.
Parameter Description
maxChunkSize Specifies the maximum chunk size (in KB) for RAID 0, 10, 3, 4 and 5.
minChunkSize Specifies the minimum chunk size (in KB) for RAID 0, 10, 3, 4 and 5.
numDrives Number of drives owned by this controller (that is, part of an array

owned by this controller, including dedicated spares), plus pool spares,
plus �available� drives.

numPoolSpares Specifies the number of pool spare drives currently assigned.
numArrays Specifies the current number of RAID arrays owned by this controller.
minMaxPerRaidLevel Specifies the min and max number of drives allowable for each RAID

level.
poolSpare An array of CAPI_MEMBER_DRIVE structures for the pool spares

active on this controller. The size allows room for the other controller's
pool spares when a failover occurs.

maxOwnedArraysPerController The maximum number of arrays this controller can own.
maxArrays Maximum number of arrays this controller supports.
numArrayBanks Number of array banks this controller is using (32 arrays per bank).
maxArrayBanks Maximum number of array banks this controller is capable of.

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 97

CAPI_ROUTER
This structure will contain router-specific fields to be decided for future use.

typedef struct
{

CAPI_U8 reserved[84];
} CAPI_ROUTERCAPI_ROUTERCAPI_ROUTERCAPI_ROUTER;

Table 4-44. CAPI_ROUTER fields.
Parameter Description
reserved TBD (future use)

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

98 Chaparral document #07-0003-340

CAPI_SCSI_INFO
This structure describes information specific to a SCSI channel.

Note to CAPI 2.x users: most of the structure members were simply moved from
CAPI_CHANNEL.

typedef struct
{
 CAPI_BUS_TYPE activeType;
 CAPI_BUS_TYPE type;
 CAPI_U16 maxSpeed;
 CAPI_U16 lastSpeed;
 CAPI_BOOL lastDataValid;
 CAPI_U8 lastOffset;
 CAPI_U8 lastWidth;
 CAPI_U8 numResets;
 CAPI_MIB_PORT_STATE mibState;
 CAPI_MIB_PORT_STATUS mibStatus;
} CAPI_SCSI_INFOCAPI_SCSI_INFOCAPI_SCSI_INFOCAPI_SCSI_INFO;

Table 4-45. CAPI_SCSI_INFO fields.
Parameter Description
activeType Describes the bus transceiver mode (LVD, SE, etc) currently in use.
type Default bus transceiver mode
maxSpeed Don�t get a speeding ticket! The max capable bus speed.

(MB/s, where 1MB = 1,000,000 bytes)
lastSpeed Last negotiated speed in MB/s
lastDataValid Set to TRUE if the lastSpeed, lastOffset and lastWidth fields are valid.
lastOffset Last negotiated req/ack offset
lastWidth Last negotiated width, in bits
numResets number of SCSI bus resets on this channel since power up
mibState State of the port as defined by the FibreAlliance MIB 2.2
mibStatus Status of the port as defined by the FibreAlliance MIB 2.2

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 99

CAPI_SCSI_PARAMS
This structure describes SCSI-specific information that can be changed.

Note to CAPI 2.x users: most of the structure members were simply moved from
CAPI_CHANNEL_CONFIG. The word ‘host’ was also removed from termination
and terminationPower because this could also pertain to a disk (initiator) channel.

typedef struct
{
 CAPI_U16 busSpeed;
 CAPI_BOOL termination;
 CAPI_BOOL terminationPower;

CAPI_U16 multiTargetId;
CAPI_BOOL domainValidationDisable;
CAPI_BOOL hostResetOnFailover;

} CAPI_SCSI_PARAMSCAPI_SCSI_PARAMSCAPI_SCSI_PARAMSCAPI_SCSI_PARAMS;

Table 4-46. CAPI_SCSI_PARAMS fields.
Parameter Description
busSpeed Bus speed (MB/s, where 1MB = 1,000,000 bytes)
termination SCSI termination enable
terminationPower SCSI termination power enable
multiTargetId Bit map of enabled ids (if multiple ids are supported)
domainValidationDisable TRUE to disable domain validation. Default is FALSE.
hostResetOnFailover If TRUE the controller will reset the SCSI bus when it enables a SCSI

channel for failover or failback. The default is FALSE (no reset.)

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

100 Chaparral document #07-0003-340

CAPI_SERIAL_NUMS
This structure describes the serial numbers used to uniquely identify drives, arrays, and array partitions.
The length of the drive serial number is specified in each CAPI_DRIVE structure. Neither serial number is
null terminated.

typedef struct
{

CAPI_U8 driveSerialNumber[CAPI_MAX_SERIAL_NUMBER_BYTES];
CAPI_U8 arraySerialNumber[CAPI_MAX_SERIAL_NUMBER_BYTES];

} CAPI_SERIAL_NUMSCAPI_SERIAL_NUMSCAPI_SERIAL_NUMSCAPI_SERIAL_NUMS;

Table 4-47. CAPI_SERIAL_NUMS fields.
Parameter Description
driveSerialNumber Serial number of the drive. (Not a null-terminated string.)
arraySerialNumber Serial number of the array. If an array partition is being referenced,

then this is the partition's serial number. (Not a null-terminated
string.)

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 101

CAPI_UNIFIED_CONTROLLER in CAPI 3.4

This structure is used for Unified CAPI as the structure that is returned in the callback from
CAPI_U_GetControllerData. It contains all the key information about both controllers in a dual-controller
system. For Unified CAPI applications, it is used instead of CAPI_CONTROLLER.

typedef struct
{
 CAPI_UNIFIED_CONTROLLER_COMMON_DATA common;
 CAPI_UNIFIED_CONTROLLER_UNIQUE_DATA unique[CAPI_MAX_NUM_CONTROLLERS];
} CAPI_UNIFIED_CONTROLLERCAPI_UNIFIED_CONTROLLERCAPI_UNIFIED_CONTROLLERCAPI_UNIFIED_CONTROLLER;

Table 4-48. CAPI_UNIFIED_CONTROLLER fields.
Parameter Description
common Information (read-only) and parameters (read/write) that are common to

both controllers in a dual-controller system.
unique Information (read-only) and parameters (read/write) that can be different

between the two controllers in a dual-controller system.

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

102 Chaparral document #07-0003-340

CAPI_UNIFIED_CONTROLLER_COMMON_DATA
 in CAPI 3.4

This structure is used for Unified CAPI as part of the data that are gotten with CAPI_U_GetControllerData.
This struct contains data that are common for both controllers. The members of this struct are read-only
except for pendingControllerCommonParams, which is settable with CAPI_U_SetControllerParams. See
comments in the struct, below, for information about what structures the equivalent non-unified variables
are in, then see those structs for details of the members.

typedef struct
{
 /*
 * The members of this structure are equivalent to members of
 * CAPI_NETWORK_INTERFACE and CAPI_ADVANCED_NETWORK_INTERFACE that are
 * common for both controller boards.
 */
 CAPI_NETWORK_INTERFACE_COMMON_DATA netIfCommonData;

 /*
 * The following variables are equivalent to variables with the same names
 * that are in the CAPI_RAID struct.
 * (Other variables equivalent to ones in CAPI_RAID are unique and so are in
 * CAPI_UNIFIED_CONTROLLER_UNIQUE_DATA.)
 */
 CAPI_U32 maxChunkSize;
 CAPI_U32 minChunkSize;
 CAPI_U32 numPoolSpares;
 CAPI_MIN_MAX_DRIVES_PER_RAID_LEVEL minMaxPerRaidLevel[CAPI_MAX_RAID_LEVELS];
 CAPI_U8 maxOwnedArraysPerController;
 CAPI_U8 maxArrays;
 CAPI_U8 numArrayBanks;
 CAPI_U8 maxArrayBanks;
 /* (End of variables equivalent to ones in CAPI_RAID.) */

 /*
 * The following variables are equivalent to variables in CAPI_CONTROLLER
 * with the same name.
 */
 CAPI_U32 cacheSize;
 CAPI_U32 numHostChannels;
 CAPI_U32 numDriveChannels;
 CAPI_TIME timeDate;
 CAPI_MEMORY memorySlotA;
 CAPI_MEMORY memorySlotB;
 CAPI_MEMORY memorySlotC;
 CAPI_MEMORY memorySlotD;
 CAPI_CHANNEL_COMMON_DATA
 hostChannelCommonData[CAPI_MAX_HOST_CHANNELS_PER_CONTROLLER];
 CAPI_CHANNEL_COMMON_DATA
 driveChannelCommonData[CAPI_MAX_DRIVE_CHANNELS_PER_CONTROLLER];
 CAPI_U8 linkType;
 CAPI_BOOL raidCapable;
 CAPI_BOOL routerCapable;
 CAPI_U32 maxDmepMemoryBufferSize;
 CAPI_U32 swFeaturesAllowed;
 CAPI_ENCLOSURE_CAPABILITY enclosureCapabilities;
 CAPI_PRODUCT_SPECIFIC_UNION productSpecific;
 /* (End of variables equivalent to ones in CAPI_CONTROLLER.) */

 /*
 * Controller parameter information that may have been updated by CAPI,
 * and therefore does not reflect the current, in-use parameters. This
 * is the "pending" configuration which will take effect on a reboot.
 */

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 103

 CAPI_UNIFIED_CONTROLLER_COMMON_PARAMS pendingControllerCommonParams;

 /*
 * Controller parameter information for the currently executing
 * configuration. This is sometimes known as the "active" params.
 */
 CAPI_UNIFIED_CONTROLLER_COMMON_PARAMS currentControllerCommonParams;
} CAPI_UNIFIED_CONTROLLER_COMMON_DATACAPI_UNIFIED_CONTROLLER_COMMON_DATACAPI_UNIFIED_CONTROLLER_COMMON_DATACAPI_UNIFIED_CONTROLLER_COMMON_DATA;

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

104 Chaparral document #07-0003-340

CAPI_UNIFIED_CONTROLLER_COMMON_PARAMS
 in CAPI 3.4

This structure is used for Unified CAPI as part of the parameters that are passed with
CAPI_U_SetControllerParams. This struct contains those parameters that are common for both
controllers. Except for netIfCommonParams, these variables are equivalent to variables with the same
names that are in the non-unified structure CAPI_CONTROLLER_PARAMS; see comments in the struct
definition below. See CAPI_CONTROLLER_PARAMS for details of the members.

typedef struct
{
 /*
 * The members of this structure are equivalent to the settable members of
 * CAPI_NETWORK_INTERFACE and CAPI_ADVANCED_NETWORK_INTERFACE that are
 * common for both controller boards.
 */
 CAPI_NETWORK_INTERFACE_COMMON_PARAMS netIfCommonParams;

 /*
 * The following variables are equivalent to variables with the same names
 * that are in the CAPI_CONTROLLER_PARAMS struct.
 */

 CAPI_U32 environPollInterval;
 CAPI_U32 performanceTuningFlags;
 CAPI_BOOL externalTargetIdControl;

 CAPI_BOOL environTemperatureEnable;
 CAPI_BOOL environAutoSlotFlags;
 CAPI_BOOL environAutoGlobalFlags;

 CAPI_BOOL alarmMute;
 CAPI_BOOL disableBatteryOption;
 CAPI_UTILITY_PRIORITY utilityPriority;

 CAPI_DISK_SETTING driveWriteBackCache;
 CAPI_DISK_SETTING driveSMART;

 CAPI_BOOL standAlone;
 CAPI_BOOL dualPort;
 CAPI_BOOL cacheLock;

 CAPI_BOOL routerEnable;
 CAPI_BOOL raidEnable;
 CAPI_CONTROLLER_MODE controllerMode;

 CAPI_CONTROLLER_RAID_PARAMS cpRaid;
 CAPI_CONTROLLER_ROUTER_PARAMS cpRouter;

 CAPI_U32 debugLogConfig;

 CAPI_U32 dmepMemoryBufferSize;

 CAPI_U32 swFeaturesDisabled;
 CAPI_ENCLOSURE_FEATURES enclosureFeatureFlags;
 CAPI_FULL_POPULATED_CONFIG fullPopConfig;

 /* (End of variables equivalent to ones in CAPI_CONTROLLER_PARAMS.) */

} CAPI_UNIFIED_CONTROLLER_COMMON_PARAMSCAPI_UNIFIED_CONTROLLER_COMMON_PARAMSCAPI_UNIFIED_CONTROLLER_COMMON_PARAMSCAPI_UNIFIED_CONTROLLER_COMMON_PARAMS;

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 105

CAPI_UNIFIED_CONTROLLER_PARAMS
 in CAPI 3.4

This structure is used for Unified CAPI as the structure that is passed with CAPI_U_SetControllerParams.
It contains all the key configuration parameters that a user may want to set on one or both controllers in a
dual-controller system.

typedef struct
{
 CAPI_UNIFIED_CONTROLLER_COMMON_PARAMS commonParams;
 CAPI_UNIFIED_CONTROLLER_UNIQUE_PARAMS uniqueParams[CAPI_MAX_NUM_CONTROLLERS];
} CAPI_UNIFIED_CONTROLLER_PARAMSCAPI_UNIFIED_CONTROLLER_PARAMSCAPI_UNIFIED_CONTROLLER_PARAMSCAPI_UNIFIED_CONTROLLER_PARAMS;

Table 4-49. CAPI_UNIFIED_CONTROLLER_PARAMS fields.
Parameter Description
commonParams Parameters that are common to both controllers in a dual-controller

system.
uniqueParams Parameters that can be different between the two controllers in a dual-

controller system.

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

106 Chaparral document #07-0003-340

CAPI_UNIFIED_CONTROLLER_UNIQUE_DATA
 in CAPI 3.4

This structure is used for Unified CAPI as part of the data that are gotten with CAPI_U_GetControllerData.
This struct contains data that are different for each controller. The members of this struct are read-only
except for pendingControllerUniqueParams, which is settable with CAPI_U_SetControllerParams. See
comments in the struct, below, for information about what structures the equivalent non-unified variables
are in, then see those structs for details of the members.

When a failover occurs, the failed controller cannot provide this data, of course, but some of this data is
maintained on the working controller and this data is returned in this structure for the failed controller. For
example, if your CAPI app is communicating with the A controller and the B controller is failed, then the B
copy of this struct will contain some valid members. The members that are valid for the failed controller
are:

controllerStatus
serialNumber
firmwareRevision
loaderRevision
model
aaVersion
currentNodeWWN
hostChannelUniqueData[<all channels>].i.fibreInfo.FCPortWWN
currentControllerUniqueParams.channelUniqueParams.environUnitNum[<all LUNs>]
currentControllerUniqueParams.channelUniqueParams.capiUnitNum

typedef struct
{
 /*
 * The following variable is equivalent to the variable in CAPI_CONTROLLER
 * with the same name.
 */
 CAPI_U32 configSequenceNumber;

 /*
 * The members of this structure are equivalent to members of
 * CAPI_NETWORK_INTERFACE and CAPI_ADVANCED_NETWORK_INTERFACE that are
 * unique for each controller board.
 */
 CAPI_NETWORK_INTERFACE_UNIQUE_DATA netIfUniqueData;

 /*
 * The following variables are equivalent to variables with the same names
 * that are in the CAPI_RAID struct.
 * (Other variables equivalent to ones in CAPI_RAID are common and so are in
 * CAPI_UNIFIED_CONTROLLER_COMMON_DATA.)
 */
 CAPI_U32 numDrives;
 CAPI_U32 numArrays;
 /* (End of variables equivalent to ones in CAPI_RAID.) */

 /*
 * Failover information for this controller.
 * The following variables are equivalent to variables in CAPI_FAILOVER
 * with the same name, except where the names have changed as noted in
 * the comments.
 * Note that most of the contents of that struct do not need to be included
 * here since the information for the other controller is available in
 * the appropriate substructures included in this struct
 * (CAPI_UNIFIED_CONTROLLER_UNIQUE_DATA) and there is a complete copy

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 107

 * of this structure maintained in CAPI_UNIFIED_CONTROLLER for both the
 * A and B controller.
 */

 /* This controller's ID (A or B).
 * (Equivalent to failoverId in CAPI_FAILOVER.) */
 CAPI_CONTROLLER_ID controllerId;

 /* This controller's status (up, down, or unknown).
 * (Equivalent to otherState in CAPI_FAILOVER except it is the status of
 * THIS controller, not the other.) */
 CAPI_CONTROLLER_STATUS controllerStatus;

 /* TRUE if the other controller has failed and this controller has taken
 * over its responsibilities.
 * Note that there will be a delay between when the controllerStatus of
 * the other controller goes to 'down' and this value is set to TRUE,
 * which represents the time that it takes for this controller to take
 * over the other controller's responsibilities. */
 CAPI_BOOL failedOver;

 /* If failed over, what happened. */
 CAPI_FR_FAILOVER_REASON failoverReason;

 /* (End of variables equivalent to ones in CAPI_FAILOVER.) */

 /*
 * The following variables are equivalent to variables in CAPI_CONTROLLER
 * with the same name.
 */
 CAPI_CAPABILITY capabilities;
 CAPI_CAPABILITY capabilities2;
 CAPI_CAPABILITY capabilities3;
 CAPI_CAPABILITY spareCapabilities[5];
 /* Note that by including the following struct here, there is no need for a
 * "unified" version of CAPI_GetAdvancedEnvironmentals since this structure
 * can be gotten with CAPI_U_GetControllerData. */
 CAPI_ADVANCED_CONTROLLER_ENVIRONMENTALS advancedEnvironmentals;
 CAPI_CHANNEL_UNIQUE_DATA
 hostChannelUniqueData[CAPI_MAX_HOST_CHANNELS_PER_CONTROLLER];
 CAPI_CHANNEL_UNIQUE_DATA
 driveChannelUniqueData[CAPI_MAX_DRIVE_CHANNELS_PER_CONTROLLER];
 CAPI_CHAR manufacturer [CAPI_MAX_STRING];
 CAPI_CHAR model [CAPI_MAX_STRING];
 CAPI_CHAR firmwareRevision [CAPI_MAX_STRING];
 CAPI_CHAR baselevelRevision[CAPI_MAX_STRING];
 CAPI_CHAR boardRevision [CAPI_MAX_STRING];
 CAPI_CHAR cpldRevision [CAPI_MAX_STRING];
 CAPI_CHAR cpld2Revision [CAPI_MAX_STRING];
 CAPI_CHAR loaderRevision [CAPI_MAX_STRING];
 CAPI_U8 serialNumber [CAPI_MAX_SERIAL_NUMBER_BYTES];
 CAPI_U8 serialNumberLength;
 CAPI_U32 aaVersion;
 CAPI_U8 backplaneType;
 CAPI_U8 daughterBoard0Type;
 CAPI_U8 daughterBoard1Type;
 CAPI_U8 currentNodeWWN[CAPI_FC_WWID_SIZE];
 CAPI_U8 sfpPresent;
 CAPI_U8 hostRXSignalOK;
 CAPI_U8 hostTXSignalOK;
 /* (End of variables equivalent to ones in CAPI_CONTROLLER.) */

 /*
 * Controller parameter information that may have been updated by CAPI,
 * and therefore does not reflect the current, in-use parameters. This
 * is the "pending" configuration which will take effect on a reboot.
 */
 CAPI_UNIFIED_CONTROLLER_UNIQUE_PARAMS pendingControllerUniqueParams;

 /*

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

108 Chaparral document #07-0003-340

 * Controller Parameter information for the currently executing
 * configuration. This is sometimes known as the "active" params.
 */
 CAPI_UNIFIED_CONTROLLER_UNIQUE_PARAMS currentControllerUniqueParams;
} CAPI_UNIFIED_CONTROLLER_UNIQUE_DATA;

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 109

CAPI_UNIFIED_CONTROLLER_UNIQUE_PARAMS
 in CAPI 3.4

This structure is used for Unified CAPI as part of the parameters that are passed with
CAPI_U_SetControllerParams. This struct contains those parameters that are different for each controller.
See comments in the structure, below. See CAPI_NETWORK_INTERFACE_UNIQUE_PARAMS and
CAPI_CHANNEL_UNIQUE_PARAMS.

typedef struct
{
 /*
 * The members of this structure are equivalent to the settable members of
 * CAPI_NETWORK_INTERFACE and CAPI_ADVANCED_NETWORK_INTERFACE that are
 * unique for each controller board.
 */
 CAPI_NETWORK_INTERFACE_UNIQUE_PARAMS netIfUniqueParams;

 /*
 * The following struct contains variables that are equivalent to variables
 * with the same names that are in the CAPI_CHANNEL_PARAMS struct.
 * However, note that the per-channel parameters are in an array here.
 */
 CAPI_CHANNEL_UNIQUE_PARAMS channelUniqueParams;

} CAPI_UNIFIED_CONTROLLER_UNIQUE_PARAMSCAPI_UNIFIED_CONTROLLER_UNIQUE_PARAMSCAPI_UNIFIED_CONTROLLER_UNIQUE_PARAMSCAPI_UNIFIED_CONTROLLER_UNIQUE_PARAMS;

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

110 Chaparral document #07-0003-340

CAPI_UNIFIED_CREATE_ARRAY_SERIAL_NUMBER_STRUCT
 in CAPI 3.4

The CAPI_UNIFIED_CREATE_ARRAY_SERIAL_NUMBER_STRUCT is used in the callback to the
CAPI_U_CreateArray function.

typedef struct
{
 CAPI_U8 arraySerialNumber[CAPI_MAX_SERIAL_NUMBER_BYTES];
} CAPI_UNIFIED_CREATE_ARRAY_SERIAL_NUMBER_STRUCTCAPI_UNIFIED_CREATE_ARRAY_SERIAL_NUMBER_STRUCTCAPI_UNIFIED_CREATE_ARRAY_SERIAL_NUMBER_STRUCTCAPI_UNIFIED_CREATE_ARRAY_SERIAL_NUMBER_STRUCT;

Table 4-50. CAPI_UNIFIED_CREATE_ARRAY_SERIAL_NUMBER_STRUCT fields.
Parameter Description
arraySerialNumber The array serial number assigned by the controller. See the description of

CAPI_U_CreateArray for details of the makeup of the serial number.

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 111

CAPI_UNIFIED_CREATE_ARRAY_STRUCT
 in CAPI 3.4

The CAPI_UNIFIED_CREATE_ARRAY_STRUCT is used by CAPI_U_CreateArray and
CAPI_U_ExpandArray. The CAPI_CreateArray function uses separate parameters that are copied into
CAPI_ADD_ARRAY_STRUCT to be passed to the controller, but the corresponding unified commands use
this structure instead and it incorporates the old structure.

typedef struct
{
 CAPI_ADD_ARRAY_STRUCT oldAddArray;
 CAPI_CONTROLLER_ID preferredOwner;
 CAPI_U8 arraySerialNumber[CAPI_MAX_SERIAL_NUMBER_BYTES];
 CAPI_U8 driveList[CAPI_MAX_DRIVES_PER_ARRAY][CAPI_NUM_DRIVE_IDENTIFIER_BYTES];
} CAPI_UNIFIED_CREATE_ARRAY_STRUCTCAPI_UNIFIED_CREATE_ARRAY_STRUCTCAPI_UNIFIED_CREATE_ARRAY_STRUCTCAPI_UNIFIED_CREATE_ARRAY_STRUCT;

Table 4-51. CAPI_UNIFIED_CREATE_ARRAY_STRUCT fields.
Parameter Description
oldAddArray See definition of the CAPI_ADD_ARRAY_STRUCT structure.
preferredOwner Deprecated. Not used. Specify the preferred owner with

oldAddArray.preferredOwner.
arraySerialNumber Used by CAPI_U_ExpandArray to identify the array to expand. (Not used

for CAPI_U_CreateArray.)
driveList Array of drive serial numbers. &&&& TRUE? Why isn�t this subscripted

by CAPI_MAX_SERIAL_NUMBER_BYTES instead of creating the new
#define of CAPI_NUM_DRIVE_IDENTIFIER_BYTES?
Note that CAPI_MAX_DRIVES_PER_ARRAY includes the dedicated
spares. The number of drives in driveList must be
oldAddArray.numDrives + oldAddArray.numSpares. The first drives in the
list must be the drives to use in the array, and the last drives in the list
must be the spare drives.

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

112 Chaparral document #07-0003-340

CAPI_UNIFIED_DRIVE in CAPI 3.4

The CAPI_UNIFIED_DRIVE struct was created because we ran out of reserved bytes in CAPI_DRIVE and
needed to add arraySerialNumber for Unified CAPI.

typedef struct
{
 CAPI_DRIVE oldCapiDrive;
 CAPI_U8 arraySerialNumber[CAPI_MAX_SERIAL_NUMBER_BYTES];
} CAPI_UNIFIED_DRIVECAPI_UNIFIED_DRIVECAPI_UNIFIED_DRIVECAPI_UNIFIED_DRIVE;

Table 4-52. CAPI_UNIFIED_DRIVE fields.
Parameter Description
OldCapiDrive See definition of CAPI_DRIVE.
arraySerialNumber If this drive has a howUsed value of

CAPI_DRIVE_MEMBER_OF_ARRAY or
CAPI_DRIVE_DEDICATED_SPARE then this is the serial number of the
array that the drive is a member of or a dedicated spare for; otherwise,
this is all-zeros.

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 113

CAPI_UNIFIED_KNOWN_HOSTS in CAPI 3.4

The CAPI_UNIFIED_KNOWN_HOSTS struct is the same as the CAPI_KNOWN_HOSTS structure except
that is is twice as big since it is used for returning a combined list of known hosts from controllers A and B
to Unified CAPI apps.

typedef struct
{
 CAPI_U8 numHosts;
 CAPI_HOST_DESCRIPTOR host[CAPI_MAX_HOST_TABLE * 2];
} CAPI_UNIFIED_KNOWN_HOSTSCAPI_UNIFIED_KNOWN_HOSTSCAPI_UNIFIED_KNOWN_HOSTSCAPI_UNIFIED_KNOWN_HOSTS;

Table 4-53. CAPI_UNIFIED_KNOWN_HOSTS fields.
Parameter Description
numHosts The number of hosts in the list.
host The list of hosts that are known to the controller.

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

114 Chaparral document #07-0003-340

CAPI_UNIT_MAP
The CAPI_UNIT_MAP structure is used to map front-end SCSI Logical Unit Numbers to back-end devices
or RAID array partitions. This structure is used by CAPI_SetAdvancedUnitMapping and
CAPI_GetAdvancedUnitMapping. See the capability bits to see if this functionality is supported by the
target Chaparral product.

typedef struct
{
 CAPI_U16 hostChannelIndex;
 CAPI_U16 deviceChannelIndex;
 CAPI_FLEX_ID hostId;
 CAPI_FLEX_ID deviceId;
 CAPI_U8 arraySerialNumber[CAPI_MAX_SERIAL_NUMBER_BYTES];
 CAPI_U32 startLba;
 CAPI_U32 startLbaHi;
 CAPI_U32 size;
 CAPI_U32 sizeHi;
 CAPI_U8 mappingMode;
 CAPI_U8 lunMask;
} CAPI_UNIT_MAP;CAPI_UNIT_MAP;CAPI_UNIT_MAP;CAPI_UNIT_MAP;

Table 4-54. CAPI_UNIT_MAP fields.
Parameter Description
hostChannelIndex Front-end channel for which this LUN will be mapped
hostId Flexible CAPI identifier that describes how the host channel is mapped
deviceChannelIndex Back-end device channel, if mapping a device(not used for RAID array)
deviceId Flexible CAPI identifier that describes a device (not used for RAID array)
arraySerialNumber Serial number of a RAID array partition (not for mapping devices). This

field is not currently supported by any Chaparral products, although it may
be supported in the future (see capability bits).

startLba Currently unused. May be supported in future products (see capability
bits).

startLbaHi Currently unused. May be supported in future products (see capability
bits).

size Currently unused. May be supported in future products (see capability
bits).

sizeHi Currently unused. May be supported in future products (see capability
bits).

mappingMode
 in CAPI 3.4

Auto versus fixed. Used for routers.

lunMask
 in CAPI 3.4

0 = not masked, 1 = masked

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 115

◊◊◊◊ ◊◊◊◊ ◊◊◊◊
CAPI FUNCTION REFERENCE
This section provides detailed descriptions of each of the CAPI functions. The non-unified functions are
listed first, in alphabetical order, followed by the unified functions, also in alphabetical order. See page 5 for
an introduction to Unified CAPI.

See Chapter 6, Reply Code Reference, and Chapter 7, Event Code Reference, for details on specific reply
and event codes.

The Callback section of each function description provides details of which parameters of the callback
function are valid and what they contain. See Reply to Function Calls on page 6.

NOTE: CAPI_RC is used in this chapter as an abbreviation for CAPI_RETURN_CODE.

The following table describes the attributes used to characterize each CAPI function. Each function
includes a table of these attributes. A check mark indicates that the attribute applies to that function.

Attribute Description
Lengthy Operation Specifies if the function is a lengthy operation. See Lengthy

Operations on page 7.
Need Current Configuration The application requires current configuration information for the

operation to succeed. If a function is called and configuration is not
current, the callback function will receive an errorCode of
CAPI_ERROR_FAILURE_DUE_TO_CONFIG_CHANGE. See
Controller Structure Updates on page 9.

May Change Configuration The function may change the controller�s current configuration. In
most cases, this means that if the function succeeds it will
increment the configuration sequence number. See Controller
Configuration Sequence Number on page 10.

See Capability Bits See CAPI Capabilities on page 29 and refer to the controller�s
documentation to determine if the function is supported.

Note for CAPI 2.x users: The word SAFTE has been changed to ENVIRON to include
other environmental processors, also known as Enclosure Management Processors
or EMPs.

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

116 Chaparral document #07-0003-340

Abort Utility

Syntax:
CAPI_RC CAPI_AbortUtilityCAPI_AbortUtilityCAPI_AbortUtilityCAPI_AbortUtility(CAPI_HANDLE handlehandlehandlehandle,
 CAPI_U32 arrayIndexarrayIndexarrayIndexarrayIndex);

Description:
Aborts the configuration/management utility running on the specified array.

handle is the handle of the controller that executes the command.
arrayIndex is the index of the target array for which the utility should be aborted.

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_UTILITY_ABORT
errorCode Completion status of the command.
identifier arrayIndex and controllerHandle are valid.
param1
param2
dataPtr

Events:
CAPI_EVENT_UTILITY_ABORT

Remarks:
Each RAID array can have a maximum of one configuration or management utility running at a time. This
function aborts the utility; however, not all utilities may be aborted. See CAPI Versions
Different Chaparral products support different versions of CAPI. If the major version (for example, the 3 in
version 3.4) is the same for two products, you should be able to easily design a single CAPI app that
manages both products, although the product with the lower minor version number (for example, the 4 in
version 3.4) will not have all the features of the product with the higher minor version number. Specifically,
there may be additional CAPI commands added for a higher version number and there may be additional
members in some of the data structures passed to and from CAPI commands, but the members that
existed in the lower version of CAPI are still in the same locations in the same structures.

When a new version of the CAPI SDK is released, typically the most recent Chaparral product(s) are
released simultaneously with the SDK and the version of CAPI that is running in the controller corresponds
to the SDK version. However, developers of new CAPI apps can use a more recent version of the CAPI
SDK to talk to older products, provided the major version number matches, and, of course, the app cannot
use the newest features that have been added to CAPI which are not supported on that product.

Conversely, if a CAPI app was developed using an older version of the CAPI SDK (for example, CAPI 3.2),
it can still be used for managing a newer product that supports a newer version of CAPI (for example,
CAPI3.4), but of course the app will not be able to take advantage of the newer features that have been
added to CAPI 3.4 in the product but which are not in the CAPI 3.2 SDK.

As of this writing (September 2002), the following products support the corresponding version of CAPI:
• CAPI 2.x: G5312, G7313, all Kxxxx.
• CAPI 3.4: RIO, Stratis RAID S3300 (JFF224). (Thus, the features marked � in CAPI 3.3� and �

in CAPI 3.4� in this document are supported by these products only.)

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 117

• CAPI 3.2: All other Chaparral products.

CAPI Capabilities on page 29.

Lengthy Operation
✔ Need Current Configuration
✔ May Change Configuration
✔ See Capability Bits

See also:

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

118 Chaparral document #07-0003-340

Add Array Partition

Syntax:
CAPI_RC CAPI_AddArrayPartitionCAPI_AddArrayPartitionCAPI_AddArrayPartitionCAPI_AddArrayPartition(CAPI_HANDLE handlehandlehandlehandle,
 CAPI_U8 *arraySerialNumber*arraySerialNumber*arraySerialNumber*arraySerialNumber,
 CAPI_PARTITION_REQUEST *addPartition *addPartition *addPartition *addPartition);

Description:
Adds (i.e., creates) a new partition to an existing array.

handle is the handle of the controller that executes the command.
arraySerialNumber (Not used � the arraySerialNumber member of addPartition is used to specify the

array serial number to which the partition will be added.)
addPartition is a pointer to the CAPI_PARTITION_REQUEST structure which is used to specify the

characteristics of the partition to be created. All the members of CAPI_PARTITION_REQUEST must be
specified except partitionSerialNumber.

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_ADD_ARRAY_PARTITION
errorCode Completion status of the command.
identifier controllerHandle and arrayIndex are valid.
param1
param2
dataPtr

Events:
CAPI_EVENT_ADD_ARRAY_PARTITION_COMPLETE

Remarks :
This command is valid if the CAPI_CAPABILITY_2_ARRAY_PARTITIONS capability flag is set.

The maximum number of partitions supported by one array is given by
CAPI_MAX_PARTITIONS_PER_ARRAY. The maximum number of partitions supported by a controller is
given by CAPI_MAX_ARRAY_PARTITIONS_PER_CONTROLLER.

The partition serial number of the new partition is included with the event
CAPI_EVENT_ADD_ARRAY_PARTITION_COMPLETE as u.serialNumbers.arraySerialNumber. This serial
number can then be used as a parameter when calling other CAPI functions that require a partition serial
number.

Lengthy Operation
✔ Need Current Configuration
✔ May Change Configuration
✔ See Capability Bits

See also:
CAPI_ChangeArrayPartitionGeometry()
CAPI_ChangeArrayPartitionLun()
CAPI_ChangeArrayPartitionName()

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 119

CAPI_DeleteArrayPartition()
CAPI_GetArrayPartitions()
CAPI_GetFreeArrayPartitions()
CAPI_ResetArrayPartitionStatistics()

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

120 Chaparral document #07-0003-340

Add Dedicated Spare

Syntax:
CAPI_RC CAPI_AddDedicatedSpareCAPI_AddDedicatedSpareCAPI_AddDedicatedSpareCAPI_AddDedicatedSpare(CAPI_HANDLE handlehandlehandlehandle,
 CAPI_U32 arrayIndexarrayIndexarrayIndexarrayIndex,
 CAPI_U32 channelIndexchannelIndexchannelIndexchannelIndex,
 CAPI_U32 driveIndexdriveIndexdriveIndexdriveIndex);

Description:
This function adds an unused or free drive as a dedicated spare to a redundant array.

handle is the handle of the controller that executes the command.
arrayIndex is the index of the target array among the arrays on the specified controller.
channelIndex is the index of the channel on the specified controller.
driveIndex is the index of the drive on the specified channel.

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_ADD_DEDICATED_SPARE
errorCode Completion status of the command.
identifier arrayIndex and controllerHandle are valid.
param1
param2
dataPtr

Events:
CAPI_EVENT_ADD_DEDICATED_SPARE

Remarks :
It is assumed that the calling routine has verified that the drive has sufficient capacity for the array. If the
array has a down drive, a reconstruct utility immediately starts.

If a drive contains metadata from a previous array, you must clear the metadata using the
CAPI_ScsiMaintenance or CAPI_U_DoScsiMaintenance command before adding the drive as a dedicated
spare or pool spare. The controller will automatically rescan the bus when the metadata is cleared.

On some older RAID controller implementations, if a drive contains metadata from a previous array, you
must clear the metadata using the CAPI_ScsiMaintenance command, then issue a rescan by calling
CAPI_RescanBus before adding the drive as a dedicated spare or pool spare.

Lengthy Operation
✔ Need Current Configuration
✔ May Change Configuration
✔ See Capability Bits

See also:
CAPI_AddPoolSpare()
CAPI_DeleteSpare()
CAPI_ScsiMaintenance()

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 121

Add Host

Syntax:
CAPI_RC CAPI_AddHostCAPI_AddHostCAPI_AddHostCAPI_AddHost(CAPI_HANDLE handlehandlehandlehandle,
 CAPI_U32 channelIndexchannelIndexchannelIndexchannelIndex,
 CAPI_U8 *partitionSerialNumber*partitionSerialNumber*partitionSerialNumber*partitionSerialNumber,
 CAPI_U32 unitNumunitNumunitNumunitNum,
 CAPI_FLEX_ID hostIdhostIdhostIdhostId,
 CAPI_BOOL allHostsallHostsallHostsallHosts,
 CAPI_BOOL accessModeaccessModeaccessModeaccessMode);

Description:
This function adds a host to the list of hosts that may communicate with a specified unitNum or
partitionSerialNumber. The list is either a list of hosts that are included for access to the LUN or a list of
hosts that are excluded from access. The allHosts flag may be used to override the list and have all hosts
either included or excluded.

handle is the handle of the controller that executes the command.
channelIndex host channel index that the array or device is being presented on.
partitionSerialNumber is the serial number of the partition; if partitions are not supported (capability bit

CAPI_CAPABILITY_2_ARRAY_PARTITIONS not set), then this is an array serial number. (Applies to
RAID only; not routers.)

unitNum LUN that this array or device is being presented as.
hostId Fibre Channel or SCSI ID of the host.
allHosts setting to TRUE causes the accessMode parameter to apply to all hosts; setting to FALSE causes

the accessMode parameter to apply to this LUN�s list of hosts that have access. (Applies to routers only;
not RAID.)

accessMode setting to TRUE designates a list of hosts that are to be included for access; setting to
FALSE designates a list of hosts that are to be excluded for access. (Applies to routers only; not RAID.)

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_ADD_HOST
errorCode Completion status of the command.
identifier controllerHandle is valid.
param1
param2
dataPtr

Events:

Remarks:
See CAPI_U_AddHost for a discussion of how a typical application might best use this command.

Applications Errata for Router � The Router must be in FIXED mode or else the function will fail.

To change allHosts and accessMode for RAID products, use CAPI_ChangeInfoShieldType.

If partitionSerialNumber is not NULL, it will be used; if it is NULL, channelIndex and unitNum will be used.

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

122 Chaparral document #07-0003-340

Lengthy Operation
✔ Need Current Configuration
✔ May Change Configuration
✔ See Capability Bits

See also:
CAPI_U_AddHost()
CAPI_GetHostTable()
CAPI_RemoveHost()
CAPI_ChangeInfoShieldType()
CAPI_GetKnownHosts()
CAPI_GetHostNicknames()

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 123

Add Host Nickname in CAPI 3.3

Syntax:
CAPI_RC CAPI_AddHostNicknameCAPI_AddHostNicknameCAPI_AddHostNicknameCAPI_AddHostNickname(CAPI_HANDLE handlehandlehandlehandle,
 CAPI_FLEX_ID hostIdhostIdhostIdhostId,
 CAPI_U8 *nickname*nickname*nickname*nickname);

Description:
This command allows a CAPI application to define a �nickname� that corresponds to the worldwide name
for a host. This capability of CAPI is provided so a CAPI application can provide a mechanism for the user
of that application to more conveniently refer to a host. The CAPI application can access these host
nicknames via the CAPI_GetHostNicknames and CAPI_GetKnownHosts functions.

handle is the handle of the controller that executes the command.
hostId is the worldwide name of the host that this nickname applies to. In the CAPI_FLEX_ID struct, the

CAPI_FLEX_TYPE may be set to either CAPI_FLEX_TYPE_FC_WWN_NODE or
CAPI_FLEX_TYPE_FC_WWN_PORT and the corresponding field, FCNodeWWN or FCPortWWN, is
then used.

nickname points to a null-terminated string provided by the CAPI application. Maximum number of
characters allowed in this string is CAPI_MAX_HOST_NAME (15 characters plus NULL).

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_ADD_HOST_NICKNAME
errorCode Completion status of the command.
identifier controllerHandle is valid.
param1
param2
dataPtr

Events:

Remarks:
This function can be used to change a nickname as well as add a new one.

Caution: This function performs no check that the nickname is unique. That is, it is possible for the same
nickname to be used for two or more different worldwide names, with unpredictable results.

Note that nicknames can be added or changed via the Disk Array Administrator (MUI) or other user
interfaces; there is a single table of nicknames. Thus, name changes and additions made via one user
interface are visible via other user interfaces.

The list of nicknames is saved on both controllers in a dual-controller system. The list of nicknames is
preserved through a reboot and through replacement of one of the two controller boards.

Nicknames can be deleted by using this function with the nickname defined as a null string (that is, first
character in the string is 0).

This function requires capability bit CAPI_CAPABILITY_2_INFOSHIELD to be set.

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

124 Chaparral document #07-0003-340

Lengthy Operation
Need Current Configuration
May Change Configuration

✔ See Capability Bits

See also:
CAPI_GetHostNicknames()
CAPI_GetKnownHosts()

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 125

Add Pool Spare

Syntax:
CAPI_RC CAPI_AddPoolSpareCAPI_AddPoolSpareCAPI_AddPoolSpareCAPI_AddPoolSpare(CAPI_HANDLE handlehandlehandlehandle,
 CAPI_U32 channelIndexchannelIndexchannelIndexchannelIndex,
 CAPI_U32 driveIndexdriveIndexdriveIndexdriveIndex);

Description:
This function adds an unused or free drive to the spare pool.

handle is the handle of the controller that executes the command.
channelIndex is the index of the channel on the specified controller.
driveIndex is the index of the drive on the specified channel.

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_ADD_POOL_SPARE
errorCode Completion status of the command.
identifier controllerHandle, arrayIndex, channelIndex, and driveIndex are valid.
param1
param2
dataPtr

Events:
CAPI_EVENT_ADD_POOL_SPARE

Remarks :
It is assumed that the calling routine has verified that the drive has sufficient capacity for the array. If the
array has a down drive, a Reconstruct utility immediately starts.

If a drive contains metadata from a previous array, you must clear the metadata using the
CAPI_ScsiMaintenance or CAPI_U_DoScsiMaintenance command before adding the drive as a dedicated
spare or pool spare. The controller will automatically rescan the bus when the metadata is cleared.

On some older RAID controller implementations, if a drive contains metadata from a previous array, you
must clear the metadata using the CAPI_ScsiMaintenance command, then issue a rescan by calling
CAPI_RescanBus before adding the drive as a dedicated spare or pool spare.

Lengthy Operation
✔ Need Current Configuration
✔ May Change Configuration
✔ See Capability Bits

See also:
CAPI_AddDedicatedSpare()
CAPI_DeleteSpare()
CAPI_ScsiMaintenance()

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

126 Chaparral document #07-0003-340

Blink Drive

Syntax:
CAPI_RC CAPI_BlinkDriveCAPI_BlinkDriveCAPI_BlinkDriveCAPI_BlinkDrive(CAPI_HANDLE handlehandlehandlehandle,
 CAPI_U32 channelIndexchannelIndexchannelIndexchannelIndex,
 CAPI_U32 driveIndexdriveIndexdriveIndexdriveIndex);

Description:
Blinks the drive activity light. The light is blinked by issuing a non-destructive command, such as a single
sector read or a SCSI Test Unit Ready, at regular intervals.

handle is the handle of the controller that executes the command.
channelIndex is the index of the channel on the specified controller.
driveIndex is the index of the drive on the specified channel.

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_DRIVE_BLINK
errorCode Completion status of the command.
identifier controllerHandle, channelIndex, and driveIndex are valid.
param1
param2
dataPtr

Events:

Remarks :
The controller continues blinking the drive light until a call to CAPI_UnblinkDrive.

Lengthy Operation
✔ Need Current Configuration

May Change Configuration
See Capability Bits

See also:
CAPI_UnblinkDrive()

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 127

Cache Test

Syntax:
CAPI_RC CAPI_CacheTestCAPI_CacheTestCAPI_CacheTestCAPI_CacheTest(CAPI_HANDLE handlehandlehandlehandle);

Description:
This command will test the controller�s cache region.

handle is the handle of the controller that executes the command.

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_CACHE_TESTED
errorCode Completion status of the command.
identifier controllerHandle is valid.
param1
param2
dataPtr

Events:

Remarks :
Currently, this command in not implemented. It will return OK status, but do nothing.
When this is implemented, this command will clear the cache region. Make sure that the cache region has
been flushed and that all I/O has been stopped.

Lengthy Operation
Need Current Configuration
May Change Configuration
See Capability Bits

See also:
CAPI_FlushCache()

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

128 Chaparral document #07-0003-340

Change Array Name

Syntax:
CAPI_RC CAPI_ChangeArrayNameCAPI_ChangeArrayNameCAPI_ChangeArrayNameCAPI_ChangeArrayName(CAPI_HANDLE handlehandlehandlehandle,
 CAPI_U32 arrayIndexarrayIndexarrayIndexarrayIndex,
 CAPI_CHAR *name*name*name*name);

Description:
This command changes the array name.

handle is the handle of the controller that executes the command.
arrayIndex is the index of the target array on the specified controller.
name is a pointer to a NULL terminated string containing the new array name. Length must be less than or

equal to CAPI_MAX_ARRAY_NAME.

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_ARRAY_NAME_CHANGE
errorCode Completion status of the command.
identifier controllerHandle and arrayIndex are valid.
param1
param2
dataPtr

Events:
CAPI_EVENT_ARRAY_NAME_CHANGE

Remarks :
An error will occur if the string is too long.

Lengthy Operation
✔ Need Current Configuration
✔ May Change Configuration

See Capability Bits

See also:
CAPI_CreateArray()

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 129

Change Array Partition Geometry

Syntax:
CAPI_RC CAPI_ChangeArrayPartitionGeometryCAPI_ChangeArrayPartitionGeometryCAPI_ChangeArrayPartitionGeometryCAPI_ChangeArrayPartitionGeometry(CAPI_HANDLE controllerHandlecontrollerHandlecontrollerHandlecontrollerHandle,
 CAPI_U8 *partitionSerialNumber*partitionSerialNumber*partitionSerialNumber*partitionSerialNumber,
 CAPI_PARTITION_REQUEST *changePartition *changePartition *changePartition *changePartition);

Description:
Changes the size of an existing array partition. Currently, the size of a partition may only be increased, not
decreased.

handle is the handle of the controller that executes the command.
partitionSerialNumber is a pointer to the serial number of an existing partition.
changePartition is a pointer to the structure that is used to specify the new size of the partition. The

members of this struct that must be specified are: startLba (must be the same as that specified when
the partition was added), sizeLba (specifies the new size), and arraySerialNumber. The
partitionSerialNumber member is filled in by the function; it copies the partitionSerialNumber function
param to the partitionSerialNumber structure member. The name and unitNum members of this struct
are ignored.

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_ARRAY_PARTITION_GEOMETRY_CHANGE
errorCode Completion status of the command.
identifier controllerHandle and arrayIndex are valid.
param1
param2
dataPtr

Events:
CAPI_EVENT_ARRAY_PARTITION_GEOMETRY_CHANGE

Remarks :
This command is valid if the CAPI_CAPABILITY_2_ARRAY_PARTITIONS capability flag is set.

Note that the size of a partition may only be increased if the partition is immediately followed by a free
partition area. If an array is expanded, this creates free space at the end of the array, allowing the last
partition in an array to expand into this area.

Lengthy Operation
✔ Need Current Configuration
✔ May Change Configuration
✔ See Capability Bits

See also:
CAPI_AddArrayPartition()
CAPI_GetFreeArrayPartitions()

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

130 Chaparral document #07-0003-340

Change Array Partition LUN

Syntax:
CAPI_RC CAPI_ChangeArrayPartitionLunCAPI_ChangeArrayPartitionLunCAPI_ChangeArrayPartitionLunCAPI_ChangeArrayPartitionLun(CAPI_HANDLE controllerHandlecontrollerHandlecontrollerHandlecontrollerHandle,
 CAPI_U8 *partitionSerialNumber*partitionSerialNumber*partitionSerialNumber*partitionSerialNumber,
 CAPI_U8 lun lun lun lun);

Description:
Allows the application to change the LUN that a partition presents to the host.

handle is the handle of the controller that executes the command.
partitionSerialNumber is a pointer to the serial number of an existing partition.
lun is the new LUN value of the partition (this must be a currently unused LUN value).

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_ARRAY_PARTITION_LUN_CHANGE
errorCode Completion status of the command.
identifier controllerHandle and arrayIndex are valid.
param1
param2
dataPtr

Events:
CAPI_EVENT_ARRAY_PARTITION_LUN_CHANGE

Remarks :
This command is valid if the CAPI_CAPABILITY_2_ARRAY_PARTITIONS capability flag is set. No reboot
is required for this change to take effect.

Lengthy Operation
✔ Need Current Configuration
✔ May Change Configuration
✔ See Capability Bits

See also:
CAPI_AddArrayPartition()

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 131

Change Array Partition Name

Syntax:
CAPI_RC CAPI_ChangeArrayPartitionNameCAPI_ChangeArrayPartitionNameCAPI_ChangeArrayPartitionNameCAPI_ChangeArrayPartitionName(CAPI_HANDLE controllerHandlecontrollerHandlecontrollerHandlecontrollerHandle,
 CAPI_U8 *partitionSerialNumber*partitionSerialNumber*partitionSerialNumber*partitionSerialNumber,
 CAPI_CHAR *name *name *name *name);

Description:
Changes the name value of an existing array partition.

handle is the handle of the controller that executes the command.
partitionSerialNumber is a pointer to the serial number of an existing partition.
name is a pointer to a NULL terminated string containing the new partition name. Length must be less than

or equal to CAPI_MAX_ARRAY_NAME.

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_ARRAY_PARTITION_NAME_CHANGE
errorCode Completion status of the command.
identifier controllerHandle and arrayIndex are valid.
param1
param2
dataPtr

Events:
CAPI_EVENT_ARRAY_PARTITION_NAME_CHANGE

Remarks :
This command is valid if the CAPI_CAPABILITY_2_ARRAY_PARTITIONS capability flag is set.

Lengthy Operation
✔ Need Current Configuration
✔ May Change Configuration
✔ See Capability Bits

See also:
CAPI_AddArrayPartition()

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

132 Chaparral document #07-0003-340

Change InfoShield Type

Syntax:
CAPI_RC CAPI_ChangeInfoShieldTypeCAPI_ChangeInfoShieldTypeCAPI_ChangeInfoShieldTypeCAPI_ChangeInfoShieldType(CAPI_HANDLE handlehandlehandlehandle,
 CAPI_U32 channelIndexchannelIndexchannelIndexchannelIndex,
 CAPI_U8 *partitionSerialNumber*partitionSerialNumber*partitionSerialNumber*partitionSerialNumber,
 CAPI_U32 unitNumunitNumunitNumunitNum,
 CAPI_BOOL allHostsallHostsallHostsallHosts,
 CAPI_BOOL includeincludeincludeinclude);

Description:
This function changes the type of access that a list of hosts has for a specified unitNum or
partitionSerialNumber.

handle is the handle of the controller that executes the command.
channelIndex host channel index that the array or device is being presented on.
partitionSerialNumber is the serial number of the partition; if partitions are not supported (capability bit

CAPI_CAPABILITY_2_ARRAY_PARTITIONS not set), then this is an array serial number. (Applies to
RAID only; not routers.)

unitNum LUN that this array or device is being presented as.
allHosts setting to TRUE causes the include parameter to apply to all hosts; setting to FALSE causes the

include parameter to apply to this LUN�s list of hosts.
include setting to TRUE designates a list of hosts that are to be included for access; setting to FALSE

designates a list of hosts that are to be excluded for access.

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_CHANGE_INFOSHIELD_TYPE
errorCode Completion status of the command.
identifier controllerHandle is valid.
param1
param2
dataPtr

Events:

Remarks:
The list of LUNs that applies when allHosts is FALSE is configured using the CAPI_AddHost and
CAPI_RemoveHost commands.

If partitionSerialNumber is not NULL, it will be used; if it is NULL, channelIndex and unitNum will be used.

Lengthy Operation
✔ Need Current Configuration
✔ May Change Configuration
✔ See Capability Bits

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 133

See also:
CAPI_GetHostTable()
CAPI_AddHost()
CAPI_RemoveHost()

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

134 Chaparral document #07-0003-340

Change Utility Priority

Syntax:
CAPI_RC CAPI_ChangeUtilityPriorityCAPI_ChangeUtilityPriorityCAPI_ChangeUtilityPriorityCAPI_ChangeUtilityPriority(CAPI_HANDLE handlehandlehandlehandle,
 CAPI_U32 arrayIndexarrayIndexarrayIndexarrayIndex,
 CAPI_UTILITY_PRIORITY priority priority priority priority);

Description:
Changes the priority of the utility running on the specified array.

handle is the handle of the controller that executes the command.
arrayIndex is the index of the target array on the specified controller.
priority is used to set the priority level of the utility running on the array.

Valid priorities are
CAPI_UTILITY_PRIORITY_HIGH 0
CAPI_UTILITY_PRIORITY_MEDIUM 1
CAPI_UTILITY_PRIORITY_LOW 2

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_ARRAY_UTIL_PRIORITY_CHANGE

errorCode Completion status of the command. CAPI_ERROR_NO_UTILITY_TO_ABORT may be
returned if the is not a utility running on the array.

identifier controllerHandle and arrayIndex are valid.
param1
param2
dataPtr

Events:

Remarks :
This command may not be supported on current controller models.

Lengthy Operation
✔ Need Current Configuration
✔ May Change Configuration

See Capability Bits

See also:

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 135

Clear Event Log

Syntax:
CAPI_RC CAPI_ClearEventLogCAPI_ClearEventLogCAPI_ClearEventLogCAPI_ClearEventLog(CAPI_HANDLE handle handle handle handle);

Description:
This command clears the non-volatile event log memory on the controller and resets the Event Log
sequenceNumber.

handle is the handle of the controller that executes the command.

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_LOG_CLEAR
errorCode Completion status of the command.
identifier controllerHandle is valid.
param1
param2
dataPtr

Events:
CAPI_EVENT_LOG_CLEAR

Remarks :
This command should only be used to reset a controller to an empty log state before shipping to a
customer. An application can clear its event log without actually clearing the event log on the controller by
disregarding the last logged sequenceNumber and anything prior.

WARNING: This can cause problems for other attached applications currently polling for
events.

Lengthy Operation
Need Current Configuration
May Change Configuration
See Capability Bits

See also:
CAPI_GetEvent()
CAPI_GetFirstEvent()
CAPI_GetLastEvent()

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

136 Chaparral document #07-0003-340

Create Array

Syntax:
CAPI_RC CAPI_CreateArrayCAPI_CreateArrayCAPI_CreateArrayCAPI_CreateArray(CAPI_HANDLE handlehandlehandlehandle,
 CAPI_UTILITY_PRIORITY priority,priority,priority,priority,
 CAPI_DRIVE_LOCATION *driveList,*driveList,*driveList,*driveList,
 CAPI_U32 numDrivesnumDrivesnumDrivesnumDrives,
 CAPI_U32 numDrivesPerLowLevelContainer,numDrivesPerLowLevelContainer,numDrivesPerLowLevelContainer,numDrivesPerLowLevelContainer,
 CAPI_U32 numSparesnumSparesnumSparesnumSpares,
 CAPI_RAID_LEVEL raidLevelraidLevelraidLevelraidLevel,
 CAPI_U32 minDriveSizeminDriveSizeminDriveSizeminDriveSize,
 CAPI_U32 dataChunkSizedataChunkSizedataChunkSizedataChunkSize,
 CAPI_U32 unitNumunitNumunitNumunitNum,
 CAPI_CONTROLLER_ID preferredOwner,preferredOwner,preferredOwner,preferredOwner,
 CAPI_FORMAT_TYPE formatTypeformatTypeformatTypeformatType,
 CAPI_CHAR *arrayName*arrayName*arrayName*arrayName,
 CAPI_CACHE_PARAMS *cacheParams*cacheParams*cacheParams*cacheParams);

Description:
Creates a RAID array from a list of single drives.

handle is the handle of the controller that executes the command.
priority is not used.
driveList is a pointer to a list of CAPI_DRIVE_LOCATION structures that specify the member and spare

drives in the array. The length of this list must equal numDrives plus numSpares.
numDrives specifies the number of member drives in the array.
numDrivesPerLowLevelContainer specifies the number of member drives in the lower-level container.

This is only applicable to RAID 30 and RAID 50; a value of 0 can be used for other RAID levels. Lower-
level containers are the underlying RAID 5 (for RAID 50) or RAID 3 (for RAID 30) arrays that are striped
together to make a two-level RAID 50 or RAID 30 array. All of the lower-level containers within a two-
level array must have the same number of drives.

numSpares is the number of spare drives assigned to the array. The last drives in the driveList are used
as dedicated spares.

raidLevel specifies the type of array to create.
minDriveSize is the size of each member in the array, in 512-byte blocks. The size of the smallest drive in

the array determines the maximum value for this field, but a smaller value may be used. A value of 0
uses the default (the smallest drive in the array).

dataChunkSize specifies the size, in KBytes, of the data chunk in a RAID 3, 4, or 5 array (chunk size is the
stripe size on one drive). Must be one of: 16, 32, or 64.

unitNum If a valid unused LUN is specified, the array will be created with one partition that uses all of the
space in the array (this is done for backward compatibility with CAPI applications that don�t support
array partitions). If CAPI_NULL_ID is specified, then the array will be created without any partitions; to
use the free area in the array, partitions must be added using the CAPI_AddArrayPartition function.

preferredOwner specifies which controller should be the preferred owner of this array.
formatType is one of the following;

CAPI_FORMAT_TYPE_NO_FORMAT This will generate metadata but will leave all array
partitioning and user data untouched.

CAPI_FORMAT_TYPE_ZERO_INIT_ONLY This format type will zero all user data.
CAPI_FORMAT_TYPE_ZERO_AND_LOWLEVEL This is unsupported.
CAPI_FORMAT_TYPE_ONLINE_INIT This will zero the first 1KB of the user data and then

initialize the array with good redundancy data. The
array will be available for customer read/write access
immediately.

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 137

arrayName specifies a NULL terminated string containing the name of the array. Names longer than
CAPI_MAX_STRING (20 at this writing) will be truncated. If a valid LUN is specified, then the single
partition created for the array will have the same name as the array.

cacheParams is not used. This should be set to NULL. Use CAPI_SetCacheParams,
CAPI_U_SetCacheParams, CAPI_SetArrayPartitionCacheParams, or
CAPI_U_SetArrayPartitionCacheParams to set cache parameters.

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_CREATE_ARRAY_START
errorCode Completion status of the command.
identifier controllerHandle and arrayIndex are valid.
param1
param2
dataPtr

Events:
CAPI_EVENT_CREATE_ARRAY_START
CAPI_EVENT_CREATE_ARRAY_COMPLETE

Remarks :
The progress of the Create Array utility can be monitored by calling CAPI_GetPercentComplete.
Completion status is obtained via calls to CAPI_GetLastEvent. The array serial number of the new partition
is included with both events CAPI_EVENT_CREATE_ARRAY_START and
CAPI_EVENT_CREATE_ARRAY_COMPLETE as u.serialNumbers.arraySerialNumber. This serial number
can then be used as a parameter when calling other CAPI functions that require an array serial number.
The array serial number can also be obtained from the CAPI_ARRAY struct returned by function
CAPI_GetArrayList.

After event CAPI_EVENT_CREATE_ARRAY_START is logged, there is a slight delay (generally less than
a second) before CAPI_GetArrayList will return the new array as part of its list of arrays. You can call other
CAPI functions related to this array (such as CAPI_AddArrayPartition) once your app sees the new array in
the list of arrays.

The array serial number is 12 bytes; 8 bytes is the controller serial number and 4 bytes is a timestamp. An
example is shown here:
 0 1 2 3 4 5 6 7 8 9 10 11 byte #
 --
 00 50 13 B0 30 00 00 00 2A 0F 58 3C value
 ----------serial num---------- --time stamp--

In a typical application, this could be displayed as 0x005013B0300000002A0F583C.

In the Chaparral Disk Array Administrator and in the RAIDar web browser interface, only bytes 3-5 and 8-
11 are displayed since bytes 0-2 are always 005013 and bytes 6 and 7 are always zeroes. Thus, the array
serial number would display as B030002A0F583C.

In the case of a RAID 1, 10, 3, 4, or 5 array, the utility writes zeros to each LBA on each drive. The final
step writes controller-specific information to the reserved sectors of each drive.

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

138 Chaparral document #07-0003-340

✔ Lengthy Operation
✔ Need Current Configuration
✔ May Change Configuration
✔ See Capability Bits

See also:
CAPI_DeleteArray()
CAPI_AddArrayPartition()

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 139

Delete Array

Syntax:
CAPI_RC CAPI_DeleteArrayCAPI_DeleteArrayCAPI_DeleteArrayCAPI_DeleteArray(CAPI_HANDLE handlehandlehandlehandle,
 CAPI_U8 *arraySerialNumber*arraySerialNumber*arraySerialNumber*arraySerialNumber);

Description:
Removes information in the reserved sectors of an array�s member drives so that they are no longer
associated with a RAID array.

handle is the handle of the controller that executes the command.
arraySerialNumber is a pointer to the serial number of the target array on the specified controller.

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_ARRAY_DELETE
errorCode Completion status of the command.
identifier controllerHandle and arrayIndex are valid.
param1
param2
dataPtr

Events:
CAPI_EVENT_ARRAY_DELETE

Remarks :
After completion of this utility, the array is no longer valid and is no longer visible to the host. The member
drives become single, free drives that can be assigned for use in new arrays or as spare drives. The drives
are not reformatted by this utility and are not visible to the host.

Note: CAPI will adjust the array indices of the remaining arrays after the
CAPI_DeleteArray command so that they remain contiguous.

Note to CAPI 2.x users: This differs from the CAPI2.x in that an array serial number is
passed instead of an array index.

Warning: All partitions contained in the array are automatically deleted when the array is
deleted.

Lengthy Operation
Need Current Configuration

✔ May Change Configuration
See Capability Bits

See also:
CAPI_CreateArray()

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

140 Chaparral document #07-0003-340

Delete Array Partition

Syntax:
CAPI_RC CAPI_DeleteArrayPartitionCAPI_DeleteArrayPartitionCAPI_DeleteArrayPartitionCAPI_DeleteArrayPartition(CAPI_HANDLE controllerHandlecontrollerHandlecontrollerHandlecontrollerHandle,
 CAPI_U8 *partitionSerialNumber *partitionSerialNumber *partitionSerialNumber *partitionSerialNumber);

Description:
Permanently deletes an existing array partition. The area formerly occupied by the partition becomes a
free partition area, which can be used for partition expansion or to add a new partition.

handle is the handle of the controller that executes the command.
partitionSerialNumber is a pointer to the serial number of an existing partition.

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_DELETE_ARRAY_PARTITION
errorCode Completion status of the command.
identifier controllerHandle and arrayIndex are valid.
param1
param2
dataPtr

Events:
CAPI_EVENT_DELETE_ARRAY_PARTITION_COMPLETE

Remarks :
This command is valid if the CAPI_CAPABILITY_2_ARRAY_PARTITIONS capability flag is set. Note that
once the partition is deleted, it cannot be recovered.

Lengthy Operation
✔ Need Current Configuration
✔ May Change Configuration
✔ See Capability Bits

See also:
CAPI_AddArrayPartition()
CAPI_GetArrayPartitions()

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 141

Delete Spare

Syntax:
CAPI_RC CAPI_DeleteSpareCAPI_DeleteSpareCAPI_DeleteSpareCAPI_DeleteSpare(CAPI_HANDLE handlehandlehandlehandle,
 CAPI_U32 channelIndexchannelIndexchannelIndexchannelIndex,
 CAPI_U32 driveIndexdriveIndexdriveIndexdriveIndex);

Description:
This function changes the drive from spare drive to unused.

handle is the handle of the controller that executes the command.
channelIndex is the index of the channel of the target drive on the specified controller.
driveIndex is the index of the drive on the specified channel.

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_ SPARE_DELETE
errorCode Completion status of the command.
identifier controllerHandle, channelIndex, and driveIndex are valid.
param1
param2
dataPtr

Events:
CAPI_EVENT_ SPARE_DELETE

Remarks :
The drive becomes an available drive, which can be assigned for use in new arrays or as another spare
drive. This command can be used to delete both pool spares and dedicated spares.

Lengthy Operation
✔ Need Current Configuration
✔ May Change Configuration

See Capability Bits

See also:
CAPI_AddDedicatedSpare()
CAPI_AddPoolSpare()

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

142 Chaparral document #07-0003-340

Down Drive

Syntax:
CAPI_RC CAPI_DownDriveCAPI_DownDriveCAPI_DownDriveCAPI_DownDrive(CAPI_HANDLE handlehandlehandlehandle,
 CAPI_U32 channelIndexchannelIndexchannelIndexchannelIndex,
 CAPI_U32 driveIndexdriveIndexdriveIndexdriveIndex);

Description:
Disables a drive that is a member of an array and can cause the array to switch to degraded operation.

handle is the handle of the controller that executes the command.
channelIndex is the index of the channel on the specified controller that the drive is on.
driveIndex is the index of the drive on the specified channel.

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_DOWN_DRIVE
errorCode Completion status of the command.
identifier controllerHandle and driveIndex are valid.
param1
param2
dataPtr

Events:
CAPI_EVENT_DRIVE_DOWN

Remarks:
This command should only be used for system testing. It will degrade an array to a critical state if one
of the member drives is downed. Remember, after downing a drive, to use it again you must clear the
metadata on the drive (with CAPI_ScsiMaintenance) and then rescan the bus.

Lengthy Operation
✔ Need Current Configuration
✔ May Change Configuration

See Capability Bits

See also:
CAPI_RescanBus()
CAPI_ScsiMaintenance()

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 143

Enable Packet Compression

Syntax:
CAPI_RC CAPI_EnablePacketCompressionCAPI_EnablePacketCompressionCAPI_EnablePacketCompressionCAPI_EnablePacketCompression(CAPI_U8 *compressionBuffer*compressionBuffer*compressionBuffer*compressionBuffer);

Description:
Enables compression of data sent by a controller in reply to a CAPI command.

compressionBuffer is a pointer to a buffer of size CAPI_RECEIVE_GENERAL_BUFFER_SIZE.

Return Code:
Always returns CAPI_STATUS_GOOD.

Callback:
replyCode None
errorCode
identifier
param1
param2
dataPtr

Events:

Remarks :
This command will not invoke the application�s callback function.

CAPI uses the HSZRLE (Horvath Simplified Zero Run Length Encoding) compression algorithm which
compresses repeating zeros.

To disable compression, call this function with compressionBuffer set to NULL. This is the default state if
your application never calls this function.

Use of compression for serial LMXs is recommended; this will greatly improve response time to commands
that get large amounts of data such as CAPI_UpdateController, CAPI_U_GetControllerData,
CAPI_GetDriveList, and CAPI_U_GetDriveList.

See Initialization Details on page 15.

Lengthy Operation
Need Current Configuration
May Change Configuration
See Capability Bits

See also:
CAPI_EnablePacketCompressionMasterToSlave()

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

144 Chaparral document #07-0003-340

Enable Packet Compression Master To Slave
 in CAPI 3.4

Syntax:
CAPI_RC CAPI_EnablePacketCompressionMasterToSlaveCAPI_EnablePacketCompressionMasterToSlaveCAPI_EnablePacketCompressionMasterToSlaveCAPI_EnablePacketCompressionMasterToSlave(
 CAPI_BOOL enableCompressionMasterToSlaveenableCompressionMasterToSlaveenableCompressionMasterToSlaveenableCompressionMasterToSlave);

Description:
Enables compression of data sent from a CAPI app (master) to a controller (slave).

enableCompressionMasterToSlave if set to TRUE will enable compression; if set to FALSE will disable
compression.

Return Code:
Always returns CAPI_STATUS_GOOD.

Callback:
replyCode None
errorCode
identifier
param1
param2
dataPtr

Events:

Remarks :
This command will not invoke the application�s callback function.

CAPI uses the HSZRLE (Horvath Simplified Zero Run Length Encoding) compression algorithm which
compresses repeating zeros.

Use of compression for serial LMXs is recommended; this will greatly improve response time to commands
that send large amounts of data such as CAPI_SetControllerParams, CAPI_U_SetControllerParams,
CAPI_ScsiMaintenance, and CAPI_U_DoScsiMaintenance.

This command must not be called to set enableCompressionMasterToSlave to TRUE if capability bit
CAPI_CAPABILITY_3_MASTER_TO_SLAVE_COMPRESSION is not set. If this is done, compressed data
will be sent to the controller but the controller will not be able to uncompress it and serious consequences
may result; for example, garbage configuration will be loaded into the controller if this is done when calling
CAPI_SetControllerParams.

The same compression buffer is used for both compression and uncompression. Thus, you must call
CAPI_EnablePacketCompression to provide a buffer in order to have master-to-slave compression work.

See Initialization Details on page 15.

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 145

Lengthy Operation
Need Current Configuration
May Change Configuration

✔ See Capability Bits

See also:
CAPI_EnablePacketCompression()

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

146 Chaparral document #07-0003-340

Environ Read

Syntax:
CAPI_RC CAPI_EnvironReadCAPI_EnvironReadCAPI_EnvironReadCAPI_EnvironRead(CAPI_HANDLE handlehandlehandlehandle,
 CAPI_U32 environProcessorIndexenvironProcessorIndexenvironProcessorIndexenvironProcessorIndex,
 CAPI_U32 environCommandenvironCommandenvironCommandenvironCommand);

Description:
Requests data from an environmental processor (for either the SAF-TE or SES standard) attached to a
controller.

handle is the handle of the controller that executes the command.
environProcessorIndex is the index of the environmental processor you are issuing the command to. This

is the same as the index used in the CAPI_FindNextEnvironProcessor() function.
environCommand is the environmental command code. See list of valid commands below.

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_ENVIRON_READ
errorCode Completion status of the command.
identifier controllerHandle is valid.
param1 The number of valid bytes of data in the data buffer pointed to by dataPtr.
param2
dataPtr Pointer to CAPI_ENVIRON_PROCESSOR_DATA.

Events:

Remarks :
param1 will be less than or equal to CAPI_ENVIRON_MAX_ENVIRON_DATA_LENGTH.

If errorCode is equal to CAPI_NO_ERROR, then the data buffer contains valid inquiry data. However, if it is
equal to CAPI_ERROR_COMMAND_FAILED, then sense data is automatically returned; the first byte in
the data buffer contains the SCSI status byte and the rest of the data buffer contains SCSI sense data.

In this document, the terms �environmental processor,� �environmental device,� �environmental unit,�
�Enclosure Management Processor,� and �EMP� are used interchangeably.

Chaparral enclosure management is intended for disk array enclosures that comply with either of the
following two standards for enclosure services:

� SAF-TE (SCSI Accessed Fault-Tolerant Enclosure) � commonly used in SCSI/SCSI RAID
enclosures.

� SES (SCSI-3 Enclosure Services) � an ANSI standard used widely for Fibre/Fibre RAID controllers
and for SCSI-ATA and Fibre-ATA RAID controllers.

Each of these two enclosure services use different terminology for the Enclosure Management Processors
(EMPs) that provide the enclosure services:

� SEP (SAF-TE Enclosure Processor for SAF-TE)
� ESP (Enclosure Services Processor for SES)

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 147

The following SAF-TE commands are valid for the environCommand parameter above.

Command
SAFTE_READ_ENCLOSURE_CFG_CMD
SAFTE_READ_ENCLOSURE_STATUS_CMD
SAFTE_READ_USAGE_STATS_CMD
SAFTE_READ_DEV_INSERTIONS_CMD
SAFTE_READ_DEV_SLOT_STATUS_CMD
SAFTE_READ_GLOBAL_FLAGS_CMD

Read Enclosure Configuration should be issued first before issuing any other SAF-TE reads. Refer to the
SAF-TE Specification for more details. Also note that some SEP vendors do not support all of the
commands listed and may return error codes.

The following SES commands are valid for the environCommand parameter above:

Command
SES_RECV_SUPPORTED_DIAGS
SES_RECV_CONFIGURATION
SES_RECV_ENCLOSURE_STATUS
SES_RECV_HELP_TEXT
SES_RECV_STRING_IN
SES_RECV_THRESHOLD_IN
SES_RECV_ARRAY_STATUS
SES_RECV_ELEMENT_DESCRIPTOR
SES_RECV_SHORT_ENCLOSURE_STAT

Lengthy Operation
Need Current Configuration
May Change Configuration

✔ See Capability Bits

See also:
CAPI_FindNextEnvironProcessor()
CAPI_EnvironWrite()

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

148 Chaparral document #07-0003-340

Environ Write

Syntax:
CAPI_RC CAPI_EnvironWriteCAPI_EnvironWriteCAPI_EnvironWriteCAPI_EnvironWrite(CAPI_HANDLE handlehandlehandlehandle,
 CAPI_U32 environProcessorIndexenvironProcessorIndexenvironProcessorIndexenvironProcessorIndex,
 CAPI_U32 environCommandenvironCommandenvironCommandenvironCommand,
 CAPI_U8 *buffer*buffer*buffer*buffer,
 CAPI_U32 lengthlengthlengthlength);

Description:
Sends data to an environmental processor (for either the SAF-TE or SES standard) attached to a
controller.

handle is the handle of the controller that executes the command.
environProcessorIndex is the index of the environmental processor you are issuing the command to. This

is the same as the index used in the CAPI_FindNextEnvironProcessor function.
environCommand is the environmental command code. See list of valid commands below.
buffer is a pointer to buffer containing the CAPI_ENVIRON_PROCESSOR_DATA structure.
length is the number of bytes to send to the EMP from the buffer.

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

A return code of CAPI_STATUS_INVALID_PARAM will be returned if length is greater than
sizeof(CAPI_ENVIRON_PROCESSOR_DATA).

Callback:
replyCode CAPI_REPLY_ENVIRON_WRITE
errorCode Completion status of the command.
identifier controllerHandle is valid.
param1
param2
dataPtr

Remarks :
In this document, the terms �environmental processor,� �environmental device,� �environmental unit,�
�Enclosure Management Processor,� and �EMP� are used interchangeably.

The following SAF-TE commands are valid for the environCommand parameter above:

Command
SAFTE_WRITE_DEV_SSLOT_STATUS_CMD
SAFTE_SET_SCSI_ID_CMD
SAFTE_PERFORM_SLOT_OPERATION_CMD
SAFTE_SET_FAN_SPEED_CMD
SAFTE_ACTIVATE_POWER_SUPPLY_CMD
SAFTE_SEND_GLOBAL_FLAGS_CMD

Note: The buffer parameter points to the structure that contains the write buffer command data only. It does
not contain the write buffer Operation Code in the first byte as described in the SAF-TE Interface
Specification. The Operation Code is inserted by the controller before the actual command is sent to the
SEP, using the environCommand parameter.

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 149

The following SES commands are valid for the environCommand parameter above:

Command
SES_SEND_ENCLOSURE_CONTROL
SES_SEND_STRING_OUT
SES_SEND_THRESHOLD_OUT
SES_SEND_ARRAY_CONTROL

Lengthy Operation
Need Current Configuration
May Change Configuration

✔ See Capability Bits

See also:
CAPI_FindNextEnvironProcessor()
CAPI_EnvironRead()

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

150 Chaparral document #07-0003-340

Expand Array

Syntax:
CAPI_RC CAPI_ExpandArrayCAPI_ExpandArrayCAPI_ExpandArrayCAPI_ExpandArray(CAPI_HANDLE handlehandlehandlehandle,
 CAPI_U32 arrayIndexarrayIndexarrayIndexarrayIndex,
 CAPI_DRIVE_LOCATION *driveListdriveListdriveListdriveList,
 CAPI_U32 numDrives,numDrives,numDrives,numDrives,
 CAPI_U32 numSpares);numSpares);numSpares);numSpares);

Description:
This function adds a new drive to an existing array and begins online capacity expansion to increase the
size of the array. The original array is indicated by the arrayIndex.

handle is the handle of the controller that executes the command.
arrayIndex is the index of the target array on the specified controller.
driveList is a pointer to a list of CAPI_DRIVE_LOCATION structures that specify the member and spare

drives to be added. The length of this list must equal numDrives plus numSpares.
numDrives specifies the number of member drives to be added.
numSpares specifies the number of spare drives assigned to this array, which are at the end of the

driveList.

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_EXPAND_ARRAY_START
errorCode Completion status of the command.
identifier controllerHandle, arrayIndex, channelIndex, and driveIndex are valid.
param1
param2
dataPtr

Events:
CAPI_EVENT_EXPAND_ARRAY_START
CAPI_EVENT_EXPAND_ARRAY_COMPLETE

Remarks :
This function may not be supported by all external RAID controllers.

Note: The new drives must be at least as large as the smallest existing member drive in
the array.

✔ Lengthy Operation
✔ Need Current Configuration
✔ May Change Configuration
✔ See Capability Bits

See also:

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 151

Find LMX Of Type

Syntax:
CAPI_RC CAPI_FindLmxOfTypeCAPI_FindLmxOfTypeCAPI_FindLmxOfTypeCAPI_FindLmxOfType(CAPI_HANDLE *handle,
 CAPI_CONTROLLER_CONTEXT *context,
 CAPI_U8 *capiBuffer,
 CAPI_U8 *eventBuffer,
 CAPI_U8 linkType);

Description:
This command is like CAPI_FindNextController except that it will only return the first entry of the particular
type in the LmxTable (Master Table).

handle CAPI returns the controller handle for the found controller. This number is then used as the handle
param for subsequent CAPI function calls. If no controller is found, then CAPI_NULL_ID is returned.

context Allocate a CAPI_CONTROLLER_CONTEXT for this controller and pass a pointer to it. CAPI uses
this struct internally to store link routing information.

capiBuffer Allocate and pass a pointer to a buffer for CAPI to receive message packets from the controller.
The size of the buffer should be at least the size of CAPI_RECEIVE_GENERAL_BUFFER_SIZE.

eventBuffer This buffer is used to receive CAPI_EVENT structures. The application can use the same
capiBuffer as above (pass the same pointer) or can allocate a new buffer. The size of the buffer should
be at least the size of CAPI_RECEIVE_EVENT_BUFFER_SIZE.

linkType The type of LMX to find.

Return Code:
Indicates if the request was successful (by returning CAPI_STATUS_GOOD) or, if not, provides an error
status.

Callback:
replyCode None
errorCode
identifier
param1
param2
dataPtr

Events:

Remarks :
This command will not invoke the application�s callback function.

See Initialization Details on page 15.

Lengthy Operation
Need Current Configuration
May Change Configuration
See Capability Bits

See also:
CAPI_FindNextController()

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

152 Chaparral document #07-0003-340

Find Next Controller

Syntax:
CAPI_RC CAPI_FindNextControllerCAPI_FindNextControllerCAPI_FindNextControllerCAPI_FindNextController(CAPI_BOOL firstTime, firstTime, firstTime, firstTime,
 CAPI_BOOL *lastTime*lastTime*lastTime*lastTime,
 CAPI_HANDLE *handle*handle*handle*handle,
 CAPI_CONTROLLER_CONTEXT *context*context*context*context,
 CAPI_U8 *capiBuffer*capiBuffer*capiBuffer*capiBuffer,
 CAPI_U8 *eventBuffer*eventBuffer*eventBuffer*eventBuffer);

Description:
Finds the next attached external controller.

firstTime Should be set to TRUE the first time this function is called. Subsequent calls should set this to
FALSE.

lastTime CAPI returns TRUE if this is the last controller found.
handle CAPI returns the controller handle for the found controller. If no controller was found, then

CAPI_NULL_ID is returned.
context Allocate a CAPI_CONTROLLER_CONTEXT for each controller and pass a pointer to it. CAPI uses

this struct internally to store link routing information.
capiBuffer Allocate and pass a pointer to a buffer for CAPI to receive message packets from the controller.

The size of the buffer should be at least the size of CAPI_RECEIVE_GENERAL_BUFFER_SIZE.
eventBuffer This buffer is used to receive CAPI_EVENT structures. The application can use the same

capiBuffer as above (pass the same pointer) or can allocate a new buffer. The size of the buffer should
be at least the size of CAPI_RECEIVE_EVENT_BUFFER_SIZE.

Return Code:
Indicates if the request was successful (by returning CAPI_STATUS_GOOD) or, if not, provides an error
status.

Callback:
replyCode None
errorCode
identifier
param1
param2
dataPtr

Events:

Remarks :
This command will not invoke the application�s callback function.

See Initialization Details on page 15.

Lengthy Operation
Need Current Configuration
May Change Configuration
See Capability Bits

See also:
CAPI_FindLmxOfType()

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 153

Find Next Environ Processor

Syntax:
CAPI_RC CAPI_FindNextEnvironProcessorCAPI_FindNextEnvironProcessorCAPI_FindNextEnvironProcessorCAPI_FindNextEnvironProcessor(CAPI_HANDLE handlehandlehandlehandle,
 CAPI_U32 environProcessorIndexenvironProcessorIndexenvironProcessorIndexenvironProcessorIndex);

Description:
Finds environmental devices (also known as Enclosure Management Processors or EMPs) that may be
attached to the controller. The information that is returned in the CAPI_ENVIRON_PROCESSOR_INFO structure
is the standard SCSI inquiry data.

handle is the handle of the controller that executes the command.
environProcessorIndex is the index of the EMP you are trying to find. This is a zero-based sequential

index, so on the first call to this function, set index to zero. For the next call, set index to one and so on.
When the callback returns a value of CAPI_ERROR_NO_SUCH_ENVIRON_PROCESSOR, you are
finished.

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_FIND_NEXT_ENVIRON_PROCESSOR
errorCode CAPI_ERROR_NO_SUCH_ENVIRON_PROCESSOR means no more EMPs.
identifier controllerHandle is valid.
param1
param2
dataPtr If an EMP is found (i.e., as long as error code is not

CAPI_NO_SUCH_ENVIRON_PROCESSOR), this points to a
CAPI_ENVIRON_PROCESSOR_INFO structure.

Events:

Remarks :
In this document, the terms �environmental processor,� �environmental device,� �environmental unit,�
�Enclosure Management Processor,� and �EMP� are used interchangeably.

Call this function with an increasing index value, starting at 0, until you receive an error code of
CAPI_ERROR_NO_SUCH_ENVIRON_PROCESSOR. Use the found index values in the CAPI_EnvironRead
and CAPI_EnvironWrite function calls.

This command issues a SCSI Inquiry command to each EMP. If the Inquiry succeeds, the Callback
contains errorCode = CAPI_NO_ERROR and u.inquiry in the CAPI_ENVIRON_PROCESSOR struct
contains valid inquiry data. In the unlikely event that the Inquiry fails, the callback contains errorCode =
CAPI_ERROR_COMMAND_FAILED and u.e in the CAPI_ENVIRON_PROCESSOR struct contains valid
status and sense data. In either case, the empId, busId, targetId and lun members of
CAPI_ENVIRON_PROCESSOR are valid.

Lengthy Operation
Need Current Configuration
May Change Configuration
See Capability Bits

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

154 Chaparral document #07-0003-340

See also:
CAPI_EnvironRead()
CAPI_EnvironWrite()

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 155

Force Offline in CAPI 3.3

Syntax:
CAPI_RC CAPI_ForceOfflineCAPI_ForceOfflineCAPI_ForceOfflineCAPI_ForceOffline(CAPI_HANDLE handlehandlehandlehandle,
 CAPI_MODULE_TYPE moduleTypemoduleTypemoduleTypemoduleType,
 CAPI_MODULE_INDEX moduleIndexmoduleIndexmoduleIndexmoduleIndex,
 CAPI_U8 param3param3param3param3);

Description:
Forces the replaceable module (FRU) offline. The module will carry out this request even if it affects
performance (for example, putting one Data Manager offline in an active-active RAID system) and even if it
affects availability (for example, putting a Data Manager offline in a RAID system when the other Data
Manager is already offline). If the request affects availability, this command returns an error code indicating
the problem, but that error code will be returned in param1, not in errorCode.

handle is the handle of the controller that executes the command.
moduleType is the type of FRU that is being put offline. At this writing, only CAPI_MODULE_TYPE_DM

and CAPI_MODULE_TYPE_DG are supported.
moduleIndex identifies the specific module. This must be one of 0 through 3 for Data Gates. It must be

CAPI_MODULE_A or CAPI_MODULE_B for Data Managers.
param3 is reserved for possible future use.

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_FORCE_OFFLINE
errorCode Completion status of the command.
identifier controllerHandle is valid.
param1 error code that would have been returned if this was a call to CAPI_PutOffline
param2
dataPtr

Events:

Remarks:
If the specified Data Manager (DM) that is to be forced offline is the other DM (not the one processing this
command), this is accomplished by asserting the hardware reset line of that DM board to kill it.

If the specified DM that is to be forced offline is the one processing this command, this is accomplished by
asking the other DM to kill this DM by asserting the hardware reset line.

But if the specified controller board that is to be forced offline is the one processing this command and the
other controller board is offline, this is accomplished by gracefully shutting down the controller board via
software (equivalent to CAPI_ShutDownController or CAPI_PutOffline).

This function requires capability bit CAPI_CAPABILITY_3_REPLACEABLE_MODULE to be set.

Lengthy Operation
✔ Need Current Configuration
✔ May Change Configuration
✔ See Capability Bits

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

156 Chaparral document #07-0003-340

See also:
CAPI_PutOffline()
CAPI_PutOnline()
CAPI_ForceOnline()

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 157

Force Online in CAPI 3.3

Syntax:
CAPI_RC CAPI_ForceOnlineCAPI_ForceOnlineCAPI_ForceOnlineCAPI_ForceOnline(CAPI_HANDLE handlehandlehandlehandle,
 CAPI_MODULE_TYPE moduleTypemoduleTypemoduleTypemoduleType,
 CAPI_MODULE_INDEX moduleIndexmoduleIndexmoduleIndexmoduleIndex,
 CAPI_U8 param3param3param3param3);

Description:
Forces the replaceable module (FRU) online ungracefully. Putting a module online ungracefully means not
running full diagnostics and not running compatibility checks to see if the hardware and firmware of the
FRU are compatible with the other FRUs. This command is only for Chaparral internal use and it is
available only in beta builds, not in customer builds.

handle is the handle of the controller that executes the command.
moduleType is the type of FRU that is being put offline. At this writing, only CAPI_MODULE_TYPE_DM

and CAPI_MODULE_TYPE_DG are supported.
moduleIndex identifies the specific module. This must be one of 0 through 3 for Data Gates. It must be

CAPI_MODULE_A or CAPI_MODULE_B for Data Managers.
param3 is reserved for possible future use.

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_FORCE_ONLINE
errorCode Completion status of the command.
identifier controllerHandle is valid.
param1
param2
dataPtr

Events:

Remarks:
This function requires capability bit CAPI_CAPABILITY_3_REPLACEABLE_MODULE to be set.

Lengthy Operation
✔ Need Current Configuration
✔ May Change Configuration
✔ See Capability Bits

See also:
CAPI_ForceOffline()
CAPI_PutOffline()
CAPI_PutOnline()

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

158 Chaparral document #07-0003-340

Free Cache

Syntax:
CAPI_RC CAPI_FreeCacheCAPI_FreeCacheCAPI_FreeCacheCAPI_FreeCache(CAPI_HANDLE controllerHandle,controllerHandle,controllerHandle,controllerHandle,
 CAPI_U8 *arraySerialNumber*arraySerialNumber*arraySerialNumber*arraySerialNumber);

Description:
Frees memory used by the write-back cache in the controller for a specific array. Discards any data that is
not flushed to the drive.

handle is the handle of the controller that executes the command.
arraySerialNumber serial number of array with orphan data(from CAPI_EVENT_ORPHAN_DATA)

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_CACHE_FREE
errorCode Completion status of the command.
identifier controllerHandle, arrayIndex, channelIndex, and driveIndex are valid.
param1
param2
dataPtr

Events:

Remarks :
In the event of a catastrophic array failure (such as a multiple drive failure under RAID 5), or if an array is
moved from one controller to another, the controller is unable to flush cached write data to the array. To
make this memory available to other arrays, free cache causes this memory to be made free for use to
other arrays. The data is not written to the disks and is permanently lost. Use
CAPI_EVENT_ORPHAN_DATA to trigger this command.

Note to CAPI 2.x users: The serial number of the array instead of the unit number is
passed as a parameter now.

Lengthy Operation
✔ Need Current Configuration

May Change Configuration
See Capability Bits

See also:
CAPI_FlushCache()
CAPI_SetCacheParams()

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 159

Get Advanced Environmentals

Syntax:
CAPI_RC CAPI_GetAdvancedEnvironmentalsCAPI_GetAdvancedEnvironmentalsCAPI_GetAdvancedEnvironmentalsCAPI_GetAdvancedEnvironmentals(CAPI_HANDLE handlehandlehandlehandle);

Description:
This function allows environmental status to be gotten. This function was added because we ran out of
room in the CAPI_CONTROLLER_ENVIRONMENTALS structure in the CAPI_CONTROLLER structure.

handle is the handle of the controller that executes the command.

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_GET_ADV_ENVIRONMENTALS
errorCode Completion status of the command.
identifier ControllerHandle is valid.
param1
param2
dataPtr This points to a CAPI_ADVANCED_CONTROLLER_ENVIRONMENTALS

structure.

Events:

Remarks:
This command is not needed if you are using Unified CAPI commands since the
CAPI_ADVANCED_CONTROLLER_ENVIRONMENTALS structure is included in the
CAPI_UNIFIED_CONTROLLER structure obtained with CAPI_U_GetControllerData.

If you are developing a non-unified CAPI application, note that there may be additional environmental data
in the CAPI_PRODUCT_SPECIFIC_UNION, which is part of the CAPI_CONTROLLER structure and can
be obtained with CAPI_UpdateController.

Lengthy Operation
Need Current Configuration
May Change Configuration
See Capability Bits

See also:

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

160 Chaparral document #07-0003-340

Get Advanced Network Interface

Syntax:
CAPI_RC CAPI_GetAdvancedNetworkInterfaceCAPI_GetAdvancedNetworkInterfaceCAPI_GetAdvancedNetworkInterfaceCAPI_GetAdvancedNetworkInterface(CAPI_HANDLE handlehandlehandlehandle);

Description:
This function allows configuration parameters to be gotten for the LAN processor.

handle is the handle of the controller that executes the command.

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_GET_ADV_NETWORK_INTF
errorCode Completion status of the command.
identifier ControllerHandle is valid.
param1
param2
dataPtr This points to a CAPI_ADVANCED_NETWORK_INTERFACE structure.

Events:

Remarks:

Lengthy Operation
Need Current Configuration
May Change Configuration

✔ See Capability Bits

See also:
CAPI_SetAdvancedNetworkInterface()

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 161

Get Advanced Unit Mapping

Syntax:
CAPI_RC CAPI_GetAdvancedUnitMappingCAPI_GetAdvancedUnitMappingCAPI_GetAdvancedUnitMappingCAPI_GetAdvancedUnitMapping(CAPI_HANDLE handlehandlehandlehandle);

Description:
This function returns the mapping of back-end devices or arrays to front-end LUNs.

handle is the handle of the controller that executes the command.

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_GET_ADVANCED_UNIT_MAPPING
errorCode Completion status of the command.
identifier controllerHandle is valid.
param1 Number of CAPI_UNIT_MAP structs returned.
param2 Configuration sequence number.
dataPtr Pointer to the first element of an array of CAPI_UNIT_MAP structures; there are

param1 elements in the array.

Events:

Remarks:
This command is currently supported only on the Router products. RAID controllers will return
CAPI_ERROR_NOT_SUPPORTED when sent this command.

Applications Errata for Router - This function currently returns an array of 64 CAPI_UNIT_MAP structures.
Valid device-to-LUN mappings are indicated to CAPI Clients as follows:
 unitMap[lun].hostId.type = CAPI_FLEX_TYPE_LUN;
 unitMap[lun].hostChannelIndex = 0;
 unitMap[lun].hostId.unitNum = lun;
 unitMap[lun].deviceId.type = CAPI_FLEX_TYPE_SCSI | CAPI_FLEX_TYPE_LUN;
 unitMap[lun].deviceChannelIndex = DeviceLunMap[lun].addr.channel;
 unitMap[lun].deviceId.deviceId = DeviceLunMap[lun].addr.scsiId;
 unitMap[lun].deviceId.unitNum = DeviceLunMap[lun].addr.lun;

The Router LUN is indicated to CAPI Clients as follows:
 unitMap[lun].hostId.type = CAPI_FLEX_TYPE_LUN;
 unitMap[lun].hostChannelIndex = 0;
 unitMap[lun].hostId.unitNum = lun;
 unitMap[lun].deviceId.type = 0;
 unitMap[lun].deviceChannelIndex = CAPI_LUN_UNASSIGNED;
 unitMap[lun].deviceId.deviceId = CAPI_LUN_UNASSIGNED;
 unitMap[lun].deviceId.unitNum = CAPI_LUN_UNASSIGNED;

Lengthy Operation
✔ Need Current Configuration
✔ May Change Configuration
✔ See Capability Bits

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

162 Chaparral document #07-0003-340

See also:
CAPI_SetAdvancedUnitMapping()

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 163

Get Array List

Syntax:
CAPI_RC CAPI_GetArrayListCAPI_GetArrayListCAPI_GetArrayListCAPI_GetArrayList(CAPI_HANDLE handlehandlehandlehandle,
 CAPI_U8 bankNumberbankNumberbankNumberbankNumber);

Description:
This function returns an array of CAPI_ARRAY structures.

handle is the handle of the controller that executes the command.
bankNumber is unused and should be set to 0.

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_GET_ARRAY_LIST
errorCode Completion status of the command.
identifier controllerHandle is valid.
param1 Number of CAPI_ARRAY structs returned.
param2 Configuration sequence number.
dataPtr Pointer to the first element of an array of CAPI_ARRAY structures; there are

param1 elements in the array.

Events:

Remarks:
The application developer needs to make sure that the configuration sequence number on their copy of the
array list (an array of CAPI_ARRAY structures retrieved with a call to CAPI_GetArrayList) matches the
configuration sequence number on their copy of CAPI_CONTROLLER (retrieved with a call to
CAPI_UpdateController). A CAPI_ERROR_FAILURE_DUE_TO_CONFIG_CHANGE will occur if a
configuration change is attempted with incompatible structures.

Lengthy Operation
Need Current Configuration
May Change Configuration

✔ See Capability Bits

See also:

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

164 Chaparral document #07-0003-340

Get Array Partitions

Syntax:
CAPI_RC CAPI_GetArrayPartitionsCAPI_GetArrayPartitionsCAPI_GetArrayPartitionsCAPI_GetArrayPartitions(CAPI_HANDLE handlehandlehandlehandle,
 CAPI_U8 *arraySerialNumber *arraySerialNumber *arraySerialNumber *arraySerialNumber);

Description:
Gets a list of partitions contained in the specified array.

handle is the handle of the controller that executes the command.
arraySerialNumber is a pointer to the serial number of the array which contains the partitions.

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_GET_ARRAY_PARTITIONS
errorCode Completion status of the command.
identifier controllerHandle and arrayIndex are valid.
param1 Number of CAPI_ARRAY_PARTITION structs returned.
param2 Configuration sequence number.
dataPtr Pointer to the first element of an array of CAPI_ARRAY_PARTITION structures;

there are param1 elements in the array.

Events:

Remarks :
This command is valid if the CAPI_CAPABILITY_2_ARRAY_PARTITIONS capability flag is set. The
maximum number of partitions supported by one array is given by
CAPI_MAX_PARTITIONS_PER_ARRAY.

Lengthy Operation
✔ Need Current Configuration

May Change Configuration
✔ See Capability Bits

See also:
CAPI_AddArrayPartition()

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 165

Get Config Sequence Number

Syntax:
CAPI_RC CAPI_GetConfigSequenceNumberCAPI_GetConfigSequenceNumberCAPI_GetConfigSequenceNumberCAPI_GetConfigSequenceNumber(CAPI_HANDLE handlehandlehandlehandle);

Description:
Replies with the controller�s current configuration sequence number which can be used to determine if a
controller structures update is required (CAPI_UpdateController, CAPI_GetDriveList, CAPI_GetArrayList).

handle is the handle of the controller that executes the command.

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_GET_CONFIG_SEQ_NUMBER
errorCode Completion status of the command.
identifier controllerHandle is valid.
param1 Configuration sequence number.
param2
dataPtr

Events:

Remarks:

Lengthy Operation
Need Current Configuration
May Change Configuration

✔ See Capability Bits

See also:

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

166 Chaparral document #07-0003-340

Get Debug Data in CAPI 3.3

Syntax:
CAPI_RC CAPI_GetDebugDataCAPI_GetDebugDataCAPI_GetDebugDataCAPI_GetDebugData(CAPI_HANDLE handlehandlehandlehandle,
 CAPI_DEBUG_DATA_REGION regionregionregionregion,
 CAPI_U32 debugDataOffsetdebugDataOffsetdebugDataOffsetdebugDataOffset);

Description:
This command allows a CAPI application to get the debug data that has been logged in the controller.
Debug data is logged by many parts of the controller software. Data is in ASCII text format and consists of
printable characters plus space, tab, and new-line characters. Many lines start with a time stamp.

handle is the handle of the controller that executes the command.
region is the portion of the debug data to get.
debugDataOffset is the offset (in bytes, 0-based) at which to start retrieving the debug data in the

controller.

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_GET_DEBUG_DATA
errorCode Completion status of the command.
identifier controllerHandle is valid.
param1 The number of characters that have been put in the data buffer pointed to by

dataPtr.
param2
dataPtr CAPI_CHAR *

Events:

Remarks:
The data is not null-terminated; use param1 to determine how much data is available. There may be
garbage characters in the data buffer after the valid data.

Notes on using debugDataOffset

The area on a controller that is dedicated to saving debug data is typically several hundred kilobytes. It is
not possible to get all of this data in one call to this function, because of size limitations of the data buffer in
the LMX. The maximum size of a block of data that will be returned by a call to this function is
CAPI_MAX_DEBUG_DATA_PER_GET (defined as 32768 as of this writing). Your CAPI application should
call this function repeatedly (with the region set to the same value) until it returns with param1 set to a
value that is less than CAPI_MAX_DEBUG_DATA_PER_GET. Each time you call this function, you should
increase the value of debugDataOffset by CAPI_MAX_DEBUG_DATA_PER_GET, starting with 0. For
example, if a particular controller has debug data in the boot-up region that has a total size of 70000 bytes,
the first time your app calls this command, debugDataOffset should be set to 0 and the callback will contain
32768 characters and param1 will be 32768. The second time the app calls this command,
debugDataOffset should be set to 32768 and the callback will contain 32768 characters and param1 will be
32768. The third time the app calls this command, debugDataOffset should be set to 65536. This call will
get the remaining 4464 characters (70000 � 65536 = 4464). The callback will contain 4464 characters and
param1 will be 4464. Your app should concatenate these 3 blocks of data for display to a user.

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 167

If the debugDataOffset is beyond the end of valid debug data, 0 characters will be put in the data buffer and
param1 will be 0.

When this function is called with offset = 0, a snapshot copy is made of the debug data in the specified
region. Subsequent calls to this function with offset != 0 will retrieve data from that snapshot buffer.

WARNING: If more than one application is calling this function at the same time, there is the potential for
interaction between the applications and the data that it retrieved may not be the desired data. (This is
because the large buffer sizes involved require that all CAPI apps share a single, global snapshot buffer.)

Organization of the debug data into regions
The debug data is organized into 6 separate regions. They are:
• Boot-up prints (region = CAPI_DEBUG_DATA_REGION_BOOT_LOG)
• 4 crash-dump regions (region = CAPI_DEBUG_DATA_REGION_CRASH_LOG1 through 4)
• General debug prints (region = CAPI_DEBUG_DATA_REGION_PRINT_LOG)

Note that a CAPI application should not assume a region is any particular size, since this will vary from
product to product and may vary with future releases of a product. Instead, the application should keep
asking for data until param1 indicates all data has been retrieved, as discussed above. But to give you
some idea as to the size, as of this writing the boot-up region is 20480 bytes; the other regions are each
102400 bytes.

Each region fills up from the lowest address. If the buffer has not filled up, param1 will indicate how many
bytes of data you have received, and this number may even be 0. Once the buffer fills up, older data will be
lost. The oldest line of debug data may be an incomplete line.

The 4 crash-dump regions wrap in this way: Crash-dump region 1 is used to save the first crash, then the
second crash-dump region is used to save the second crash, and so on till all 4 are used, then the first
crash-dump region is reused, then successive crash-dump regions are reused.

If a controller is gracefully shut down or put off line (for example, via CAPI_PutOffline,
CAPI_RebootController, or CAPI_ShutDownController), all the debug data is cleared. If a controller is
ungracefully shut down or forced off line (for example, killed by the other controller, or the power is shut off,
or via CAPI_ForceOffline) then the debug data will be preserved in battery-backed RAM on the controller.

Lengthy Operation
Need Current Configuration
May Change Configuration
See Capability Bits

See also:

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

168 Chaparral document #07-0003-340

Get Drive Error Statistics in CAPI 3.3

Syntax:
CAPI_RC CAPI_GetDriveErrorStatisticsCAPI_GetDriveErrorStatisticsCAPI_GetDriveErrorStatisticsCAPI_GetDriveErrorStatistics(CAPI_HANDLE handlehandlehandlehandle,
 CAPI_U8 *driveNodeWWN*driveNodeWWN*driveNodeWWN*driveNodeWWN,
 CAPI_U32 driveIndexdriveIndexdriveIndexdriveIndex);

Description:
This command gets drive error statistics for a specified disk drive.

handle is the handle of the controller that executes the command.
driveNodeWWN is a pointer to the drive node worldwide name, used for Fibre Channel-attached drives

only. It is represented as a string of 8 bytes.
driveIndex is an index into an array of CAPI_DRIVE structures, used for SCSI-attached drives only.

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_GET_DRIVE_ERROR_STATS
errorCode Completion status of the command.
identifier controllerHandle is valid.
param1
param2
dataPtr Pointer to a CAPI_DRIVE_ERROR_STATS structure.

Events:

Remarks:

Lengthy Operation
Need Current Configuration
May Change Configuration
See Capability Bits

See also:
CAPI_ResetDriveErrorStatistics()

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 169

Get Drive List

Syntax:
CAPI_RC CAPI_GetDriveListCAPI_GetDriveListCAPI_GetDriveListCAPI_GetDriveList(CAPI_HANDLE handlehandlehandlehandle);

Description:
This returns an array of CAPI_DRIVE structures.

Note to CAPI 2.x users: Up to 250 drives are supported. Drives are not listed by
channel any more.

handle is the handle of the controller that executes the command.

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_GET_DRIVE_LIST
errorCode Completion status of the command.
identifier controllerHandle is valid.
param1 Number of CAPI_DRIVE structs returned.
param2 Configuration sequence number.
dataPtr Pointer to the first element of an array of CAPI_DRIVE structures; there are param1

elements in the array.

Events:

Remarks:
The application developer needs to make sure that the configuration sequence number on their copy of the
drive list (an array of CAPI_DRIVE structures retrieved with a call to CAPI_GetDriveList) matches the
configuration sequence number on their copy of CAPI_CONTROLLER (retrieved with a call to
CAPI_UpdateController). A CAPI_ERROR_FAILURE_DUE_TO_CONFIG_CHANGE will occur if a
configuration change is attempted with incompatible structures.

A controller does not have visibility to drives that are members of an array owned by the other controller nor
to drives that are dedicated spares of an array owned by the other controller, and therefore does not return
these drives in its list of drives.

Lengthy Operation
Need Current Configuration
May Change Configuration

✔ See Capability Bits

See also:

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

170 Chaparral document #07-0003-340

Get Event

Syntax:
CAPI_RC CAPI_GetEventCAPI_GetEventCAPI_GetEventCAPI_GetEvent(CAPI_HANDLE handlehandlehandlehandle,
 CAPI_U32 eventNumeventNumeventNumeventNum);

Description:
Get event information from the controller.

handle is the handle of the controller that executes the command.
eventNum is the sequential number of the event to retrieve (zero is an invalid event number).

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_GET_EVENT
errorCode Completion status of the command.
identifier controllerHandle is valid.
param1 The requested event sequence number.
param2 The first event sequence number available on the controller.
param3 The last event sequence number available on the controller.
dataPtr A pointer to a CAPI_EVENT structure.

Events:

Remarks:
Event numbers start at one. If the controller reports that the last event sequence number is zero, then this
indicates an empty event log.

Lengthy Operation
Need Current Configuration
May Change Configuration
See Capability Bits

See also:
CAPI_GetFirstEvent()
CAPI_GetLastEvent()

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 171

Get First Event

Syntax:
CAPI_RC CAPI_GetFirstEventCAPI_GetFirstEventCAPI_GetFirstEventCAPI_GetFirstEvent(CAPI_HANDLE handlehandlehandlehandle);

Description:
Gets the first event information in the event queue from the controller.

handle is the handle of the controller that executes the command.

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_GET_FIRST_EVENT
errorCode Completion status of the command.
identifier controllerHandle is valid.
param1 The first event sequence number available on the controller.
param2 The event sequence number of the last controller power up; that is, the most recent

event that has an event code of CAPI_EVENT_POWER_UP.
param3 The last event sequence number available on the controller. (in CAPI 3.4)
dataPtr A pointer to a CAPI_EVENT structure.

Events:

Remarks:
Event numbers start at one. If the controller reports that the last event sequence number is zero, then this
indicates an empty event log. As the controller runs, the sequence numbers increment and the event trace
will wrap. The first and last event numbers allow the application to determine how many events are in the
event log.

Lengthy Operation
Need Current Configuration
May Change Configuration
See Capability Bits

See also:
CAPI_GetEvent()
CAPI_GetLastEvent()

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

172 Chaparral document #07-0003-340

Get Free Array Partitions

Syntax:
CAPI_RC CAPI_GetFreeArrayPartitionsCAPI_GetFreeArrayPartitionsCAPI_GetFreeArrayPartitionsCAPI_GetFreeArrayPartitions(CAPI_HANDLE handlehandlehandlehandle,
 CAPI_U8 *arraySerialNumber *arraySerialNumber *arraySerialNumber *arraySerialNumber);

Description:
Gets the list of free array partitions contained in the specified array. These are essentially the unpartitioned
or �free� areas on the array. Each of these free areas is a location where a new partition can be added or
into which an adjacent (and physically lower) partition can be expanded.

handle is the handle of the controller that executes the command.
arraySerialNumber is a pointer to the serial number of the array that contains the free partitions.

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_GET_FREE_ARRAY_PARTITIONS
errorCode Completion status of the command.
identifier controllerHandle and arrayIndex are valid.
param1 Number of CAPI_ARRAY_PARTITION structs returned.
param2 Configuration sequence number.
dataPtr Pointer to the first element of an array of CAPI_ARRAY_PARTITION structures;

there are param1 elements in the array.

Events:

Remarks :
This command is valid if the CAPI_CAPABILITY_2_ARRAY_PARTITIONS capability flag is set. The
maximum number of free partitions supported by one array is given by
CAPI_MAX_FREE_PARTITIONS_PER_ARRAY. Note that the only fields of interest in the returned
CAPI_ARRAY_PARTITION structure are startLba and sizeLba.

Lengthy Operation
✔ Need Current Configuration

May Change Configuration
✔ See Capability Bits

See also:
CAPI_AddArrayPartition()
CAPI_GetArrayPartitions()

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 173

Get Host Nicknames in CAPI 3.3

Syntax:
CAPI_RC CAPI_GetHostNicknamesCAPI_GetHostNicknamesCAPI_GetHostNicknamesCAPI_GetHostNicknames(CAPI_HANDLE handlehandlehandlehandle);

Description:
This command allows a CAPI application to get a structure containing a list of all hosts that have
nicknames defined. This structure maps worldwide names to nicknames. This mapping can be used by a
CAPI application to allow a user to use nicknames instead of worldwide names.

handle is the handle of the controller that executes the command.

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_GET_HOST_NICKNAMES
errorCode Completion status of the command.
identifier controllerHandle is valid.
param1
param2
dataPtr Pointer to a CAPI_HOST_NICKNAMES structure.

Events:

Remarks:
This function requires capability bit CAPI_CAPABILITY_2_INFOSHIELD to be set.

Lengthy Operation
Need Current Configuration
May Change Configuration

✔ See Capability Bits

See also:
CAPI_AddHostNickname()
CAPI_GetKnownHosts()

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

174 Chaparral document #07-0003-340

Get Host Table

Syntax:
CAPI_RC CAPI_GetHostTableCAPI_GetHostTableCAPI_GetHostTableCAPI_GetHostTable(CAPI_HANDLE handlehandlehandlehandle,
 CAPI_U32 channelIndexchannelIndexchannelIndexchannelIndex,
 CAPI_U32 unitNumunitNumunitNumunitNum,
 CAPI_U8 *partitionSerialNumber*partitionSerialNumber*partitionSerialNumber*partitionSerialNumber);

Description:
This function returns the table of hosts that either do or do not have access to the specified unitNum or
partitionSerialNumber.

handle is the handle of the controller that executes the command.
channelIndex host channel index that the array or device is being presented on.
unitNum LUN that this array or device is being presented as.
partitionSerialNumber is the serial number of the partition; if partitions are not supported (capability bit

CAPI_CAPABILITY_2_ARRAY_PARTITIONS not set), then this is an array serial number. (Applies to
RAID only; not routers.)

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_GET_HOST_TABLE
errorCode Completion status of the command.
identifier controllerHandle is valid.
param1
param2
dataPtr Pointer to a CAPI_HOST_TABLE structure.

Events:

Remarks:
If partitionSerialNumber is not NULL, it will be used; if it is NULL, channelIndex and unitNum will be used.

Lengthy Operation
✔ Need Current Configuration
✔ May Change Configuration
✔ See Capability Bits

See also:
CAPI_AddHost()
CAPI_RemoveHost()
CAPI_ChangeInfoShieldType()

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 175

Get Known Hosts

Syntax:
CAPI_RC CAPI_GetKnownHostsCAPI_GetKnownHostsCAPI_GetKnownHostsCAPI_GetKnownHosts(CAPI_HANDLE handlehandlehandlehandle);

Description:
This function returns the table of hosts that are known to have communicated with the controller.

handle is the handle of the controller that executes the command.

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_GET_KNOWN_HOSTS
errorCode Completion status of the command.
identifier controllerHandle is valid.
param1
param2
dataPtr Pointer to a CAPI_KNOWN_HOSTS structure.

Events:

Remarks:
The list can contain up to 64 hosts; if more hosts contact the controller than 64, the oldest entries are
dropped.

The list is returned sorted by time of first contact.

Lengthy Operation
✔ Need Current Configuration
✔ May Change Configuration
✔ See Capability Bits

See also:
CAPI_GetHostTable()

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

176 Chaparral document #07-0003-340

Get Last Event

Syntax:
CAPI_RC CAPI_GetLastEventCAPI_GetLastEventCAPI_GetLastEventCAPI_GetLastEvent(CAPI_HANDLE handlehandlehandlehandle);

Description:
Gets the last event information in the event queue from the controller.

handle is the handle of the controller that executes the command.

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_GET_LAST_EVENT
errorCode Completion status of the command.
identifier controllerHandle is valid.
param1 The last event sequence number available on the controller.
param2 The first event sequence number available on the controller.
dataPtr A pointer to a CAPI_EVENT structure.

Events:

Remarks:
Event numbers start at one. If the controller reports that the last event sequence number is zero, then this
indicates an empty event log.

Lengthy Operation
Need Current Configuration
May Change Configuration
See Capability Bits

See also:
CAPI_GetEvent()
CAPI_GetFirstEvent()

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 177

Get Percent Complete

Syntax:
CAPI_RC CAPI_GetPercentCompleteCAPI_GetPercentCompleteCAPI_GetPercentCompleteCAPI_GetPercentComplete(CAPI_HANDLE handlehandlehandlehandle,
 CAPI_U32 arrayIndex arrayIndex arrayIndex arrayIndex);

Description:
Returns the percent complete of the currently running utility.

handle is the handle of the controller that executes the command.
arrayIndex is the index of the target array on the specified controller.

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_UTILITY_PERCENT
errorCode Completion status. If successful, param1 contains a valid percentage.
identifier controllerHandle and arrayIndex are valid.
param1 Contains the percent complete value as a 32-bit unsigned integer.
param2 Contains the CAPI_UTILITY_RUNNING type of utility running.
dataPtr

Events:

Remarks :
If param2 equals CAPI_NO_UTILITY_RUNNING, then param1 is undefined.

Lengthy Operation
✔ Need Current Configuration

May Change Configuration
See Capability Bits

See also:

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

178 Chaparral document #07-0003-340

Initialize

Syntax:
CAPI_RC CAPI_InitializeCAPI_InitializeCAPI_InitializeCAPI_Initialize(void);

Description:
Initializes the CAPI system.

Return Code:
Indicates if the initialization process can begin.

Callback:
replyCode CAPI_REPLY_INITIALIZE_COMPLETE
errorCode Indicates if the API successfully completed initialization or a status code if an error

occurred.
identifier
param1
param2
dataPtr

Events:

Remarks :
Initializes the API. See Initialization Details on page 15.

Lengthy Operation
Need Current Configuration
May Change Configuration
See Capability Bits

See also:

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 179

Kill Other

Syntax:
CAPI_RC CAPI_KillOtherCAPI_KillOtherCAPI_KillOtherCAPI_KillOther(CAPI_HANDLE handlehandlehandlehandle);

Description:
This command forces the other controller (in a dual controller active/active configuration) into a reset and
holds it there.

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_KILLED_OTHER
errorCode Completion status of the command.
identifier controllerHandle is valid.
param1
param2
dataPtr

Events:

Remarks :
If CAPI_CAPABILITY_3_REPLACEABLE_MODULE is not set, this function is supported.

Lengthy Operation
Need Current Configuration

✔ May Change Configuration
✔ See Capability Bits

See also:
CAPI_UnkillOther()

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

180 Chaparral document #07-0003-340

Log Event in CAPI 3.3

Syntax:
CAPI_RC CAPI_LogEventCAPI_LogEventCAPI_LogEventCAPI_LogEvent(CAPI_HANDLE handlehandlehandlehandle,
 CAPI_EVENT *eventeventeventevent);

Description:
This command allows a CAPI application to make an entry in the event log that is maintained by and on a
Chaparral controller board. This command is for Chaparral internal use only.

handle is the handle of the controller that executes the command.
event is a pointer to a structure containing the event data to be logged.

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_LOG_EVENT
errorCode Completion status of the command.
identifier controllerHandle is valid.
param1
param2
dataPtr

Events:

Remarks:
This command is intended for use by Chaparral�s software only (specifically, to allow the LAN Subsystem
to log events in the event log maintained by the Storage Controller processor). This function should not be
used by external CAPI applications to avoid using up the limited space available for events (400 events at
this writing).

Lengthy Operation
Need Current Configuration
May Change Configuration
See Capability Bits

See also:

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 181

Log In

Syntax:
CAPI_RC CAPI_LogInCAPI_LogInCAPI_LogInCAPI_LogIn(CAPI_HANDLE handlehandlehandlehandle,
 CAPI_U8 *passwordpasswordpasswordpassword);

Description:
This command registers a password with the API, which in turn sends it in all CAPI PACKETS until
CAPI_LogOut. Any potentially destructive command will require this password. The controller will reject
commands with bad passwords with CAPI_ERROR_BAD_PASSWORD. The password is set with the
loader (can�t set password with CAPI). If a password is not set with the loader then password is not
required. The password will not be encrypted in this release of CAPI; its main purpose it to prevent
accidents rather than malice.
handle is the handle of the controller that executes the command.

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_LOG_IN
errorCode Completion status of the command.
identifier controllerHandle is valid.
param1
param2
dataPtr

Events:

Remarks:
Not implemented if CAPI_CAPABILITY_2_SECURITY_LOG_IN_OUT is not set.
Not currently implemented.

Lengthy Operation
Need Current Configuration
May Change Configuration

✔ See Capability Bits

See also:

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

182 Chaparral document #07-0003-340

Log Out

Syntax:
CAPI_RC CAPI_LogOutCAPI_LogOutCAPI_LogOutCAPI_LogOut(CAPI_HANDLE handlehandlehandlehandle,
 CAPI_U8 *passwordpasswordpasswordpassword);

Description:
The CAPI API will stop sending the password to the controller.

handle is the handle of the controller that executes the command.
index is the index of the target array for which the utility should be aborted.

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_LOG_OUT
errorCode Completion status of the command.
identifier controllerHandle is valid.
param1
param2
dataPtr

Events:

Remarks:
Not implemented if CAPI_CAPABILITY_2_SECURITY_LOG_IN_OUT is not set.
Not currently implemented.

Lengthy Operation
Need Current Configuration
May Change Configuration

✔ See Capability Bits

See also:

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 183

Pause Bus

Syntax:
CAPI_RC CAPI_PauseBusCAPI_PauseBusCAPI_PauseBusCAPI_PauseBus(CAPI_HANDLE handlehandlehandlehandle,
 CAPI_U32 channelIndexchannelIndexchannelIndexchannelIndex);

Description:
Suspends I/O to all back-end SCSI buses.

handle is the handle of the controller that executes the command.
channelIndex is the index of the bus or channel on the specified controller. However, this parameter is not

used at this time. By default, all buses will be paused.

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_PAUSE_BUS
errorCode Status of the operation. If successful, the disk channels are paused.
identifier controllerHandle and channelIndex are valid.
param1
param2
dataPtr

Events:

Remarks :
While some connectors are designed to allow hot-plugging SCSI drives, most are not. In all cases, the
SCSI bus should be paused to prevent corrupted data. If a SCSI drive is inserted or removed from the bus,
the pins may disrupt the signals. This function can be used to pause I/O on the bus while drives are added
or removed.

After a call to CAPI_PauseBus, the bus remains paused until a call to CAPI_UnpauseBus. When the
pause is issued, any SCSI commands currently in progress are allowed to complete. Any SCSI commands
received after the pause is issued are queued by the RAID controller. If the queue becomes full, a status of
queue full is returned to the host via the SCSI interface. Pass CAPI_NULL_ID in channelIndex to pause all
buses.
This command may not be implemented on this controller or you may not be able to pause individual
buses. See CAPI Versions
Different Chaparral products support different versions of CAPI. If the major version (for example, the 3 in
version 3.4) is the same for two products, you should be able to easily design a single CAPI app that
manages both products, although the product with the lower minor version number (for example, the 4 in
version 3.4) will not have all the features of the product with the higher minor version number. Specifically,
there may be additional CAPI commands added for a higher version number and there may be additional
members in some of the data structures passed to and from CAPI commands, but the members that
existed in the lower version of CAPI are still in the same locations in the same structures.

When a new version of the CAPI SDK is released, typically the most recent Chaparral product(s) are
released simultaneously with the SDK and the version of CAPI that is running in the controller corresponds
to the SDK version. However, developers of new CAPI apps can use a more recent version of the CAPI
SDK to talk to older products, provided the major version number matches, and, of course, the app cannot
use the newest features that have been added to CAPI which are not supported on that product.

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

184 Chaparral document #07-0003-340

Conversely, if a CAPI app was developed using an older version of the CAPI SDK (for example, CAPI 3.2),
it can still be used for managing a newer product that supports a newer version of CAPI (for example,
CAPI3.4), but of course the app will not be able to take advantage of the newer features that have been
added to CAPI 3.4 in the product but which are not in the CAPI 3.2 SDK.

As of this writing (September 2002), the following products support the corresponding version of CAPI:
• CAPI 2.x: G5312, G7313, all Kxxxx.
• CAPI 3.4: RIO, Stratis RAID S3300 (JFF224). (Thus, the features marked � in CAPI 3.3� and �

in CAPI 3.4� in this document are supported by these products only.)
• CAPI 3.2: All other Chaparral products.

CAPI Capabilities on page 29. Requires CAPI_CAPABILITY_2_PAUSE_INDIVIDUAL_BUS set to pause
an individual bus.

Lengthy Operation
Need Current Configuration
May Change Configuration

✔ See Capability Bits

See also:
CAPI_UnpauseBus()

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 185

Put Offline in CAPI 3.3

Syntax:
CAPI_RC CAPI_PutOfflineCAPI_PutOfflineCAPI_PutOfflineCAPI_PutOffline(CAPI_HANDLE handlehandlehandlehandle,
 CAPI_MODULE_TYPE moduleTypemoduleTypemoduleTypemoduleType,
 CAPI_MODULE_INDEX moduleIndexmoduleIndexmoduleIndexmoduleIndex,
 CAPI_U8 param3param3param3param3);

Description:
Puts the replaceable module (FRU) offline gracefully. The controller will carry out this request even if it
affects performance (for example, putting one Data Manager offline in an active-active RAID system), but
will reject this request if it affects availability (for example, putting a Data Manager offline in a RAID system
when the other Data Manager is already offline). If the request is rejected, this command returns an
errorCode indicating the problem.

handle is the handle of the controller that executes the command.
moduleType is the type of FRU that is being put offline. At this writing, only CAPI_MODULE_TYPE_DM

and CAPI_MODULE_TYPE_DG are supported.
moduleIndex identifies the specific module. This must be one of 0 through 3 for Data Gates. It must be

CAPI_MODULE_A or CAPI_MODULE_B for Data Managers.
param3 is reserved for possible future use.

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_PUT_OFFLINE
errorCode Completion status of the command.
identifier ControllerHandle is valid.
param1
param2
dataPtr

Events:

Remarks:
Putting a Data Manager (DM) offline is equivalent to shutting it down.

CAPI_ShutDownController provides similar functionality to this function. However, that function can only act
on Data Managers and it can shut down both controller boards with a single function call.

Calling CAPI_PutOffline is equivalent to calling CAPI_ShutDownController for a single DM with fwUpdate
set to FALSE except that CAPI_PutOffline does availability checking first.

This function requires capability bit CAPI_CAPABILITY_3_REPLACEABLE_MODULE to be set.

Lengthy Operation
✔ Need Current Configuration
✔ May Change Configuration
✔ See Capability Bits

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

186 Chaparral document #07-0003-340

See also:
CAPI_PutOnline()
CAPI_ForceOffline()
CAPI_ForceOnline()
CAPI_ShutDownController()

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 187

Put Online in CAPI 3.3

Syntax:
CAPI_RC CAPI_PutOnlineCAPI_PutOnlineCAPI_PutOnlineCAPI_PutOnline(CAPI_HANDLE handlehandlehandlehandle,
 CAPI_MODULE_TYPE moduleTypemoduleTypemoduleTypemoduleType,
 CAPI_MODULE_INDEX moduleIndexmoduleIndexmoduleIndexmoduleIndex,
 CAPI_U8 param3param3param3param3);

Description:
Puts the replaceable module (FRU) online gracefully. Putting a module online gracefully means running its
diagnostics and running compatibility checks to see if the hardware and firmware of the FRU are
compatible with the other FRUs. If these checks do not pass, this command returns an errorCode indicating
the problem.

handle is the handle of the controller that executes the command.
moduleType is the type of FRU that is being put offline. At this writing, only CAPI_MODULE_TYPE_DM

and CAPI_MODULE_TYPE_DG are supported.
moduleIndex identifies the specific module. This must be one of 0 through 3 for Data Gates. It must be

CAPI_MODULE_A or CAPI_MODULE_B for Data Managers.
param3 is reserved for possible future use.

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_PUT_ONLINE
errorCode Completion status of the command.
identifier controllerHandle is valid.
param1
param2
dataPtr

Events:

Remarks:
This function requires capability bit CAPI_CAPABILITY_3_REPLACEABLE_MODULE to be set.

Lengthy Operation
✔ Need Current Configuration
✔ May Change Configuration
✔ See Capability Bits

See also:
CAPI_PutOffline()
CAPI_ForceOffline()
CAPI_ForceOnline()

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

188 Chaparral document #07-0003-340

Reboot Controller

Syntax:
CAPI_RC CAPI_RebootControllerCAPI_RebootControllerCAPI_RebootControllerCAPI_RebootController(CAPI_HANDLE handle,handle,handle,handle,
 CAPI_CONTROLLER_ID controllerId controllerId controllerId controllerId);

Description:
This command does the same thing as CAPI_ShutDownController and then reboots. It is also used to
reboot a controller when it is in a shutdown state as a result of CAPI_ShutDownController.

handle is the handle of the controller that executes the command.
controllerId specifies which controller you want to reboot; one of: CAPI_CONTROLLER_A,

CAPI_CONTROLLER_B, CAPI_CONTROLLER_BOTH.

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_CONTROLLER_REBOOT_START
errorCode Completion status of the command.
identifier controllerHandle is valid.
param1
param2
dataPtr

Events:
CAPI_EVENT_CONTROLLER_REBOOT_COMPLETE

Remarks :
Rebooting will flush the controller�s write back cache to disk.

See CAPI_ShutDownController for additional information.

Lengthy Operation
Need Current Configuration

✔ May Change Configuration
See Capability Bits

See also:
CAPI_UpdateFirmware()
CAPI_ShutDownController()

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 189

Reconstruct Array

Syntax:
CAPI_RC CAPI_ReconstructArrayCAPI_ReconstructArrayCAPI_ReconstructArrayCAPI_ReconstructArray(CAPI_HANDLE handlehandlehandlehandle,
 CAPI_U32 arrayIndexarrayIndexarrayIndexarrayIndex,
 CAPI_U32 arrayDriveIndexarrayDriveIndexarrayDriveIndexarrayDriveIndex,
 CAPI_U32 prioritypriorityprioritypriority);

Description:
This command is not supported and will be removed in future versions of CAPI. To reconstruct an array,
just add a dedicated spare to the array, or add a pool spare and the reconstruct will start automatically.

handle is the handle of the controller that executes the command.
arrayIndex is the index of the target array on the specified controller.
arraydriveIndex is the array drive index in the array.
priority is unused.

Return Code:
This will return CAPI_ERROR_NOT_SUPPORTED.

Callback:
replyCode
errorCode
identifier
param1
param2
dataPtr

Events:

Remarks :

✔ Lengthy Operation
✔ Need Current Configuration
✔ May Change Configuration
✔ See Capability Bits

See also:
CAPI_AddDedicatedSpare()
CAPI_AddPoolSpare()

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

190 Chaparral document #07-0003-340

Register Callback

Syntax:
CAPI_RC CAPI_RegisterCallbackCAPI_RegisterCallbackCAPI_RegisterCallbackCAPI_RegisterCallback(CAPI_VFPTR capiCallbackcapiCallbackcapiCallbackcapiCallback);

Note to CAPI 2.x users: Two additional parameters (param3 and param4) were added
to the callback function that you must provide. Make sure to change your source
code if upgrading from CAPI2 or else you might meet with unpredictable results.

Description:
Provides a pointer to the application's callback routine to CAPI.

capiCallback is a pointer to the application callback function.

Return Code:
Always returns CAPI_STATUS_GOOD.

Callback:
replyCode None
errorCode
identifier
param1
param2
dataPtr

Events:

Remarks :
This command will not invoke the application�s callback function. The callback routine will be invoked by
other CAPI commands to notify the application of asynchronous events and completion of asynchronous
functions. The prototype for the callback routine is shown here:

void CallBack(CAPI_REPLY_CODE replyCode,
 CAPI_ERROR_CODE errorCode,
 CAPI_IDENTIFIER *identifier,
 CAPI_U32 param1,
 CAPI_U32 param2,
 CAPI_U32 param3, CAPI_U32 param3, CAPI_U32 param3, CAPI_U32 param3,
 CAPI_U32 param4, CAPI_U32 param4, CAPI_U32 param4, CAPI_U32 param4,
 void *pDataPtr)

See Reply to Function Calls on page 6 and Initialization Details on page 15.

Lengthy Operation
Need Current Configuration
May Change Configuration
See Capability Bits

See also:

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 191

Remove Host

Syntax:
CAPI_RC CAPI_RemoveHostCAPI_RemoveHostCAPI_RemoveHostCAPI_RemoveHost(CAPI_HANDLE handlehandlehandlehandle,
 CAPI_U32 channelIndexchannelIndexchannelIndexchannelIndex,
 CAPI_U8 *partitionSerialNumber*partitionSerialNumber*partitionSerialNumber*partitionSerialNumber,
 CAPI_U32 unitNumunitNumunitNumunitNum,
 CAPI_FLEX_ID hostIdhostIdhostIdhostId,
 CAPI_BOOL allHostsallHostsallHostsallHosts,
 CAPI_BOOL accessModeaccessModeaccessModeaccessMode);

Description:
This function removes a host from the list of hosts that may communicate with a specified unitNum or
partitionSerialNumber. The list is either a list of hosts that are included for access to the LUN or a list of
hosts that are excluded from access. The allHosts flag may be used to override the list and have all hosts
either included or excluded.

handle is the handle of the controller that executes the command.
channelIndex host channel index that the array or device is being presented on.
partitionSerialNumber is the serial number of the partition; if partitions are not supported (capability bit

CAPI_CAPABILITY_2_ARRAY_PARTITIONS not set), then this is an array serial number. (Applies to
RAID only; not routers.)

unitNum LUN that this array or device is being presented as.
hostId Fibre Channel or SCSI ID of the host.
allHosts setting to TRUE removes all hosts from this LUN�s list of hosts that have access.
accessMode setting to TRUE designates a list of hosts that are to be included for access.

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_REMOVE_HOST
errorCode Completion status of the command.
identifier controllerHandle is valid.
param1
param2
dataPtr

Events:

Remarks:
Applications Errata for Router � The accessMode flag must match the current state of the list in order for
the command to have the desired effect.

If partitionSerialNumber is not NULL, it will be used; if it is NULL, channelIndex and unitNum will be used.

Lengthy Operation
✔ Need Current Configuration
✔ May Change Configuration
✔ See Capability Bits

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

192 Chaparral document #07-0003-340

See also:
CAPI_GetHostTable()
CAPI_AddHost()
CAPI_ChangeInfoShieldType()

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 193

Rescan Bus

Syntax:
CAPI_RC CAPI_RescanBusCAPI_RescanBusCAPI_RescanBusCAPI_RescanBus(CAPI_HANDLE handlehandlehandlehandle,
 CAPI_U32 channelIndexchannelIndexchannelIndexchannelIndex);

Description:
Scans the drives on the back-end drive bus to detect new, moved, or deleted drives.

handle is the handle of the controller that executes the command.
channelIndex is the index of the channel to rescan. Pass CAPI_NULL_ID to rescan all channels.

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_RESCAN_BUS_START
errorCode Completion status of the command.
identifier controllerHandle and channelIndex are valid.
param1
param2
dataPtr

Events:
CAPI_EVENT_RESCAN_BUS_START
CAPI_EVENT_RESCAN_BUS_COMPLETE

Remarks :
To avoid any performance degradation, the controller does not scan the SCSI buses for changes in
configuration unless instructed to do so through CAPI or SAF-TE. This function should be called after new
SCSI drives are added, if drives are moved to different IDs, or if unused or spare drives are removed. SAF-
TE processors can do automatic rescans. Some controllers may do a rescan on a SCSI bus reset.

See CAPI Versions
Different Chaparral products support different versions of CAPI. If the major version (for example, the 3 in
version 3.4) is the same for two products, you should be able to easily design a single CAPI app that
manages both products, although the product with the lower minor version number (for example, the 4 in
version 3.4) will not have all the features of the product with the higher minor version number. Specifically,
there may be additional CAPI commands added for a higher version number and there may be additional
members in some of the data structures passed to and from CAPI commands, but the members that
existed in the lower version of CAPI are still in the same locations in the same structures.

When a new version of the CAPI SDK is released, typically the most recent Chaparral product(s) are
released simultaneously with the SDK and the version of CAPI that is running in the controller corresponds
to the SDK version. However, developers of new CAPI apps can use a more recent version of the CAPI
SDK to talk to older products, provided the major version number matches, and, of course, the app cannot
use the newest features that have been added to CAPI which are not supported on that product.

Conversely, if a CAPI app was developed using an older version of the CAPI SDK (for example, CAPI 3.2),
it can still be used for managing a newer product that supports a newer version of CAPI (for example,
CAPI3.4), but of course the app will not be able to take advantage of the newer features that have been
added to CAPI 3.4 in the product but which are not in the CAPI 3.2 SDK.

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

194 Chaparral document #07-0003-340

As of this writing (September 2002), the following products support the corresponding version of CAPI:
• CAPI 2.x: G5312, G7313, all Kxxxx.
• CAPI 3.4: RIO, Stratis RAID S3300 (JFF224). (Thus, the features marked � in CAPI 3.3� and �

in CAPI 3.4� in this document are supported by these products only.)
• CAPI 3.2: All other Chaparral products.

CAPI Capabilities on page 29 to determine if the controller supports rescanning of individual channels; if
not, then channelIndex should be CAPI_NULL_ID. Requires
CAPI_CAPABILITY_2_RESCAN_INDIVIDUAL_BUS set to rescan an individual bus.

✔ Lengthy Operation
Need Current Configuration
May Change Configuration

✔ See Capability Bits

See also:

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 195

Reset Array Statistics

Syntax:
CAPI_RC CAPI_ResetArrayStatisticsCAPI_ResetArrayStatisticsCAPI_ResetArrayStatisticsCAPI_ResetArrayStatistics(CAPI_HANDLE handlehandlehandlehandle,
 CAPI_U32 arrayIndex arrayIndex arrayIndex arrayIndex);

Description:
Resets temporary array statistics.

handle is the handle of the controller that executes the command.
arrayIndex is the index of the target array on the specified controller.

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_RESET_ARRAY_STATS
errorCode Completion status of the command.
identifier controllerHandle and arrayIndex are valid.
param1
param2
dataPtr

Events:
CAPI_EVENT_RESET_ARRAY_STATS

Remarks :
This function clears array statistics but those are not visible from the Disk Array Administrator or through a
CAPI app. In earlier versions of Chaparral products we were only able to create 1 partition per array. Now
we are able to create 1 or more partitions in an array so the array statistics are not used anymore but are
replaced with array partition statistics.

Lengthy Operation
✔ Need Current Configuration

May Change Configuration
✔ See Capability Bits

See also:
CAPI_UpdateController()

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

196 Chaparral document #07-0003-340

Reset Array Partition Statistics

Syntax:
CAPI_RC CAPI_ResetArrayPartitionStatisticsCAPI_ResetArrayPartitionStatisticsCAPI_ResetArrayPartitionStatisticsCAPI_ResetArrayPartitionStatistics(CAPI_HANDLE handlehandlehandlehandle,
 CAPI_U8 *partitionSerialNumber *partitionSerialNumber *partitionSerialNumber *partitionSerialNumber);

Description:
Resets temporary array partition statistics.

handle is the handle of the controller that executes the command.
partitionSerialNumber is a pointer to the serial number of an existing partition.

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_RESET_ARRAY_PARTITION_STATS
errorCode Completion status of the command.
identifier controllerHandle and arrayIndex are valid.
param1
param2
dataPtr

Events:
CAPI_EVENT_RESET_ARRAY_PARTITION_STATS

Remarks :

Lengthy Operation
✔ Need Current Configuration

May Change Configuration
✔ See Capability Bits

See also:
CAPI_GetArrayPartitions()

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 197

Reset Drive Error Statistics in CAPI 3.3

Syntax:
CAPI_RC CAPI_ResetDriveErrorStatisticsCAPI_ResetDriveErrorStatisticsCAPI_ResetDriveErrorStatisticsCAPI_ResetDriveErrorStatistics(CAPI_HANDLE handlehandlehandlehandle,
 CAPI_U8 *driveNodeWWNdriveNodeWWNdriveNodeWWNdriveNodeWWN,
 CAPI_U32 driveIndexdriveIndexdriveIndexdriveIndex);

Description:
This command allows a CAPI application to reset the drive error statistics for a designated disk drive. All
values are set to 0.

handle is the handle of the controller that executes the command.
driveNodeWWN is a pointer to the drive node worldwide name, used for Fibre Channel-attached drives. It

is represented as a string of 8 bytes.
driveIndex is the drive index, used for SCSI-attached drives.

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_RESET_DRIVE_ERROR_STATS
errorCode Completion status of the command.
identifier controllerHandle and driveIndex are valid.
param1
param2
dataPtr

Events:

Remarks:

Lengthy Operation
Need Current Configuration
May Change Configuration
See Capability Bits

See also:
CAPI_GetDriveErrorStatistics()

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

198 Chaparral document #07-0003-340

Reset Drive Statistics

Syntax:
CAPI_RC CAPI_ResetDriveStatisticsCAPI_ResetDriveStatisticsCAPI_ResetDriveStatisticsCAPI_ResetDriveStatistics(CAPI_HANDLE handlehandlehandlehandle,
 CAPI_U32 channelIndexchannelIndexchannelIndexchannelIndex,
 CAPI_U32 driveIndexdriveIndexdriveIndexdriveIndex);

Description:
Resets the temporary drive statistics.
This command currently does nothing.

handle is the handle of the controller that executes the command.
channelIndex is index of the channel of the target drive for which you want to reset the temporary

statistics. Pass CAPI_NULL_ID to reset all of the drive statistics on the controller.
driveIndex is the index of the target drive in the channel structure for which you want to reset the

temporary statistics. Pass CAPI_NULL_ID to reset all of the drive statistics on the channel.

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_RESET_DRIVE_STATS
errorCode Completion status of the command.
identifier controllerHandle, channelIndex, and driveIndex are valid.
param1
param2
dataPtr

Events:
CAPI_EVENT_RESET_DRIVE_STATS

Remarks :
Currently, the callback always contains errorCode = CAPI_ERROR_NOT_SUPPORTED.

Lengthy Operation
Need Current Configuration
May Change Configuration

✔ See Capability Bits

See also:
CAPI_ResetDriveErrorStatistics()

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 199

Reset LAN

Syntax:
CAPI_RC CAPI_ResetLANCAPI_ResetLANCAPI_ResetLANCAPI_ResetLAN(CAPI_HANDLE handlehandlehandlehandle);

Description:
Resets the LAN Subsystem if one is present.

handle is the handle of the controller that executes the command.

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_RESET_LAN
errorCode Completion status of the command.
identifier controllerHandle is valid.
param1
param2
dataPtr

Events:
CAPI_EVENT_RESET_LAN

Remarks :

Lengthy Operation
Need Current Configuration
May Change Configuration
See Capability Bits

See also:

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

200 Chaparral document #07-0003-340

Restore Controller Defaults

Syntax:
CAPI_RC CAPI_RestoreControllerDefaultsCAPI_RestoreControllerDefaultsCAPI_RestoreControllerDefaultsCAPI_RestoreControllerDefaults(CAPI_HANDLE handlehandlehandlehandle);

Description:
Restores the factory defaults of the controller.

handle is the handle of the controller that executes the command.

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_RESTORE_CONTROLLER_DEFAULTS
errorCode Completion status of the command.
identifier controllerHandle is valid.
param1
param2
dataPtr

Events:

Remarks :
A reboot is required for all defaults to take effect. See the controller�s documentation to determine which
defaults are restored immediately and which defaults take effect after the next reboot.

This command does not cause the following to be reset to defaults:
CAPI LUN (a.k.a. controller LUN or bridge LUN)
controller mode
drive channel speed
LAN Subsystem IP address
LAN Subsystem IP subnet mask
LAN Subsystem IP gateway

Lengthy Operation
Need Current Configuration
May Change Configuration
See Capability Bits

See also:

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 201

SCSI Maintenance

Syntax:
CAPI_RC CAPI_ScsiMaintenanceCAPI_ScsiMaintenanceCAPI_ScsiMaintenanceCAPI_ScsiMaintenance(CAPI_HANDLE handlehandlehandlehandle,
 CAPI_U32 busbusbusbus,
 CAPI_U32 targettargettargettarget,
 CAPI_U32 lunlunlunlun,
 CAPI_MAINT_COMMAND maintCommandmaintCommandmaintCommandmaintCommand,
 CAPI_U32 param1param1param1param1,
 CAPI_U32 param2param2param2param2,
 CAPI_MAINT_CDB *cdb*cdb*cdb*cdb,
 CAPI_U32 cdbLengthcdbLengthcdbLengthcdbLength,
 CAPI_U8 *dataBuffer*dataBuffer*dataBuffer*dataBuffer,
 CAPI_U32 dataBufferSize,dataBufferSize,dataBufferSize,dataBufferSize,
 CAPI_DIRECTION directiondirectiondirectiondirection);

Description:
This command is used to send CAPI_MAINT_COMMANDs to the specified drive/device. However, when
used with the RAID controller, this command cannot be sent to a drive that is part of a non-redundant array.
See the warning statement below.

This command is sometimes referred to as �SCSI pass through.�

handle is the handle of the controller that executes the command.
bus Bus number on the specified controller.
target SCSI ID of the device on the specified controller.
lun LUN of the device on the specified controller.
maintCommand possible values are shown on page 22. If CAPI_MAINT_USE_CDB is used, then cdb points

to the CDB that will be passed to the designated drive. For all other values, cdb is ignored. Note: not
all maintenance commands may be supported. Refer to your controller�s documentation.

param1 for CAPI_MAINT_MODE_SENSE, this is the mode page and page control fields. This needs to follow
the same format as byte 2 of a SCSI Mode Sense CDB. For CAPI_MAINT_MODE_SELECT, this is the
SCSI mode page to write.

param2 contains any extra parameters needed for maintenance commands (currently unused).
cdb points to the CDB to be sent to the designated drive. This should be NULL for any command other

than CAPI_MAINT_USE_CDB.
cdbLength is the length of the CDB (should be zero for any command other than CAPI_MAINT_USE_CDB).
dataBuffer points to the data buffer when this command transfers data to the drives. For

CAPI_MAINT_MODE_SELECT, this dataBuffer contains the new mode page data. Data returned from the
drive may be accessed via CAPI_ScsiMaintRetrieveData.

dataBufferSize is the number of bytes of data in dataBuffer.
direction is unused.

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_SCSI_MAINT_START
errorCode Completion status of the command.
identifier controllerHandle and driveIndex are valid.
param1
param2
dataPtr

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

202 Chaparral document #07-0003-340

Events:
CAPI_EVENT_SCSI_MAINT_DONE
Other events (such as CAPI_EVENT_DISK_DETECTED_ERROR) are possible if the maintenance
command causes an error.

Remarks:
After this event is received any data associated with the SCSI command can be retrieved from the
controller using the CAPI_ScsiMaintRetrieveData command.

Note that all calls to CAPI_ScsiMaintenance and CAPI_U_DoScsiMaintenance make use of a single buffer.
Thus, it is important that one SCSI maintenance operation be complete before the next one starts. The
sequence of commands should be as follows:
• Call CAPI_ScsiMaintenance or CAPI_U_DoScsiMaintenance.
• Wait for an event to be posted to indicate that the operation is complete (normally

CAPI_EVENT_SCSI_MAINT_DONE).
• Call CAPI_ScsiMaintRetrieveData or CAPI_U_GetScsiMaintenanceData to get any data.
• Repeat this sequence as desired.

WARNING: This command should not be used on a drive that is part of an array. Doing so
can cause undesirable results.

Note: You must issue a rescan (CAPI_RescanBus) after
CAPI_MAINT_CLEAR_METADATA for the clear metadata function to take effect.
However, if you need to clear metadata on more than one drive, only a single rescan
is needed after all the clear metadata commands complete.

See the controller�s documentation to determine which maintenance commands, if any, are supported and
which commands might remove the drive from the array.

✔ Lengthy Operation
✔ Need Current Configuration
✔ May Change Configuration
✔ See Capability Bits

See also:
CAPI_U_DoScsiMaintenance() is the corresponding unified command.
CAPI_ScsiMaintRetrieveData()

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 203

SCSI Maintenance Retrieve Data

Syntax:
CAPI_RC CAPI_ScsiMaintRetrieveDataCAPI_ScsiMaintRetrieveDataCAPI_ScsiMaintRetrieveDataCAPI_ScsiMaintRetrieveData(CAPI_HANDLE handlehandlehandlehandle,
 CAPI_U32 packetNumberpacketNumberpacketNumberpacketNumber,
 CAPI_U32 commandIdcommandIdcommandIdcommandId,
 CAPI_U32 *dataBufferdataBufferdataBufferdataBuffer,
 CAPI_U32 dataBufferSize dataBufferSize dataBufferSize dataBufferSize);

Description:
Retrieves the additional data returned from a maintenance command.

handle is the handle of the controller that executes the command.
packetNumber If the data to be transferred is greater than the size of a CAPI packet, then this number is

incremented by the application to get the next chunk of data. (Not implemented.)
commandId is the number returned with the CAPI_EVENT_SCSI_MAINT_DONE event. (Not implemented.)
dataBuffer is unused.
dataBufferSize is the number of bytes of data that you want to be returned in the

CAPI_MAINT_DATA_STRUCT. You can specify a value that is appropriate for the SCSI command sent
by CAPI_ScsiMaintenance. The maximum size that can be specified is
sizeof(CAPI_MAINT_DATA_STRUCT); if you specify more that that number of bytes, only that many
bytes will be returned.

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_SCSI_MAINT_DATA
errorCode Completion status of the command.
identifier controllerHandle is valid.
param1 The number of bytes of data that have been put in the data buffer pointed to by

dataPtr. (Normally equal to dataBufferSize, but never greater than
sizeof(CAPI_MAINT_DATA_STRUCT).)

param2
dataPtr A pointer to a CAPI_MAINT_DATA_STRUCT. See page 82.

Events:

Remarks:
If you need to get more than the amount of data that will fit in CAPI_MAINT_DATA_STRUCT, use the non-
CAPI SCSI pass through capability described in Chapter 17.

Note that all calls to CAPI_ScsiMaintenance and CAPI_U_DoScsiMaintenance make use of a single buffer.
Thus, it is important that one SCSI maintenance operation be complete before the next one starts. The
sequence of commands should be as follows:
• Call CAPI_ScsiMaintenance or CAPI_U_DoScsiMaintenance.
• Wait for an event to be posted to indicate that the operation is complete (normally

CAPI_EVENT_SCSI_MAINT_DONE).
• Call CAPI_ScsiMaintRetrieveData or CAPI_U_GetScsiMaintenanceData to get any data.
• Repeat this sequence as desired.

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

204 Chaparral document #07-0003-340

Lengthy Operation
Need Current Configuration
May Change Configuration

✔ See Capability Bits

See also:
CAPI_U_GetScsiMaintenanceData() is the corresponding unified command.
CAPI_ScsiMaintenance()

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 205

Set Advanced Network Interface

Syntax:
CAPI_RC CAPI_SetAdvancedNetworkInterfaceCAPI_SetAdvancedNetworkInterfaceCAPI_SetAdvancedNetworkInterfaceCAPI_SetAdvancedNetworkInterface(CAPI_HANDLE handle,handle,handle,handle,
 CAPI_ADVANCED_NETWORK_INTERFACE *advNet*advNet*advNet*advNet);

Description:
This function allows configuration parameters to be set for the LAN processor.

handle is the handle of the controller that executes the command.
advNet is a pointer to a data structure containing the configuration parameters.

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_SET_ADV_NETWORK_INTF
errorCode Completion status of the command.
identifier ControllerHandle is valid.
param1
param2
dataPtr

Events:

Remarks:

Lengthy Operation
✔ Need Current Configuration
✔ May Change Configuration
✔ See Capability Bits

See also:
CAPI_GetAdvancedNetworkInterface()

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

206 Chaparral document #07-0003-340

Set Advanced Unit Mapping

Syntax:
CAPI_RC CAPI_SetAdvancedUnitMappingCAPI_SetAdvancedUnitMappingCAPI_SetAdvancedUnitMappingCAPI_SetAdvancedUnitMapping(CAPI_HANDLE handlehandlehandlehandle,
 CAPI_UNIT_MAP *mapping*mapping*mapping*mapping,
 CAPI_U16 numMappingnumMappingnumMappingnumMapping);

Description:
This function sets the mapping of back-end devices or arrays to front-end LUNs.

handle is the handle of the controller that executes the command.
mapping pointer to an array of CAPI_UNIT_MAP data structures.
numMapping number of CAPI_UNIT_MAPs in the array.

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_SET_ADVANCED_UNIT_MAPPING
errorCode Completion status of the command.
identifier controllerHandle is valid.
param1
param2
dataPtr

Events:

Remarks:
This command is currently supported only on the Router. RAID controllers will return
CAPI_ERROR_NOT_SUPPORTED when sent this command.

Applications Errata for Router - This function may be used to pass a variable number of CAPI_UNIT_MAP
structures to the Router. A CAPI Client uses this function to mask or unmask a particular device or to map
a particular device to a particular LUN slot. All devices, including the Router LUN, occupy a LUN slot in the
table of CAPI_UNIT_MAP structures. In order to mask a device, the CAPI Client passes in
CAPI_LUN_UNASSIGNED (255 or 0xFF) for the front-end LUN value (this indicates the device should be
masked), and the back-end SCSI device coordinates <bus, target, lun> for the device that is to be masked.
In order to unmask a device, the CAPI Client passes in the desired LUN value that the device should be
mapped to. In order to re-map a device (manual mapping), the CAPI Client passes in the desired front-end
LUN value for the specified device. If the new LUN slot for the device is different from the present LUN slot
for the device (re-mapping), then the new LUN slot is occupied by the specified device. The device, if any,
that previously occupied the new LUN slot is moved to the previous LUN slot for the device that was just re-
mapped. A CAPI_UNIT_MAP structure may therefore be used to swap two entries in the internally-
maintained table of CAPI_UNIT_MAP structures.

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 207

There are a few rules that must be known to a CAPI Client in order to successfully use the
CAPI_SetAdvancedUnitMapping function in the Router:

 1.) The Router mapping mode must be Fixed, not Auto.

 2.) The number of mappings must not be greater than or equal to 64.

3.) Each CAPI_UNIT_MAP structure passed in by the CAPI Client must obey the following rules:

// **
//
// For each CAPI_UNIT_MAP passed in:
//
// hostId.type - must be CAPI_FLEX_TYPE_LUN
// hostChannelIndex - must be less than 1
// hostId.unitNum - must be less than 64,
// or 255 to mask the specified SCSI device, and
// must be for a real back-end device
// (i.e. not for the Router LUN)
//
// deviceId.type - must be CAPI_FLEX_TYPE_SCSI | CAPI_FLEX_TYPE_LUN
// deviceChannelIndex - must be less than 3
// deviceId.deviceId - must be less than 16
// deviceId.unitNum - must be less than 8
//
// **

Lengthy Operation
✔ Need Current Configuration
✔ May Change Configuration
✔ See Capability Bits

See also:
CAPI_GetAdvancedUnitMapping()

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

208 Chaparral document #07-0003-340

Set Array Partition Cache Params in CAPI 3.3

Syntax:
CAPI_RC CAPI_SetArrayPartitionCacheParamsCAPI_SetArrayPartitionCacheParamsCAPI_SetArrayPartitionCacheParamsCAPI_SetArrayPartitionCacheParams(CAPI_HANDLE handlehandlehandlehandle,
 CAPI_U8 *partitionSerialNumber*partitionSerialNumber*partitionSerialNumber*partitionSerialNumber,
 CAPI_CACHE_PARAMS *cacheParams*cacheParams*cacheParams*cacheParams);

Description:
This command allows a CAPI application to set parameters that determine characteristics of the cache
associated with the specified partition.

handle is the handle of the controller that executes the command.
partitionSerialNumber is a pointer to the serial number of an existing partition.
cacheParams is a pointer to a structure that contains the new values for the cache parameters.

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_SET_ARRAY_PARTITION_CACHE_PARAMS
errorCode Completion status of the command.
identifier controllerHandle is valid.
param1
param2
dataPtr

Events:

Remarks:
At this writing, the only parameters in CAPI_CACHE_PARAMS that are supported are writeBackEnable
and readAheadSize.

When writeBackEnable is set to TRUE, the write back cache is enabled.

readAheadSize should be set to 0 or to a power of 2 between 64KB and 32MB or to the default. That is,
use one of these values: 0 (which disables read ahead), 0x10000, 0x20000, 0x40000, 0x80000, 0x100000,
0x200000, 0x400000, 0x800000, 0x1000000, 0x2000000, or CAPI_DEFAULT_READ_AHEAD_SIZE
(which tells the controller to use an algorithm that tries to optimize read ahead based on whether reads are
sequential or random). More cache improves performance of sequential reads but will hurt performance of
random reads.

To apply CAPI_CACHE_PARAMS to all partitions in an array via a single function call, you can use
CAPI_SetCacheParams.

This function requires capability bit CAPI_CAPABILITY_2_ARRAY_PARTITIONS to be set.

CAUTION: The RAID controller’s default cache parameters are preset to provide optimal
performance for virtually all applications. Modification of these parameters may
significantly decrease performance.

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 209

Lengthy Operation
✔ Need Current Configuration
✔ May Change Configuration
✔ See Capability Bits

See also:
CAPI_SetCacheParams()

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

210 Chaparral document #07-0003-340

Set Battery Monitor

Syntax:
CAPI_RC CAPI_SetBatteryMonitorCAPI_SetBatteryMonitorCAPI_SetBatteryMonitorCAPI_SetBatteryMonitor(CAPI_HANDLE handlehandlehandlehandle,
 CAPI_BOOL monitorOnmonitorOnmonitorOnmonitorOn,
 CAPI_U8 monthsmonthsmonthsmonths);

Description:
This function sets the age of the battery and enables/disables end-of-life monitoring.

handle is the handle of the controller that executes the command.
monitorOn set to TRUE to enable battery life monitoring.
months set to the number of months the battery has been installed (set to zero if the controller is new).

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_SET_BATTERY_MONITOR
errorCode Completion status of the command.
identifier controllerHandle is valid.
param1
param2
dataPtr

Events:

Remarks:

Lengthy Operation
Need Current Configuration
May Change Configuration
See Capability Bits

CAPI_EVENT_BATTERY_END_OF_LIFE will occur at the end of the battery life.

See also:

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 211

Set Cache Params

Syntax:
CAPI_RC CAPI_SetCacheParamsCAPI_SetCacheParamsCAPI_SetCacheParamsCAPI_SetCacheParams(CAPI_HANDLE handlehandlehandlehandle,
 CAPI_U32 arrayIndexarrayIndexarrayIndexarrayIndex,
 CAPI_CACHE_PARAMS *cacheParams*cacheParams*cacheParams*cacheParams);

Description:
This command allows a CAPI application to set parameters that determine characteristics of the cache
associated with the specified array.

handle is the handle of the controller that executes the command.
arrayIndex is the index of the target array on the specified controller. Pass CAPI_NULL_ID to configure all

arrays on the specified controller with these parameters.
cacheParams points to a CAPI_CACHE_PARAMS structure containing the new cache parameter settings.

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_SET_CACHE_PARAMS
errorCode Completion status of the command.
identifier controllerHandle is valid.
param1
param2
dataPtr

Events:
CAPI_EVENT_SET_CACHE_PARAMS

Remarks :
Some of these parameters can also be set through SCSI mode pages from the host.

At this writing, the only parameter in CAPI_CACHE_PARAMS that is supported is writeBackEnable. When
writeBackEnable is set to TRUE, the write back cache is enabled.

For more recent products that support multiple partitions (from RIO onward), readAheadSize is also
supported. See CAPI_SetArrayPartitionCacheParams for details on this parameter.

Note that for arrays containing multiple partitions, the cache parameters for all partitions in the array are
updated when this command is issued.

CAUTION: The RAID controller’s default cache parameters are preset to provide optimal
performance for virtually all applications. Modification of these parameters may
significantly decrease performance.

Lengthy Operation
✔ Need Current Configuration
✔ May Change Configuration
✔ See Capability Bits

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

212 Chaparral document #07-0003-340

See also:
CAPI_SetArrayPartitionCacheParams()
CAPI_FlushCache()
CAPI_FreeCache()

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 213

Set Channel Params

Syntax:
CAPI_RC CAPI_SetChannelParamsCAPI_SetChannelParamsCAPI_SetChannelParamsCAPI_SetChannelParams(CAPI_HANDLE handlehandlehandlehandle,
 CAPI_CHANNEL_TYPE typetypetypetype,
 CAPI_U32 channelIndexchannelIndexchannelIndexchannelIndex,
 CAPI_CHANNEL_PARAMS *params*params*params*params);

Description:
Sets new channel parameters for front-end or back-end channels.

handle is the handle of the controller that executes the command.
type specifies if this is a front or back-end channel.
channelIndex is the index of the channel for which the parameters are being updated.
params a pointer to a CAPI_CHANNEL_PARAMS structure

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_SET_CHANNEL_PARAMS
errorCode Completion status of the command.
identifier controllerHandle valid.
param1
param2
dataPtr

Events:

Remarks:
Developers can read the current parameters using CAPI_UpdateController, modify the parameters, and
update them with CAPI_SetChannelParams.

Lengthy Operation
✔ Need Current Configuration
✔ May Change Configuration

See Capability Bits

See also:

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

214 Chaparral document #07-0003-340

Set Controller Params

Syntax:
CAPI_RC CAPI_SetControllerParamsCAPI_SetControllerParamsCAPI_SetControllerParamsCAPI_SetControllerParams(CAPI_HANDLE handlehandlehandlehandle,
 CAPI_CONTROLLER_PARAMS *controllerParams*controllerParams*controllerParams*controllerParams);

Description:
Sets the controller�s parameters such as SCSI bus termination and utility priority.

handle is the handle of the controller that executes the command.
controllerParams is a pointer to a CAPI_CONTROLLER_PARAMS structure with the new controller settings.

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_SET_CONTROLLER_PARAMS
errorCode Completion status of the command.
identifier controllerHandle is valid.
param1
param2
dataPtr

Events:
CAPI_EVENT_SET_CONTROLLER_PARAMS

Remarks :
Developers can read the current parameters using CAPI_UpdateController, modify the parameters, and
update them with CAPI_SetControllerParams.

Lengthy Operation
✔ Need Current Configuration
✔ May Change Configuration

See Capability Bits

See also:
CAPI_UpdateController()

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 215

Set Controller Time Date

Syntax:
CAPI_RC CAPI_SetControllerTimeDateCAPI_SetControllerTimeDateCAPI_SetControllerTimeDateCAPI_SetControllerTimeDate(CAPI_HANDLE handlehandlehandlehandle,
 CAPI_TIME timeDate timeDate timeDate timeDate);

Description:
Sets the controller time and date settings.

handle is the handle of the controller that executes the command.
timeDate contains the number of seconds since January 1, 1970 (i.e., UNIX time).

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_SET_CONTROLLER_TIMEDATE
errorCode Completion status of the command.
identifier controllerHandle is valid.
param1
param2
dataPtr

Events:
CAPI_EVENT_SET_CONTROLLER_TIMEDATE

Remarks :
The standard library provided with many �C� compilers includes functions for manipulating CAPI_TIME (of
type time_t, usually an unsigned long) and generating a standard �tm� structure. See time, gmtime,
localtime, mktime, and strftime in your compiler�s documentation. Note that a timeDate value of zero is
invalid.

Lengthy Operation
Need Current Configuration
May Change Configuration
See Capability Bits

See also:

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

216 Chaparral document #07-0003-340

Set Preferred Owner

Syntax:
CAPI_RC CAPI_SetPreferredOwnerCAPI_SetPreferredOwnerCAPI_SetPreferredOwnerCAPI_SetPreferredOwner(CAPI_HANDLE handlehandlehandlehandle,
 CAPI_U32 arrayIndexarrayIndexarrayIndexarrayIndex);

Description:
Allows the application to change the owner of an array from one controller to another.

handle is the handle of the controller that executes the command.
arrayIndex is the index of the target array on the specified controller.

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_PREFERRED_OWNER_SET
errorCode Completion status of the command.
identifier controllerHandle and arrayIndex are valid.
param1
param2
dataPtr

Events:

Remarks :

Lengthy Operation
✔ Need Current Configuration
✔ May Change Configuration
✔ See Capability Bits

See also:
CAPI_CreateArray()

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 217

Set Unit Mapping

Syntax:
CAPI_RC CAPI_SetUnitMappingCAPI_SetUnitMappingCAPI_SetUnitMappingCAPI_SetUnitMapping(CAPI_HANDLE handlehandlehandlehandle,
 CAPI_U32 arrayIndexarrayIndexarrayIndexarrayIndex,
 CAPI_U32 newUnitNumnewUnitNumnewUnitNumnewUnitNum);

Description:
Allows the application to change the LUN that an array presents to the host.

handle is the handle of the controller that executes the command.
arrayIndex is the index of the target array on the specified controller.
newUnitNum is the desired LUN for the specified array.

Return Code:
Indicates if the request was sent to the RAID controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_UNIT_MAPPING
errorCode Completion status of the command. A LUN conflict will return an error.
identifier controllerHandle and arrayIndex are valid.
param1
param2
dataPtr

Events:
CAPI_EVENT_UNIT_MAPPING

Remarks :
A reboot may be necessary on some products for the new LUN mapping to take effect.

Lengthy Operation
Need Current Configuration
May Change Configuration
See Capability Bits

See also:
CAPI_CreateArray()

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

218 Chaparral document #07-0003-340

Shut Down Controller

Syntax:
CAPI_RC CAPI_ShutDownControllerCAPI_ShutDownControllerCAPI_ShutDownControllerCAPI_ShutDownController(CAPI_HANDLE handle,handle,handle,handle,
 CAPI_CONTROLLER_ID controllerId,controllerId,controllerId,controllerId,
 CAPI_BOOL fwUpdatefwUpdatefwUpdatefwUpdate);

Description:
Perform a graceful shutdown on the specified controller.

handle is the handle of the controller that executes the command.
controllerId specifies which controller you want to shut down (CAPI_CONTROLLER_A,
CAPI_CONTROLLER_B, or CAPI_CONTROLLER_BOTH.)
fwUpdate is set to true if a firmware update is to follow, this lets the other controller know why we are

shutting down. This parameter does not affect this operation; it just provides information to the on-line
controller so it is accessible via the failoverReason structure member obtainable via
CAPI_UpdateController or CAPI_U_GetControllerData.

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_SHUTDOWN_CONTROLLER
errorCode Completion status of the command.
identifier controllerHandle is valid.
param1 controllerId
param2
dataPtr

Events:
CAPI_EVENT_SHUTDOWN_CONTROLLER

Remarks :
Shutting down will flush the controllers� write back cache to disk. The controller shuts down, then calls the
callback function. The controller is then in a special state that responds only to a limited selection of CAPI
commands, most notably:

♦ CAPI_UpdateFirmware
♦ CAPI_RebootController

(For a complete list of CAPI commands that are supported during shutdown, see column
allowWhileShutdown in the table in file capicmdsup.c.)

Also, once a controller is shut down, its serial port will no longer respond to the CTRL-P then CTRL-Z
character sequence (which is used to restore terminal mode after a serial CAPI application has run). The
reason is that a CAPI_COMMAND_UPDATE_CONTROLLER_FIRMWARE request over the serial port
could have the CTRL-P/CTRL-Z sequence embedded in its binary data, which if recognized would cause
the serial port to unintentionally transition to terminal mode.

If both controllers are shut down at the same time via this function, both can receive firmware updates from
the host in-band. If only one controller is shut down, the shut down controller cannot receive firmware
downloads in-band since the one that is not shut down is �impersonating� the shut down controller to the
host and so the shut down controller has no host interface. If both controllers are shut down one after the

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 219

other, the second one to be shut down still has a host interface so it can receive firmware downloads in-
band. No matter what sequence is used to shut a controller down, the RS-232 connection can be used to
download firmware (except that RS-232 download of firmware is not supported on RIO).

Lengthy Operation
Need Current Configuration
May Change Configuration
See Capability Bits

See also:
CAPI_UpdateFirmware()
CAPI_RebootController()
CAPI_PutOffline()

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

220 Chaparral document #07-0003-340

Silence Alarm

Syntax:
CAPI_RC CAPI_SilenceAlarmCAPI_SilenceAlarmCAPI_SilenceAlarmCAPI_SilenceAlarm(CAPI_HANDLE handlehandlehandlehandle);

Description:
This command temporarily silences the controller�s on-board audible alarm. (Depending on the storage
system design, it may or may not silence an enclosure alarm produced by an EMP.) As soon as the
controller has another event that causes it to turn on the alarm, the alarm will sound. To permanently
disable the alarm, set the alarmMute field in the CAPI_CONTROLLER_PARAMS structure and call
CAPI_SetControllerParams.

handle is the handle of the controller that executes the command.

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_SILENCE_ALARM
errorCode Completion status of the command.
identifier controllerHandle is valid.
param1
param2
dataPtr

Events:

Remarks :
If the alarm is caused by unwritable cache data (see CAPI_EVENT_ORPHAN_DATA), the cache data is
not purged. If the alarm is caused by A/D failure, the command is ignored and the alarm will stay on. If the
alarm is not on, this command is accepted successfully, but ignored.

Lengthy Operation
Need Current Configuration
May Change Configuration
See Capability Bits

See also:
CAPI_SetControllerParams

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 221

Test Drive

Syntax:
CAPI_RC CAPI_TestDriveCAPI_TestDriveCAPI_TestDriveCAPI_TestDrive(CAPI_HANDLE handlehandlehandlehandle,
 CAPI_U32 channelIndexchannelIndexchannelIndexchannelIndex,
 CAPI_U32 driveIndexdriveIndexdriveIndexdriveIndex);

Description:
Performs simple tests on a drive.

handle is the handle of the controller that executes the command.
channelIndex is the index of the target array on the specified controller.
driveIndex is the index of the drive to perform the test on.

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_TEST_DRIVE
errorCode Completion status of the command.
identifier controllerHandle, channelIndex, and driveIndex are valid.
param1
param2
dataPtr

Events:

Remarks :
Currently, this command only executes a command that causes an indicator lamp on the specified drive to
blink. In the future this command may be implemented to do additional testing of the drive that is
nondestructive to the drive and the drive�s data. See the controller�s documentation.

Lengthy Operation
✔ Need Current Configuration

May Change Configuration
✔ See Capability Bits

See also:
CAPI_BlinkDrive()
CAPI_UnblinkDrive()

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

222 Chaparral document #07-0003-340

Test Spares

Syntax:
CAPI_RC CAPI_TestSparesCAPI_TestSparesCAPI_TestSparesCAPI_TestSpares(CAPI_HANDLE handlehandlehandlehandle,
 CAPI_BOOL testSparestestSparestestSparestestSpares);

Description:
Enable or disable the RAID core�s testing of spare drives to verify that they are still available. Power up
default is TRUE.

handle is the handle of the controller that executes the command.
testSpares can be set to TRUE to enable spare tests or to FALSE to disable spare tests.

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_TEST_SPARES
errorCode Completion status of the command.
identifier controllerHandle is valid.
param1
param2
dataPtr

Events:

Remarks :
This is a continuous background test on all spare drives (global spares and pool spares) until a subsequent
call is made to disable the test. See the controller�s documentation for specific implementation details. If a
test fails, then a CAPI_EVENT_DOWN_DRIVE event is generated and the spare is removed from the spare
list.

Lengthy Operation
Need Current Configuration
May Change Configuration

✔ See Capability Bits

See also:

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 223

Timer Tick

Syntax:
CAPI_RC CAPI_TimerTickCAPI_TimerTickCAPI_TimerTickCAPI_TimerTick(void);

Description:
The application must call this function every ½ second to enable the LMX layer to timeout links that are not
responding.

Return Code:
Always returns CAPI_STATUS_GOOD.

Callback:
replyCode None
errorCode
identifier
param1
param2
dataPtr

Events:

Remarks :
This is used by the LMX layer for timeout purpose on down links.

Note that this is not used by all LMXs; this is not required for the SCSI LMX (lmx_sc32.c), but is required
for the two serial LMXs (lmx232.c and lmx232j.c).

Lengthy Operation
Need Current Configuration
May Change Configuration
See Capability Bits

See also:

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

224 Chaparral document #07-0003-340

Trust Array

Syntax:
CAPI_RC CAPI_TrustArrayCAPI_TrustArrayCAPI_TrustArrayCAPI_TrustArray(CAPI_HANDLE handlehandlehandlehandle,
 CAPI_U32 arrayIndex arrayIndex arrayIndex arrayIndex);

Description:
This function allows use of an array that is unusable because of failed drives. The data may be corrupt,
and therefore this function should only be used for testing or data recovery purposes.

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_TRUST_ARRAY
errorCode Completion status of the command.
identifier controllerHandle is valid.
param1
param2
dataPtr

Events:
CAPI_EVENT_TRUST_ARRAY

Remarks :

Lengthy Operation
✔ Need Current Configuration
✔ May Change Configuration

See Capability Bits

See also:

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 225

Unblink Drive

Syntax:
CAPI_RC CAPI_UnblinkDriveCAPI_UnblinkDriveCAPI_UnblinkDriveCAPI_UnblinkDrive(CAPI_HANDLE handlehandlehandlehandle,
 CAPI_U32 channelIndexchannelIndexchannelIndexchannelIndex,
 CAPI_U32 driveIndexdriveIndexdriveIndexdriveIndex);

Description:
This command stops blinking the drive�s activity light.

handle is the handle of the controller that executes the command.
channelIndex is the index of the channel on the specified controller.
driveIndex is the index of the target drive on the specified channel.

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_DRIVE_UNBLINK
errorCode Completion status of the command.
identifier controllerHandle, channelIndex, and driveIndex are valid.
param1
param2
dataPtr

Events:

Remarks :
Blinking a drive activity light is initiated by a call to CAPI_BlinkDrive. The controller continues blinking the
drive light until this function is called.

Lengthy Operation
Need Current Configuration
May Change Configuration
See Capability Bits

See also:
CAPI_BlinkDrive()

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

226 Chaparral document #07-0003-340

Unkill Other

Syntax:
CAPI_RC CAPI_UnkillOtherCAPI_UnkillOtherCAPI_UnkillOtherCAPI_UnkillOther(CAPI_HANDLE handlehandlehandlehandle);

Description:
This command releases the kill mechanism from being asserted to the other controller allowing the other
controller to boot.

handle is the handle of the controller that executes the command.

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_UNKILL_OTHER
errorCode Completion status of the command.
identifier controllerHandle is valid.
param1
param2
dataPtr

Events:

Remarks :
If CAPI_CAPABILITY_3_REPLACEABLE_MODULE is not set, this function is supported.

Lengthy Operation
Need Current Configuration

✔ May Change Configuration
✔ See Capability Bits

See also:
CAPI_KillOther()

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 227

Unpause Bus

Syntax:
CAPI_RC CAPI_UnpauseBusCAPI_UnpauseBusCAPI_UnpauseBusCAPI_UnpauseBus(CAPI_HANDLE handlehandlehandlehandle,
 CAPI_U32 channelIndexchannelIndexchannelIndexchannelIndex);

Description:
Resumes I/O to the specified back-end SCSI bus.

handle is the handle of the controller that executes the command.
channelIndex is the index of the disk channel on the specified controller. Pass CAPI_NULL_ID to

unpause all disk channels.

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_UNPAUSE_BUS
errorCode Completion status of the command.
identifier controllerHandle and channelIndex are valid.
param1
param2
dataPtr

Events:

Remarks :
I/O to a back-end SCSI bus is paused through a call to CAPI_PauseBus. This command may not be
implemented on this controller or you may not be able to pause individual buses. See CAPI Versions
Different Chaparral products support different versions of CAPI. If the major version (for example, the 3 in
version 3.4) is the same for two products, you should be able to easily design a single CAPI app that
manages both products, although the product with the lower minor version number (for example, the 4 in
version 3.4) will not have all the features of the product with the higher minor version number. Specifically,
there may be additional CAPI commands added for a higher version number and there may be additional
members in some of the data structures passed to and from CAPI commands, but the members that
existed in the lower version of CAPI are still in the same locations in the same structures.

When a new version of the CAPI SDK is released, typically the most recent Chaparral product(s) are
released simultaneously with the SDK and the version of CAPI that is running in the controller corresponds
to the SDK version. However, developers of new CAPI apps can use a more recent version of the CAPI
SDK to talk to older products, provided the major version number matches, and, of course, the app cannot
use the newest features that have been added to CAPI which are not supported on that product.

Conversely, if a CAPI app was developed using an older version of the CAPI SDK (for example, CAPI 3.2),
it can still be used for managing a newer product that supports a newer version of CAPI (for example,
CAPI3.4), but of course the app will not be able to take advantage of the newer features that have been
added to CAPI 3.4 in the product but which are not in the CAPI 3.2 SDK.

As of this writing (September 2002), the following products support the corresponding version of CAPI:
• CAPI 2.x: G5312, G7313, all Kxxxx.
• CAPI 3.4: RIO, Stratis RAID S3300 (JFF224). (Thus, the features marked � in CAPI 3.3� and �

in CAPI 3.4� in this document are supported by these products only.)

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

228 Chaparral document #07-0003-340

• CAPI 3.2: All other Chaparral products.

CAPI Capabilities on page 29.

Lengthy Operation
Need Current Configuration
May Change Configuration

✔ See Capability Bits

See also:
CAPI_PauseBus()

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 229

Update Controller

Syntax:
CAPI_RC CAPI_UpdateControllerCAPI_UpdateControllerCAPI_UpdateControllerCAPI_UpdateController(CAPI_HANDLE handlehandlehandlehandle);

Description:
Returns a current copy of the CAPI_CONTROLLER structure for the specified controller through a
subsequent callback. This updates your copy of the controller struct.

handle is the handle of the controller that executes the command.

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_CONTROLLER_UPDATE
errorCode Completion status of the command.
identifier controllerHandle is valid.
param1
param2 Configuration sequence number.
dataPtr Contains a pointer to a CAPI_CONTROLLER structure.

Events:

Remarks :
This functions queries the controller for its current CAPI_CONTROLLER structure contents. A pointer to
this structure is provided to the callback function in a temporary buffer that must be copied by the
application into a permanent copy.

Lengthy Operation
Need Current Configuration
May Change Configuration
See Capability Bits

See also:
CAPI_U_GetControllerData() is the corresponding unified command.

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

230 Chaparral document #07-0003-340

Update Firmware

Syntax:
CAPI_RC CAPI_UpdateFirmwareCAPI_UpdateFirmwareCAPI_UpdateFirmwareCAPI_UpdateFirmware(CAPI_HANDLE handlehandlehandlehandle,
 CAPI_U8 *firmwareImage*firmwareImage*firmwareImage*firmwareImage,
 CAPI_U32 sizesizesizesize);

Description:
Loads new firmware into the controller.

handle is the handle of the controller that executes the command.
firmwareImage is a pointer to the new firmware image to be loaded.
size is the size of the image in bytes.

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_UPDATE_FIRMWARE
errorCode CAPI_NO_ERROR indicates that the firmware image was received without errors.
identifier controllerHandle is valid.
param1
param2
dataPtr

Events:
CAPI_EVENT_UPDATE_FIRMWARE_COMPLETE, posted after the controller reboots.

Remarks :
A call to CAPI_ShutdownController must precede this call.

Automatic reboot occurs if there are no errors updating the firmware.

Firmware updates are not permitted when orphan data is present in the controller.

Note: Since the firmware image is large, transfer of data from the host to the controller
occurs as multiple messages, which are handled by code in the ReceivePacket
function in capi2pak.c (part of the CAPI Client in the SDK). The callback function is
not called until the entire firmware image has been transferred.

✔ Lengthy Operation
Need Current Configuration

✔ May Change Configuration
✔ See Capability Bits

See also:
CAPI_ShutdownController()
CAPI_FreeCache()

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 231

Use Key

Syntax:
CAPI_RC CAPI_UseKeyCAPI_UseKeyCAPI_UseKeyCAPI_UseKey(CAPI_HANDLE handle,handle,handle,handle,
 CAPI_U8 *key,*key,*key,*key,
 CAPI_BOOL doitdoitdoitdoit);

Description:
This function is not supported yet.

handle is the handle of the controller that executes the command.

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
ReplyCode CAPI_REPLY_USE_KEY
ErrorCode Completion status of the command.
identifier controllerHandle is valid.
param1 Features that were just enabled with this key.
param2 All enabled features.
DataPtr

Events:
Lengthy Operation

✔ Need Current Configuration
✔ May Change Configuration
✔ See Capability Bits

See also:

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

232 Chaparral document #07-0003-340

Verify Array

Syntax:
CAPI_RC CAPI_VerifyArrayCAPI_VerifyArrayCAPI_VerifyArrayCAPI_VerifyArray(CAPI_HANDLE handlehandlehandlehandle,
 CAPI_U32 arrayIndexarrayIndexarrayIndexarrayIndex,
 CAPI_BOOL disableAutoFixdisableAutoFixdisableAutoFixdisableAutoFix);

Description:
Verifies the state of a RAID 1, 3, 4, 5, 10, or 50 array.

handle is the handle of the controller that executes the command.
arrayIndex is the index of the target array on the specified controller.
disableAutoFix allows you to specify if the controller should correct any inconsistencies it may find. If the
controller supports this function (see CAPI Versions
Different Chaparral products support different versions of CAPI. If the major version (for example, the 3 in
version 3.4) is the same for two products, you should be able to easily design a single CAPI app that
manages both products, although the product with the lower minor version number (for example, the 4 in
version 3.4) will not have all the features of the product with the higher minor version number. Specifically,
there may be additional CAPI commands added for a higher version number and there may be additional
members in some of the data structures passed to and from CAPI commands, but the members that
existed in the lower version of CAPI are still in the same locations in the same structures.

When a new version of the CAPI SDK is released, typically the most recent Chaparral product(s) are
released simultaneously with the SDK and the version of CAPI that is running in the controller corresponds
to the SDK version. However, developers of new CAPI apps can use a more recent version of the CAPI
SDK to talk to older products, provided the major version number matches, and, of course, the app cannot
use the newest features that have been added to CAPI which are not supported on that product.

Conversely, if a CAPI app was developed using an older version of the CAPI SDK (for example, CAPI 3.2),
it can still be used for managing a newer product that supports a newer version of CAPI (for example,
CAPI3.4), but of course the app will not be able to take advantage of the newer features that have been
added to CAPI 3.4 in the product but which are not in the CAPI 3.2 SDK.

As of this writing (September 2002), the following products support the corresponding version of CAPI:
• CAPI 2.x: G5312, G7313, all Kxxxx.
• CAPI 3.4: RIO, Stratis RAID S3300 (JFF224). (Thus, the features marked � in CAPI 3.3� and �

in CAPI 3.4� in this document are supported by these products only.)
• CAPI 3.2: All other Chaparral products.

CAPI Capabilities on page 29). (Currently unused.)

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_VERIFY_ARRAY_START
errorCode Completion status of the command.
identifier controllerHandle and arrayIndex are valid.
param1
param2
dataPtr

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 233

Events:
CAPI_EVENT_VERIFY_ARRAY_START
CAPI_EVENT_VERIFY_ARRAY_COMPLETE

Remarks :
The Verify function allows you to verify the data on the selected array (RAID 1, RAID 3, RAID 4, RAID 5,
RAID 10, and RAID 50 only):

• RAID 3, RAID 4, RAID 5, and RAID 50: Verifies all parity blocks in the selected array and corrects
any bad parity.

• RAID 1 and RAID 10: Compares the primary and secondary drives. If a mismatch occurs, the
primary is copied to the secondary.

You may want to verify an array when you suspect there is a problem.

The number of fixes made is included with event CAPI_EVENT_VERIFY_ARRAY_COMPLETE.

✔ Lengthy Operation
✔ Need Current Configuration

May Change Configuration
✔ See Capability Bits

See also:

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

234 Chaparral document #07-0003-340

Unified Abort Utility in CAPI 3.4

Syntax:
CAPI_RC CAPI_U_AbortUtilityCAPI_U_AbortUtilityCAPI_U_AbortUtilityCAPI_U_AbortUtility(CAPI_HANDLE handlehandlehandlehandle,
 CAPI_U8 *arraySerialNumberarraySerialNumberarraySerialNumberarraySerialNumber);

Description:
Aborts the configuration/management utility running on the specified array.

handle is the handle of the controller that executes the command.
arraySerialNumber is a pointer to the serial number of the target array for which the utility should be

aborted.

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_U_UTILITY_ABORT
errorCode Completion status of the command.
identifier controllerHandle is valid.
param1
param2
dataPtr

Events:
CAPI_EVENT_UTILITY_ABORT

Remarks:
Each RAID array can have a maximum of one configuration or management utility running at a time. This
function aborts the utility; however, not all utilities may be aborted. See CAPI Versions
Different Chaparral products support different versions of CAPI. If the major version (for example, the 3 in
version 3.4) is the same for two products, you should be able to easily design a single CAPI app that
manages both products, although the product with the lower minor version number (for example, the 4 in
version 3.4) will not have all the features of the product with the higher minor version number. Specifically,
there may be additional CAPI commands added for a higher version number and there may be additional
members in some of the data structures passed to and from CAPI commands, but the members that
existed in the lower version of CAPI are still in the same locations in the same structures.

When a new version of the CAPI SDK is released, typically the most recent Chaparral product(s) are
released simultaneously with the SDK and the version of CAPI that is running in the controller corresponds
to the SDK version. However, developers of new CAPI apps can use a more recent version of the CAPI
SDK to talk to older products, provided the major version number matches, and, of course, the app cannot
use the newest features that have been added to CAPI which are not supported on that product.

Conversely, if a CAPI app was developed using an older version of the CAPI SDK (for example, CAPI 3.2),
it can still be used for managing a newer product that supports a newer version of CAPI (for example,
CAPI3.4), but of course the app will not be able to take advantage of the newer features that have been
added to CAPI 3.4 in the product but which are not in the CAPI 3.2 SDK.

As of this writing (September 2002), the following products support the corresponding version of CAPI:
• CAPI 2.x: G5312, G7313, all Kxxxx.
• CAPI 3.4: RIO, Stratis RAID S3300 (JFF224). (Thus, the features marked � in CAPI 3.3� and �

in CAPI 3.4� in this document are supported by these products only.)

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 235

• CAPI 3.2: All other Chaparral products.

CAPI Capabilities on page 29.

Lengthy Operation
✔ Need Current Configuration
✔ May Change Configuration
✔ See Capability Bits

See also:
CAPI_AbortUtility()

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

236 Chaparral document #07-0003-340

Unified Add Array Partition in CAPI 3.4

Syntax:
CAPI_RC CAPI_U_AddArrayPartitionCAPI_U_AddArrayPartitionCAPI_U_AddArrayPartitionCAPI_U_AddArrayPartition(CAPI_HANDLE handlehandlehandlehandle,
 CAPI_U8 *arraySerialNumber*arraySerialNumber*arraySerialNumber*arraySerialNumber,
 CAPI_PARTITION_REQUEST *addPartition *addPartition *addPartition *addPartition);

Description:
Adds (i.e., creates) a new partition to an existing array.

handle is the handle of the controller that executes the command.
arraySerialNumber is a pointer to the serial number of the array to which the partition will be added.
addPartition is a pointer to the CAPI_PARTITION_REQUEST structure which is used to specify the

characteristics of the partition to be created. All the members of CAPI_PARTITION_REQUEST must be
specified except partitionSerialNumber and arraySerialNumber. The arraySerialNumber member is filled
in by the function; it copies the arraySerialNumber function param to the arraySerialNumber structure
member.

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_U_ADD_ARRAY_PARTITION
errorCode Completion status of the command.
identifier controllerHandle is valid.
param1
param2
dataPtr

Events:
CAPI_EVENT_ADD_ARRAY_PARTITION_COMPLETE

Remarks :
This command is valid if the CAPI_CAPABILITY_2_ARRAY_PARTITIONS capability flag is set.

The maximum number of partitions supported by one array is given by
CAPI_MAX_PARTITIONS_PER_ARRAY. The maximum number of partitions supported by a controller is
given by CAPI_MAX_ARRAY_PARTITIONS_PER_CONTROLLER.

The partition serial number of the new partition is included with the event
CAPI_EVENT_ADD_ARRAY_PARTITION_COMPLETE as u.serialNumbers.arraySerialNumber. This serial
number can then be used as a parameter when calling other CAPI functions that require a partition serial
number.

Lengthy Operation
✔ Need Current Configuration
✔ May Change Configuration
✔ See Capability Bits

See also:
CAPI_AddArrayPartition()
CAPI_U_ChangeArrayPartitionGeometry()

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 237

CAPI_U_ChangeArrayPartitionLun()
CAPI_U_ChangeArrayPartitionName()
CAPI_U_DeleteArrayPartition()
CAPI_U_GetArrayPartitions()
CAPI_U_GetFreeArrayPartitions()
CAPI_U_ResetArrayPartitionStatistics()

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

238 Chaparral document #07-0003-340

Unified Add Dedicated Spare in CAPI 3.4

Syntax:
CAPI_RC CAPI_U_AddDedicatedSpareCAPI_U_AddDedicatedSpareCAPI_U_AddDedicatedSpareCAPI_U_AddDedicatedSpare(CAPI_HANDLE handlehandlehandlehandle,
 CAPI_U8 *arraySerialNumberarraySerialNumberarraySerialNumberarraySerialNumber,
 CAPI_U8 *driveSerialNumberdriveSerialNumberdriveSerialNumberdriveSerialNumber);

Description:
This function adds an unused or free drive as a dedicated spare to a redundant array.

handle is the handle of the controller that executes the command.
arraySerialNumber is a pointer to the serial number of the target array.
driveSerialNumber is a pointer to the serial number of the drive to be added.

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_U_ADD_DEDICATED_SPARE
errorCode Completion status of the command.
identifier controllerHandle is valid.
param1
param2
dataPtr

Events:
CAPI_EVENT_ADD_DEDICATED_SPARE

Remarks :
It is assumed that the calling routine has verified that the drive has sufficient capacity for the array. If the
array has a down drive, a reconstruct utility immediately starts.

If a drive contains metadata from a previous array, you must clear the metadata using the
CAPI_ScsiMaintenance or CAPI_U_DoScsiMaintenance command before adding the drive as a dedicated
spare or pool spare. The controller will automatically rescan the bus when the metadata is cleared.

Lengthy Operation
✔ Need Current Configuration
✔ May Change Configuration
✔ See Capability Bits

See also:
CAPI_AddDedicatedSpare()
CAPI_U_AddPoolSpare()
CAPI_U_DeleteSpare()
CAPI_U_DoScsiMaintenance()

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 239

Unified Add Host in CAPI 3.4

Syntax:
CAPI_RC CAPI_U_AddHostCAPI_U_AddHostCAPI_U_AddHostCAPI_U_AddHost(CAPI_HANDLE handlehandlehandlehandle,
 CAPI_U8 *partitionSerialNumber*partitionSerialNumber*partitionSerialNumber*partitionSerialNumber,
 CAPI_FLEX_ID hostIdhostIdhostIdhostId);

Description:
This function adds a host to the list of hosts that is allowed to communicate with a particular partition or is
blocked from communication with a particular partition.

handle is the handle of the controller that executes the command.
partitionSerialNumber is the serial number of the partition; if partitions are not supported (capability bit

CAPI_CAPABILITY_2_ARRAY_PARTITIONS not set), then this is an array serial number.
hostId is the Fibre Channel or SCSI ID of the host.

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_U_ADD_HOST
errorCode Completion status of the command.
identifier controllerHandle is valid.
param1
param2
dataPtr

Events:

Remarks:
The list of hosts associated with this partition is either allowed access or blocked from access by the value
of the include parameter in CAPI_U_ChangeInfoShieldType.

Recommended CAPI application design approach:
When an app needs a list of hosts (typically for the AddHost and RemoveHost commands), it should get
both the known hosts list (by calling CAPI_U_GetKnownHosts) and the host nicknames list (by calling
CAPI_U_GetHostNicknames) and combine them, deleting duplicate entries. These can be presented to
the user in any order the app designer wishes and could be sorted under user control in various ways: by
nickname, by WWN, by order of timestamp (which is the way the app will get them), or whatever. (The
timestamp is the age member of the struct that is received by these two commands and is the number of
seconds since January 1, 1970.) We recommend that an app specify CAPI_CONTROLLER_BOTH when
calling CAPI_U_GetKnownHosts so it can see the hosts known to both controllers. Suggested order of
presentation to user: known host table at the top, with the most-recent entries at the top, followed by the
host nicknames table, with the most-recent entries at the top. Or the known hosts table could be presented
in this order: hosts known to both controllers, then hosts known to A only, then hosts known to B only. (This
is the order that CAPI_U_GetKnownHosts will return them.)

The app should provide a mechanism for a user to specify a nickname for a WWN at the time the user is
adding a host to the InfoShield host table for a partition, and the app would call both the CAPI_U_AddHost
and CAPI_U_AddHostNickname functions with this data. (The app doesn�t need to call
CAPI_U_AddHostNickname if the user selects from a list of hosts and the selected host already has a
nickname.)

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

240 Chaparral document #07-0003-340

If a user types in a WWN that is not in the list of hosts but does not specify a nickname for it, the user
interface can either prompt to force the user to provide a nickname, or the UI can simply call
AddHostNickname with a dummy nickname (for example, a single space character � not a null string or
that will be interpreted as a request to delete an entry in the host nickname list). Thus, the WWN will be
saved in the host nicknames list even if it doesn�t have a real nickname, and will thereby be available for
future calls to AddHost and RemoveHost.

The app should probably have a utility that allows adding, deleting, and changing host nicknames and their
associated WWNs. This would be implemented in the app as calls to AddHostNickname.

As an alternative, if an application designer wishes to maintain a separate nickname scheme or not use
nicknames, the app can do that and not make use of the CAPI_U_GetHostNicknames and
CAPI_U_AddHostNicknames commands.

Lengthy Operation
✔ Need Current Configuration
✔ May Change Configuration
✔ See Capability Bits

See also:
CAPI_AddHost()
CAPI_U_RemoveHost()
CAPI_U_ChangeInfoShieldType()
CAPI_U_GetHostTable()
CAPI_U_AddHostNicknames()
CAPI_U_GetHostNicknames()

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 241

Unified Add Host Nickname in CAPI 3.4

Syntax:
CAPI_RC CAPI_U_AddHostNicknameCAPI_U_AddHostNicknameCAPI_U_AddHostNicknameCAPI_U_AddHostNickname(CAPI_HANDLE handlehandlehandlehandle,
 CAPI_FLEX_ID hostIdhostIdhostIdhostId,
 CAPI_U8 *nickname*nickname*nickname*nickname);

Description:
This command allows a CAPI application to define a �nickname� that corresponds to the worldwide name
for a host. This capability of CAPI is provided so a CAPI application can provide a mechanism for the user
of that application to more conveniently refer to a host. The CAPI application can access these host
nicknames via the CAPI_GetHostNicknames and CAPI_GetKnownHosts functions.

handle is the handle of the controller that executes the command.
hostId is the worldwide name of the host that this nickname applies to. In the CAPI_FLEX_ID struct, the

CAPI_FLEX_TYPE may be set to either CAPI_FLEX_TYPE_FC_WWN_NODE or
CAPI_FLEX_TYPE_FC_WWN_PORT and the corresponding field, FCNodeWWN or FCPortWWN, is
then used.

nickname points to a null-terminated string provided by the CAPI application. Maximum number of
characters allowed in this string is CAPI_MAX_HOST_NAME (15 characters plus NULL).

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_U_ADD_HOST_NICKNAME
errorCode Completion status of the command.
identifier controllerHandle is valid.
param1
param2
dataPtr

Events:

Remarks:
See CAPI_U_AddHost for a discussion of how a typical application might best use this command.

This function can be used to change a nickname as well as add a new one.

Caution: This function performs no check that the nickname is unique. That is, it is possible for the same
nickname to be used for two or more different worldwide names, with unpredictable results.

Note that nicknames can be added or changed via the Disk Array Administrator (MUI) or other user
interfaces; there is a single table of nicknames. Thus, name changes and additions made via one user
interface are visible via other user interfaces.

The list of nicknames is saved on both controllers in a dual-controller system. The list of nicknames is
preserved through a reboot and through replacement of one of the two controller boards.

Nicknames can be deleted by using this function with the nickname defined as a null string (that is, first
character in the string is 0).

This function requires capability bit CAPI_CAPABILITY_2_INFOSHIELD to be set.

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

242 Chaparral document #07-0003-340

Lengthy Operation
Need Current Configuration
May Change Configuration

✔ See Capability Bits

See also:
CAPI_AddHostNickname()
CAPI_U_GetHostNicknames()
CAPI_U_GetKnownHosts()
CAPI_U_AddHost()
CAPI_U_RemoveHost()

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 243

Unified Add Pool Spare in CAPI 3.4

Syntax:
CAPI_RC CAPI_U_AddPoolSpareCAPI_U_AddPoolSpareCAPI_U_AddPoolSpareCAPI_U_AddPoolSpare(CAPI_HANDLE handlehandlehandlehandle,
 CAPI_U8 *driveSerialNumberdriveSerialNumberdriveSerialNumberdriveSerialNumber);

Description:
This function adds an unused or free drive to the spare pool.

handle is the handle of the controller that executes the command.
driveSerialNumber is a pointer to the serial number of the drive to add as a pool spare.

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_U_ADD_POOL_SPARE
errorCode Completion status of the command.
identifier controllerHandle is valid.
param1
param2
dataPtr

Events:
CAPI_EVENT_ADD_POOL_SPARE

Remarks :
It is assumed that the calling routine has verified that the drive has sufficient capacity for the array. If the
array has a down drive, a Reconstruct utility immediately starts.

If a drive contains metadata from a previous array, you must clear the metadata using the
CAPI_ScsiMaintenance or CAPI_U_DoScsiMaintenance command before adding the drive as a dedicated
spare or pool spare. The controller will automatically rescan the bus when the metadata is cleared.

Lengthy Operation
✔ Need Current Configuration
✔ May Change Configuration
✔ See Capability Bits

See also:
CAPI_AddPoolSpare()
CAPI_U_AddDedicatedSpare()
CAPI_U_DeleteSpare()
CAPI_U_DoScsiMaintenance()

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

244 Chaparral document #07-0003-340

Unified Blink Drive in CAPI 3.4

Syntax:
CAPI_RC CAPI_U_BlinkDriveCAPI_U_BlinkDriveCAPI_U_BlinkDriveCAPI_U_BlinkDrive(CAPI_HANDLE handlehandlehandlehandle,
 CAPI_U8 *driveSerialNumberdriveSerialNumberdriveSerialNumberdriveSerialNumber);

Description:
Blinks the drive activity light. The light is blinked by issuing a non-destructive command, such as a single
sector read or a SCSI Test Unit Ready, at regular intervals.

handle is the handle of the controller that executes the command.
driveSerialNumber is a pointer to the serial number of the drive to blink.

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_U_BLINK_DRIVE
errorCode Completion status of the command.
identifier controllerHandle is valid.
param1
param2
dataPtr

Events:

Remarks :
The controller continues blinking the drive light until a call to CAPI_U_Unblink_drive.

Lengthy Operation
✔ Need Current Configuration

May Change Configuration
See Capability Bits

See also:
CAPI_BlinkDrive()
CAPI_U_UnblinkDrive()

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 245

Unified Change Array Name in CAPI 3.4

Syntax:
CAPI_RC CAPI_U_ChangeArrayNameCAPI_U_ChangeArrayNameCAPI_U_ChangeArrayNameCAPI_U_ChangeArrayName(CAPI_HANDLE handlehandlehandlehandle,
 CAPI_U8 *arraySerialNumber*arraySerialNumber*arraySerialNumber*arraySerialNumber,
 CAPI_CHAR *arrayName*arrayName*arrayName*arrayName);

Description:
This command changes the array name.

handle is the handle of the controller that executes the command.
arraySerialNumber is a pointer to the serial number of the target array.
arrayName is a pointer to a NULL-terminated string containing the new array name. Length must be less

than or equal to CAPI_MAX_ARRAY_NAME.

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_U_CHANGE_ARRAY_NAME
errorCode Completion status of the command.
identifier controllerHandle is valid.
param1
param2
dataPtr

Events:
CAPI_EVENT_ARRAY_NAME_CHANGE

Remarks :
An error will occur if the string is too long.

Lengthy Operation
✔ Need Current Configuration
✔ May Change Configuration

See Capability Bits

See also:
CAPI_ChangeArrayName()
CAPI_U_CreateArray()

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

246 Chaparral document #07-0003-340

Unified Change Array Partition Geometry in CAPI 3.4

Syntax:
CAPI_RC CAPI_U_ChangeArrayPartitionGeometryCAPI_U_ChangeArrayPartitionGeometryCAPI_U_ChangeArrayPartitionGeometryCAPI_U_ChangeArrayPartitionGeometry(CAPI_HANDLE controllerHandlecontrollerHandlecontrollerHandlecontrollerHandle,
 CAPI_U8 *partitionSerialNumber*partitionSerialNumber*partitionSerialNumber*partitionSerialNumber,
 CAPI_PARTITION_REQUEST *changePartition *changePartition *changePartition *changePartition);

Description:
Changes the size of an existing array partition. Currently, the size of a partition may only be increased, not
decreased.

handle is the handle of the controller that executes the command.
partitionSerialNumber is a pointer to the serial number of an existing partition.
changePartition is a pointer to the structure that is used to specify the new size of the partition. The

members of this struct that must be specified are: startLba (must be the same as that specified when
the partition was added), sizeLba (specifies the new size), and arraySerialNumber. The
partitionSerialNumber member is filled in by the function; it copies the partitionSerialNumber function
param to the partitionSerialNumber structure member. The name and unitNum members of this struct
are ignored.

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_U_CHANGE_ARRAY_PARTITION_GEOMETRY
errorCode Completion status of the command.
identifier controllerHandle is valid.
param1
param2
dataPtr

Events:
CAPI_EVENT_ARRAY_PARTITION_GEOMETRY_CHANGE

Remarks :
This command is valid if the CAPI_CAPABILITY_2_ARRAY_PARTITIONS capability flag is set. Note that
the size of a partition may only be increased if the partition is immediately followed by a free partition area.
If an array is expanded, this creates free space at the end of the array, allowing the last partition in an array
to expand into this area.

Lengthy Operation
✔ Need Current Configuration
✔ May Change Configuration
✔ See Capability Bits

See also:
CAPI_ChangeArrayPartitionGeometry()
CAPI_U_AddArrayPartition()
CAPI_U_GetFreeArrayPartitions()

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 247

Unified Change Array Partition LUN in CAPI 3.4

Syntax:
CAPI_RC CAPI_U_ChangeArrayPartitionLunCAPI_U_ChangeArrayPartitionLunCAPI_U_ChangeArrayPartitionLunCAPI_U_ChangeArrayPartitionLun(CAPI_HANDLE controllerHandlecontrollerHandlecontrollerHandlecontrollerHandle,
 CAPI_U8 *partitionSerialNumber*partitionSerialNumber*partitionSerialNumber*partitionSerialNumber,
 CAPI_U8 lun lun lun lun);

Description:
Allows the application to change the logical unit number (LUN) that a partition presents to the host.

handle is the handle of the controller that executes the command.
partitionSerialNumber is a pointer to the serial number of an existing partition.
lun is the new LUN value of the partition (this must be a currently unused LUN value).

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_U_CHANGE_ARRAY_PARTITION_LUN
errorCode Completion status of the command.
identifier controllerHandle is valid.
param1
param2
dataPtr

Events:
CAPI_EVENT_ARRAY_PARTITION_LUN_CHANGE

Remarks :
This command is valid if the CAPI_CAPABILITY_2_ARRAY_PARTITIONS capability flag is set. No reboot
is required for this change to take effect.

Lengthy Operation
✔ Need Current Configuration
✔ May Change Configuration
✔ See Capability Bits

See also:
CAPI_ChangeArrayPartitionLun()
CAPI_U_AddArrayPartition()

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

248 Chaparral document #07-0003-340

Unified Change Array Partition Name in CAPI 3.4

Syntax:
CAPI_RC CAPI_U_ChangeArrayPartitionNameCAPI_U_ChangeArrayPartitionNameCAPI_U_ChangeArrayPartitionNameCAPI_U_ChangeArrayPartitionName(CAPI_HANDLE controllerHandlecontrollerHandlecontrollerHandlecontrollerHandle,
 CAPI_U8 *partitionSerialNumber*partitionSerialNumber*partitionSerialNumber*partitionSerialNumber,
 CAPI_CHAR *name *name *name *name);

Description:
Changes the name value of an existing array partition.

handle is the handle of the controller that executes the command.
partitionSerialNumber is a pointer to the serial number of an existing partition.
name is a pointer to a NULL-terminated string containing the new partition name. Length must be less than

or equal to CAPI_MAX_ARRAY_NAME.

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_U_ARRAY_PARTITION_NAME_CHANGE
errorCode Completion status of the command.
identifier controllerHandle is valid.
param1
param2
dataPtr

Events:
CAPI_EVENT_ARRAY_PARTITION_NAME_CHANGE

Remarks :
This command is valid if the CAPI_CAPABILITY_2_ARRAY_PARTITIONS capability flag is set.

Lengthy Operation
✔ Need Current Configuration
✔ May Change Configuration
✔ See Capability Bits

See also:
CAPI_ChangeArrayPartitionName()
CAPI_U_AddArrayPartition()

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 249

Unified Change InfoShield Type in CAPI 3.4

Syntax:
CAPI_RC CAPI_U_ChangeInfoShieldTypeCAPI_U_ChangeInfoShieldTypeCAPI_U_ChangeInfoShieldTypeCAPI_U_ChangeInfoShieldType(CAPI_HANDLE handlehandlehandlehandle,
 CAPI_U8 *partitionSerialNumber*partitionSerialNumber*partitionSerialNumber*partitionSerialNumber,
 CAPI_BOOL allHostsallHostsallHostsallHosts,
 CAPI_BOOL includeincludeincludeinclude);

Description:
This function changes the type of access that a list of hosts has for the specified partitionSerialNumber.

handle is the handle of the controller that executes the command.
partitionSerialNumber is the serial number of the partition; if partitions are not supported (capability bit

CAPI_CAPABILITY_2_ARRAY_PARTITIONS not set), then this is an array serial number.
allHosts setting to TRUE causes the include parameter to apply to all hosts; setting to FALSE causes the

include parameter to apply to this partition�s list of hosts.
include setting to TRUE designates a list of hosts that are to be included for access; setting to FALSE

designates a list of hosts that are to be excluded for access.

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_U_CHANGE_INFOSHIELD_TYPE
errorCode Completion status of the command.
identifier controllerHandle is valid.
param1
param2
dataPtr

Events:

Remarks:
The list of partitions that applies when allHosts is FALSE is configured using the CAPI_U_AddHost and
CAPI_U_RemoveHost commands.

Lengthy Operation
✔ Need Current Configuration
✔ May Change Configuration
✔ See Capability Bits

See also:
CAPI_ChangeInfoShieldType()
CAPI_U_AddHost()
CAPI_U_RemoveHost()
CAPI_U_GetHostTable()

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

250 Chaparral document #07-0003-340

Unified Clear Event Log in CAPI 3.4

Syntax:
CAPI_RC CAPI_U_ClearEventLogCAPI_U_ClearEventLogCAPI_U_ClearEventLogCAPI_U_ClearEventLog(CAPI_HANDLE handle,handle,handle,handle,
 CAPI_CONTROLLER_ID controllerId controllerId controllerId controllerId);

Description:
This command clears the non-volatile event log memory on the controller and resets the Event Log
sequenceNumber.

handle is the handle of the controller that executes the command.
controllerId specifies which controller to send this command to; one of: CAPI_CONTROLLER_A,

CAPI_CONTROLLER_B.

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_U_LOG_CLEAR
errorCode Completion status of the command.
identifier controllerHandle is valid.
param1
param2
dataPtr

Events:
CAPI_EVENT_LOG_CLEAR

Remarks :
This command should only be used to reset a controller to an empty log state before shipping to a
customer. An application can clear its event log without actually clearing the event log on the controller by
disregarding the last logged sequenceNumber and anything prior.

WARNING: This can cause problems for other attached applications currently polling for
events.

Lengthy Operation
Need Current Configuration
May Change Configuration
See Capability Bits

See also:
CAPI_ClearEventLog()
CAPI_U_GetEvent()
CAPI_U_GetFirstEvent()
CAPI_U_GetLastEvent()

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 251

Unified Create Array in CAPI 3.4

Syntax:
CAPI_RC CAPI_U_CreateArrayCAPI_U_CreateArrayCAPI_U_CreateArrayCAPI_U_CreateArray(CAPI_HANDLE handlehandlehandlehandle,
 CAPI_UNIFIED_CREATE_ARRAY_STRUCT *addArrayStructaddArrayStructaddArrayStructaddArrayStruct);

Description:
Creates a RAID array from a list of single drives.

handle is the handle of the controller that executes the command.
addArrayStruct is a pointer to a structure that provides all the parameters necessary to create an array.

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_U_CREATE_ARRAY_START
errorCode Completion status of the command.
identifier controllerHandle is valid.
param1
param2
dataPtr pointer to CAPI_UNIFIED_CREATE_ARRAY_SERIAL_NUMBER_STRUCT

Events:
CAPI_EVENT_CREATE_ARRAY_START
CAPI_EVENT_CREATE_ARRAY_COMPLETE

Remarks :
The callback contains the serial number of the new array. This serial number can then be used by CAPI
applications in subsequent calls to CAPI functions that take an array serial number as a parameter. The
progress of the Create Array utility can be monitored by calling CAPI_GetPercentComplete. Completion
status is obtained via calls to CAPI_GetLastEvent. The array serial number of the new partition is included
with both events CAPI_EVENT_CREATE_ARRAY_START and
CAPI_EVENT_CREATE_ARRAY_COMPLETE as u.serialNumbers.arraySerialNumber. The array serial
number can also be obtained from the CAPI_ARRAY struct returned by function CAPI_GetArrayList.

After event CAPI_EVENT_CREATE_ARRAY_START is logged, there is a slight delay (generally less than
a second) before CAPI_U_GetArrayList will return the new array as part of its list of arrays. You can call
other CAPI functions related to this array (such as CAPI_U_AddArrayPartition) once your app sees the new
array in the list of arrays.

The array serial number is 12 bytes; 8 bytes is the controller serial number and 4 bytes is a timestamp. An
example is shown here:
 0 1 2 3 4 5 6 7 8 9 10 11 byte #
 --
 00 50 13 B0 30 00 00 00 2A 0F 58 3C value
 ----------serial num---------- --time stamp--

In a typical application, this could be displayed as 0x005013B0300000002A0F583C.

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

252 Chaparral document #07-0003-340

In the Chaparral Disk Array Administrator and in the RAIDar web browser interface, only bytes 3-5 and 8-
11 are displayed since bytes 0-2 are always 005013 and bytes 6 and 7 are always zeroes. Thus, the array
serial number would display as B030002A0F583C.

In the case of a RAID 1, 10, 3, 4, or 5 array, the utility writes zeros to each LBA on each drive. The final
step writes controller-specific information to the reserved sectors of each drive.

✔ Lengthy Operation
✔ Need Current Configuration
✔ May Change Configuration
✔ See Capability Bits

See also:
CAPI_CreateArray()
CAPI_U_DeleteArray()
CAPI_U_AddArrayPartition()
CAPI_U_GetPercentComplete()
CAPI_U_GetLastEvent()

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 253

Unified Delete Array in CAPI 3.4

Syntax:
CAPI_RC CAPI_U_DeleteArrayCAPI_U_DeleteArrayCAPI_U_DeleteArrayCAPI_U_DeleteArray(CAPI_HANDLE handlehandlehandlehandle,
 CAPI_U8 *arraySerialNumber*arraySerialNumber*arraySerialNumber*arraySerialNumber);

Description:
Removes information in the reserved sectors of an array�s member drives so that they are no longer
associated with a RAID array.

handle is the handle of the controller that executes the command.
arraySerialNumber is a pointer to the serial number of the target array.

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_U_DELETE_ARRAY
errorCode Completion status of the command.
identifier controllerHandle is valid.
param1
param2
dataPtr

Events:
CAPI_EVENT_ARRAY_DELETE

Remarks :
After completion of this utility, the array is no longer valid and is no longer visible to the host. The member
drives become single, free drives that can be assigned for use in new arrays or as spare drives. The drives
are not reformatted by this utility and are not visible to the host.

Warning: All partitions contained in the array are automatically deleted when the array is
deleted.

Lengthy Operation
Need Current Configuration

✔ May Change Configuration
See Capability Bits

See also:
CAPI_DeleteArray()
CAPI_U_CreateArray()

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

254 Chaparral document #07-0003-340

Unified Delete Array Partition in CAPI 3.4

Syntax:
CAPI_RC CAPI_U_DeleteArrayPartitionCAPI_U_DeleteArrayPartitionCAPI_U_DeleteArrayPartitionCAPI_U_DeleteArrayPartition(CAPI_HANDLE controllerHandlecontrollerHandlecontrollerHandlecontrollerHandle,
 CAPI_U8 *partitionSerialNumber *partitionSerialNumber *partitionSerialNumber *partitionSerialNumber);

Description:
Permanently deletes an existing array partition. The area formerly occupied by the partition becomes a
free partition area, which can be used for partition expansion or to add a new partition.

handle is the handle of the controller that executes the command.
partitionSerialNumber is a pointer to the serial number of an existing partition.

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_U_DELETE_ARRAY_PARTITION
errorCode Completion status of the command.
identifier controllerHandle is valid.
param1
param2
dataPtr

Events:
CAPI_EVENT_DELETE_ARRAY_PARTITION_COMPLETE

Remarks :
This command is valid if the CAPI_CAPABILITY_2_ARRAY_PARTITIONS capability flag is set. Note that
once the partition is deleted, it cannot be recovered.

Lengthy Operation
✔ Need Current Configuration
✔ May Change Configuration
✔ See Capability Bits

See also:
CAPI_DeleteArrayPartition()
CAPI_U_AddArrayPartition()
CAPI_U_GetArrayPartitions()

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 255

Unified Delete Spare in CAPI 3.4

Syntax:
CAPI_RC CAPI_U_DeleteSpareCAPI_U_DeleteSpareCAPI_U_DeleteSpareCAPI_U_DeleteSpare(CAPI_HANDLE handlehandlehandlehandle,
 CAPI_U32 driveSerialNumberdriveSerialNumberdriveSerialNumberdriveSerialNumber);

Description:
This function changes the drive from spare drive to unused.

handle is the handle of the controller that executes the command.
driveSerialNumber is a pointer to the serial number of the drive to delete.

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_U_DELETE_SPARE
errorCode Completion status of the command.
identifier controllerHandle is valid.
param1
param2
dataPtr

Events:
CAPI_EVENT_ SPARE_DELETE

Remarks :
The drive becomes an available drive, which can be assigned for use in new arrays or as another spare
drive. This command can be used to delete both pool spares and dedicated spares.

Lengthy Operation
✔ Need Current Configuration
✔ May Change Configuration

See Capability Bits

See also:
CAPI_DeleteSpare()
CAPI_U_AddDedicatedSpare()
CAPI_U_AddPoolSpare()

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

256 Chaparral document #07-0003-340

Unified Do SCSI Maintenance in CAPI 3.4

Syntax:
CAPI_RC CAPI_U_DoScsiMaintenanceCAPI_U_DoScsiMaintenanceCAPI_U_DoScsiMaintenanceCAPI_U_DoScsiMaintenance(CAPI_HANDLE handlehandlehandlehandle,
 CAPI_U8 *driveSerialNumber*driveSerialNumber*driveSerialNumber*driveSerialNumber,
 CAPI_U32 busbusbusbus,
 CAPI_U32 targettargettargettarget,
 CAPI_U32 lunlunlunlun,
 CAPI_MAINT_COMMAND maintCommandmaintCommandmaintCommandmaintCommand,
 CAPI_U32 param1param1param1param1,
 CAPI_U32 param2param2param2param2,
 CAPI_MAINT_CDB *cdb*cdb*cdb*cdb,
 CAPI_U32 cdbLengthcdbLengthcdbLengthcdbLength,
 CAPI_U8 *dataBuffer*dataBuffer*dataBuffer*dataBuffer,
 CAPI_U32 dataBufferSize dataBufferSize dataBufferSize dataBufferSize);

Description:
This command is used to send CAPI_MAINT_COMMANDs to the specified drive/device. However, when
used with the RAID controller, this command cannot be sent to a drive that is part of a non-redundant array.
See the warning statements below.

This command is sometimes referred to as �SCSI pass through.�

handle is the handle of the controller that executes the command.
driveSerialNumber is a pointer to the serial number of the drive/device.
bus Bus number on the specified controller.
target SCSI ID of the device on the specified controller.
lun LUN of the device on the specified controller.
maintCommand possible values are shown on page 22. If CAPI_MAINT_USE_CDB is used, then cdb points

to the CDB that will be passed to the designated drive. For all other values, cdb is ignored. Note: not
all maintenance commands may be supported. Refer to your controller�s documentation.

param1 for CAPI_MAINT_MODE_SENSE, this is the mode page and page control fields. This needs to follow
the same format as byte 2 of a SCSI Mode Sense CDB. For CAPI_MAINT_MODE_SELECT, this is the
SCSI mode page to write.

param2 contains any extra parameters needed for maintenance commands (currently unused).
cdb points to the CDB to be sent to the designated drive. This should be NULL for any command other

than CAPI_MAINT_USE_CDB.
cdbLength is the length of the CDB (should be zero for any command other than CAPI_MAINT_USE_CDB).
dataBuffer points to the data buffer when this command transfers data to the drives. For

CAPI_MAINT_MODE_SELECT, this dataBuffer contains the new mode page data. Data returned from the
drive may be accessed via CAPI_ScsiMaintRetrieveData.

dataBufferSize is the number of bytes of data in dataBuffer.

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_U_DO_SCSI_MAINT_START
errorCode Completion status of the command.
identifier controllerHandle and driveIndex are valid.
param1
param2
dataPtr

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 257

Events:
CAPI_EVENT_SCSI_MAINT_DONE

Other events (such as CAPI_EVENT_DISK_DETECTED_ERROR) are possible if the maintenance
command causes an error.

Remarks:
After this event is received any data associated with the SCSI command can be retrieved from the
controller using the CAPI_ScsiMaintRetrieveData command.

Note that all calls to CAPI_ScsiMaintenance and CAPI_U_DoScsiMaintenance make use of a single buffer.
Thus, it is important that one SCSI maintenance operation be complete before the next one starts. The
sequence of commands should be as follows:
• Call CAPI_ScsiMaintenance or CAPI_U_DoScsiMaintenance.
• Wait for an event to be posted to indicate that the operation is complete (normally

CAPI_EVENT_SCSI_MAINT_DONE).
• Call CAPI_ScsiMaintRetrieveData or CAPI_U_GetScsiMaintenanceData to get any data.
• Repeat this sequence as desired.

If driveSerialNumber is non-zero, then it will be used to identify the back-end device that the command will
be sent to. If driveSerialNumber is zero, then the bus, target, and lun will be used to identify the back-end
device that the command will be sent to.

WARNING: There is less checking of safety of carrying out a command if bus, target, lun
are used. Specifically, if a destructive command (such as clear metadata) is sent to
a drive that is in an array owned by the other controller, undesirable results can
occur.

WARNING: This command should not be used on a drive that is part of an array. Doing so
can cause undesirable results.

Note: You must issue a rescan (CAPI_RescanBus) after
CAPI_MAINT_CLEAR_METADATA for the clear metadata function to take effect.
However, if you need to clear metadata on more than one drive, only a single rescan
is needed after all the clear metadata commands complete.

See the controller�s documentation to determine which maintenance commands, if any, are supported and
which commands might remove the drive from the array.

✔ Lengthy Operation
✔ Need Current Configuration
✔ May Change Configuration
✔ See Capability Bits

See also:
CAPI_ScsiMaintenance() is the corresponding non-unified function.
CAPI_U_GetScsiMaintenanceData()

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

258 Chaparral document #07-0003-340

Unified Down Drive in CAPI 3.4

Syntax:
CAPI_RC CAPI_U_DownDriveCAPI_U_DownDriveCAPI_U_DownDriveCAPI_U_DownDrive(CAPI_HANDLE handlehandlehandlehandle,
 CAPI_U32 driveSerialNumberdriveSerialNumberdriveSerialNumberdriveSerialNumber);

Description:
Disables a drive that is a member of an array and can cause the array to switch to degraded operation.

handle is the handle of the controller that executes the command.
driveSerialNumber is a pointer to the serial number of the drive to down.

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_U_DOWN_DRIVE
errorCode Completion status of the command.
identifier controllerHandle is valid.
param1
param2
dataPtr

Events:
CAPI_EVENT_DRIVE_DOWN

Remarks:
This command should only be used for system testing. It will degrade an array to a critical state if one
of the member drives is downed. Remember, after downing a drive, to use it again you must clear the
metadata on the drive (with CAPI_U_DoScsiMaintenance) and then rescan the bus.

Lengthy Operation
✔ Need Current Configuration
✔ May Change Configuration

See Capability Bits

See also:
CAPI_DownDrive()
CAPI_U_RescanBus()
CAPI_U_ScsiMaintenance()

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 259

Unified Environ Read in CAPI 3.4

Syntax:
CAPI_RC CAPI_U_EnvironReadCAPI_U_EnvironReadCAPI_U_EnvironReadCAPI_U_EnvironRead(CAPI_HANDLE handlehandlehandlehandle,
 CAPI_U32 environProcessorIndexenvironProcessorIndexenvironProcessorIndexenvironProcessorIndex,
 CAPI_U32 environCommandenvironCommandenvironCommandenvironCommand);

Description:
Requests data from an environmental processor (for either the SAF-TE or SES standard) attached to a
controller.

handle is the handle of the controller that executes the command.
environProcessorIndex is the index of the environmental processor you are issuing the command to. This

is the same as the index used in the CAPI_FindNextEnvironProcessor function.
environCommand is the environmental command code. See list of valid commands below.

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_U_READ_ENVIRON
errorCode Completion status of the command.
identifier controllerHandle is valid.
param1 The number of valid bytes of data in the data buffer pointed to by dataPtr.
param2
dataPtr Pointer to CAPI_ENVIRON_PROCESSOR_DATA.

Events:

Remarks :
param1 will be less than or equal to CAPI_ENVIRON_MAX_ENVIRON_DATA_LENGTH.

If errorCode is equal to CAPI_NO_ERROR, then the data buffer contains valid inquiry data. However, if it is
equal to CAPI_ERROR_COMMAND_FAILED, then sense data is automatically returned; the first byte in
the data buffer contains the SCSI status byte and the rest of the data buffer contains SCSI sense data.

In this document, the terms �environmental processor,� �environmental device,� �environmental unit,�
�Enclosure Management Processor,� and �EMP� are used interchangeably.

Chaparral enclosure management is intended for disk array enclosures that comply with either of the
following two standards for enclosure services:

� SAF-TE (SCSI Accessed Fault-Tolerant Enclosure) � commonly used in SCSI/SCSI RAID
enclosures.

� SES (SCSI-3 Enclosure Services) � an ANSI standard used widely for Fibre/Fibre RAID controllers
and for SCSI-ATA and Fibre-ATA RAID controllers.

Each of these two enclosure services use different terminology for the Enclosure Management Processors
(EMPs) that provide the enclosure services:

� SEP (SAF-TE Enclosure Processor for SAF-TE)
� ESP (Enclosure Services Processor for SES)

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

260 Chaparral document #07-0003-340

The following SAF-TE commands are valid for the environCommand parameter above.

Command
SAFTE_READ_ENCLOSURE_CFG_CMD
SAFTE_READ_ENCLOSURE_STATUS_CMD
SAFTE_READ_USAGE_STATS_CMD
SAFTE_READ_DEV_INSERTIONS_CMD
SAFTE_READ_DEV_SLOT_STATUS_CMD
SAFTE_READ_GLOBAL_FLAGS_CMD

Read Enclosure Configuration should be issued first before issuing any other SAF-TE reads. Refer to the
SAF-TE Specification for more details. Also note that some SEP vendors do not support all of the
commands listed and may return error codes.

The following SES commands are valid for the environCommand parameter above:

Command
SES_RECV_SUPPORTED_DIAGS
SES_RECV_CONFIGURATION
SES_RECV_ENCLOSURE_STATUS
SES_RECV_HELP_TEXT
SES_RECV_STRING_IN
SES_RECV_THRESHOLD_IN
SES_RECV_ARRAY_STATUS
SES_RECV_ELEMENT_DESCRIPTOR
SES_RECV_SHORT_ENCLOSURE_STAT

Lengthy Operation
Need Current Configuration
May Change Configuration

✔ See Capability Bits

See also:
CAPI_EnvironRead()
CAPI_U_EnvironWrite()
CAPI_U_FindNextEnvironProcessor()

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 261

Unified Environ Write in CAPI 3.4

Syntax:
CAPI_RC CAPI_U_EnvironWriteCAPI_U_EnvironWriteCAPI_U_EnvironWriteCAPI_U_EnvironWrite(CAPI_HANDLE handlehandlehandlehandle,
 CAPI_U32 environProcessorIndexenvironProcessorIndexenvironProcessorIndexenvironProcessorIndex,
 CAPI_U32 environCommandenvironCommandenvironCommandenvironCommand,
 CAPI_ENVIRON_PROCESSOR_DATA *buffer*buffer*buffer*buffer,
 CAPI_U32 lengthlengthlengthlength);

Description:
Sends data to an environmental processor (for either the SAF-TE or SES standard) attached to a
controller.

handle is the handle of the controller that executes the command.
environProcessorIndex is the index of the environmental processor you are issuing the command to. This

is the same as the index used in the CAPI_FindNextEnvironProcessor function.
environCommand is the environmental command code. See list of valid commands below.
buffer is a pointer to buffer containing the CAPI_ENVIRON_PROCESSOR_DATA structure.
length is the number of bytes to send to the EMP from the buffer.

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

A return code of CAPI_STATUS_INVALID_PARAM will be returned if length is greater than
sizeof(CAPI_ENVIRON_PROCESSOR_DATA).

Callback:
replyCode CAPI_REPLY_U_WRITE_ENVIRON
errorCode Completion status of the command.
identifier controllerHandle is valid.
param1
param2
dataPtr

Remarks :
In this document, the terms �environmental processor,� �environmental device,� �environmental unit,�
�Enclosure Management Processor,� and �EMP� are used interchangeably.

The following SAF-TE commands are valid for the environCommand parameter above:

Command
SAFTE_WRITE_DEV_SSLOT_STATUS_CMD
SAFTE_SET_SCSI_ID_CMD
SAFTE_PERFORM_SLOT_OPERATION_CMD
SAFTE_SET_FAN_SPEED_CMD
SAFTE_ACTIVATE_POWER_SUPPLY_CMD
SAFTE_SEND_GLOBAL_FLAGS_CMD

Note: The buffer parameter points to the structure that contains the write buffer command data only. It does
not contain the write buffer Operation Code in the first byte as described in the SAF-TE Interface
Specification. The Operation Code is inserted by the controller before the actual command is sent to the
SEP, using the environCommand parameter.

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

262 Chaparral document #07-0003-340

The following SES commands are valid for the environCommand parameter above:

Command
SES_SEND_ENCLOSURE_CONTROL
SES_SEND_STRING_OUT
SES_SEND_THRESHOLD_OUT
SES_SEND_ARRAY_CONTROL

Lengthy Operation
Need Current Configuration
May Change Configuration

✔ See Capability Bits

See also:
CAPI_EnvironWrite()
CAPI_U_EnvironRead()
CAPI_U_FindNextEnvironProcessor()

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 263

Unified Expand Array in CAPI 3.4

Syntax:
CAPI_RC CAPI_U_ExpandArrayCAPI_U_ExpandArrayCAPI_U_ExpandArrayCAPI_U_ExpandArray(CAPI_HANDLE handlehandlehandlehandle,
 CAPI_UNIFIED_CREATE_ARRAY_STRUCT *expandArrayStruct*expandArrayStruct*expandArrayStruct*expandArrayStruct);

Description:
This function adds a new drive to an existing array and begins online capacity expansion to increase the
size of the array. The original array is indicated by the arraySerialNumber member of expandArrayStruct.

handle is the handle of the controller that executes the command.
expandArrayStruct is a pointer to a structure that provides all the parameters necessary to expand an

array.

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_U_EXPAND_ARRAY_START
errorCode Completion status of the command.
identifier controllerHandle is valid.
param1
param2
dataPtr

Events:
CAPI_EVENT_EXPAND_ARRAY_START
CAPI_EVENT_EXPAND_ARRAY_COMPLETE

Remarks :
Note: The new drives must be at least as large as the smallest existing member drive in

the array.

✔ Lengthy Operation
✔ Need Current Configuration
✔ May Change Configuration
✔ See Capability Bits

See also:
CAPI_ExpandArray()

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

264 Chaparral document #07-0003-340

Unified Find Next Environ Processor in CAPI 3.4

Syntax:
CAPI_RC CAPI_U_FindNextEnvironProcessorCAPI_U_FindNextEnvironProcessorCAPI_U_FindNextEnvironProcessorCAPI_U_FindNextEnvironProcessor(CAPI_HANDLE handlehandlehandlehandle,
 CAPI_U32 environProcessorIndexenvironProcessorIndexenvironProcessorIndexenvironProcessorIndex);

Description:
Finds environmental devices (Enclosure Management Processors or EMPs) that may be attached to the
controller. The information that is returned in the CAPI_ENVIRON_PROCESSOR_INFO structure is the standard
SCSI inquiry data.

handle is the handle of the controller that executes the command.
environProcessorIndex is the index of the EMP you are trying to find. This is a zero-based sequential

index, so on the first call to this function, set index to zero. For the next call, set index to one, and so on.
When the callback returns a value of CAPI_ERROR_NO_SUCH_ENVIRON_PROCESSOR, you are finished.

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_U_FIND_NEXT_ENVIRON_PROCESSOR
errorCode CAPI_ERROR_NO_SUCH_ENVIRON_PROCESSOR means no more EMPs.
identifier controllerHandle is valid.
param1
param2
dataPtr If an EMP is found (i.e., as long as error code is not

CAPI_NO_SUCH_ENVIRON_PROCESSOR), this points to a
CAPI_ENVIRON_PROCESSOR_INFO structure.

Events:

Remarks :
In this document, the terms �environmental processor,� �environmental device,� �environmental unit,�
�Enclosure Management Processor,� and �EMP� are used interchangeably.

Call this function with an increasing index value, starting at 0, until you receive an error code of
CAPI_ERROR_NO_SUCH_ENVIRON_PROCESSOR. Use the found index values in the CAPI_U_EnvironRead
and CAPI_U_EnvironWrite function calls.

This command issues a SCSI Inquiry command to each EMP. If the Inquiry succeeds, the Callback
contains errorCode = CAPI_NO_ERROR and u.inquiry in the CAPI_ENVIRON_PROCESSOR struct
contains valid inquiry data. In the unlikely event that the Inquiry fails, the callback contains errorCode =
CAPI_ERROR_COMMAND_FAILED and u.e in the CAPI_ENVIRON_PROCESSOR struct contains valid
status and sense data. In either case, the empId, busId, targetId and lun members of
CAPI_ENVIRON_PROCESSOR are valid.

Lengthy Operation
Need Current Configuration
May Change Configuration
See Capability Bits

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 265

See also:
CAPI_FindNextEnvironProcessor()
CAPI_U_EnvironRead()
CAPI_U_EnvironWrite()

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

266 Chaparral document #07-0003-340

Unified Force Offline in CAPI 3.4

Syntax:
CAPI_RC CAPI_U_ForceOfflineCAPI_U_ForceOfflineCAPI_U_ForceOfflineCAPI_U_ForceOffline(CAPI_HANDLE handlehandlehandlehandle,
 CAPI_MODULE_TYPE moduleTypemoduleTypemoduleTypemoduleType,
 CAPI_MODULE_INDEX moduleIndexmoduleIndexmoduleIndexmoduleIndex,
 CAPI_U8 param3param3param3param3);

Description:
Forces the replaceable module (FRU) offline. The module will carry out this request even if it affects
performance (for example, putting one Data Manager offline in an active-active RAID system) and even if it
affects availability (for example, putting a Data Manager offline in a RAID system when the other Data
Manager is already offline). If the request affects availability, this command returns an error code indicating
the problem, but that error code will be returned in param1, not in errorCode.

handle is the handle of the controller that executes the command.
moduleType is the type of FRU that is being put offline. At this writing, only CAPI_MODULE_TYPE_DM

and CAPI_MODULE_TYPE_DG are supported.
moduleIndex identifies the specific module. This must be one of 0 through 3 for Data Gates. It must be

CAPI_MODULE_A or CAPI_MODULE_B for Data Managers.
param3 is reserved for possible future use.

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_U_FORCE_OFFLINE
errorCode Completion status of the command.
identifier controllerHandle is valid.
param1 error code that would have been returned if this was a call to CAPI_PutOffline
param2
dataPtr

Events:

Remarks:
If the specified Data Manager (DM) that is to be forced offline is the other DM (not the one processing this
command), this is accomplished by asserting the hardware reset line of that DM board to kill it.

If the specified DM that is to be forced offline is the one processing this command, this is accomplished by
asking the other DM to kill this DM by asserting the hardware reset line.

But if the specified controller board that is to be forced offline is the one processing this command and the
other controller board is offline, this is accomplished by gracefully shutting down the controller board via
software (equivalent to CAPI_ShutDownController or CAPI_PutOffline).

This function requires capability bit CAPI_CAPABILITY_3_REPLACEABLE_MODULE to be set.

Lengthy Operation
✔ Need Current Configuration
✔ May Change Configuration
✔ See Capability Bits

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 267

See also:
CAPI_ForceOffline()
CAPI_U_PutOffline()
CAPI_U_PutOnline()
CAPI_U_ForceOnline()

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

268 Chaparral document #07-0003-340

Unified Force Online in CAPI 3.4

Syntax:
CAPI_RC CAPI_U_ForceOnlineCAPI_U_ForceOnlineCAPI_U_ForceOnlineCAPI_U_ForceOnline(CAPI_HANDLE handlehandlehandlehandle,
 CAPI_MODULE_TYPE moduleTypemoduleTypemoduleTypemoduleType,
 CAPI_MODULE_INDEX moduleIndexmoduleIndexmoduleIndexmoduleIndex,
 CAPI_U8 param3param3param3param3);

Description:
Forces the replaceable module (FRU) online ungracefully. Putting a module online ungracefully means not
running full diagnostics and not running compatibility checks to see if the hardware and firmware of the
FRU are compatible with the other FRUs. This command is only for Chaparral internal use and it is
available only in beta builds, not in customer builds.

handle is the handle of the controller that executes the command.
moduleType is the type of FRU that is being put offline. At this writing, only CAPI_MODULE_TYPE_DM

and CAPI_MODULE_TYPE_DG are supported.
moduleIndex identifies the specific module. This must be one of 0 through 3 for Data Gates. It must be

CAPI_MODULE_A or CAPI_MODULE_B for Data Managers.
param3 is reserved for possible future use.

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_U_FORCE_ONLINE
errorCode Completion status of the command.
identifier controllerHandle is valid.
param1
param2
dataPtr

Events:

Remarks:
This function requires capability bit CAPI_CAPABILITY_3_REPLACEABLE_MODULE to be set.

Lengthy Operation
✔ Need Current Configuration
✔ May Change Configuration
✔ See Capability Bits

See also:
CAPI_ForceOnline()
CAPI_U_ForceOffline()
CAPI_U_PutOffline()
CAPI_U_PutOnline()

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 269

Unified Free Cache in CAPI 3.4

Syntax:
CAPI_RC CAPI_U_FreeCacheCAPI_U_FreeCacheCAPI_U_FreeCacheCAPI_U_FreeCache(CAPI_HANDLE controllerHandle,controllerHandle,controllerHandle,controllerHandle,
 CAPI_U8 *arraySerialNumber*arraySerialNumber*arraySerialNumber*arraySerialNumber);

Description:
Frees memory used by the write-back cache in the controller for a specific array. Discards any data that is
not flushed to the drive.
Not implemented yet. Use CAPI_FreeCache.

handle is the handle of the controller that executes the command.
arraySerialNumber serial number of array with orphan data(from CAPI_EVENT_ORPHAN_DATA)

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_U_CACHE_FREE
errorCode Completion status of the command.
identifier controllerHandle is valid.
param1
param2
dataPtr

Events:

Remarks :
In the event of a catastrophic array failure (such as a multiple drive failure under RAID 5), or if an array is
moved from one controller to another, the controller is unable to flush cached write data to the array. To
make this memory available to other arrays, free cache causes this memory to be made free for use to
other arrays. The data is not written to the disks and is permanently lost. Use
CAPI_EVENT_ORPHAN_DATA to trigger this command.

Lengthy Operation
✔ Need Current Configuration

May Change Configuration
See Capability Bits

See also:
CAPI_FreeCache()
CAPI_U_FlushCache()
CAPI_U_SetCacheParams()

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

270 Chaparral document #07-0003-340

Unified Get Advanced Network Interface

Description:
There is no need for a unified version of this function because the members of the
CAPI_ADVANCED_NETWORK_INTERFACE structure can be gotten and set with
CAPI_U_GetControllerData and CAPI_U_SetControllerParams.

See also:
CAPI_GetAdvancedNetworkInterface()
CAPI_SetAdvancedNetworkInterface()
CAPI_U_GetControllerData()
CAPI_U_SetControllerParams()

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 271

Unified Get Array List in CAPI 3.4

Syntax:
CAPI_RC CAPI_U_GetArrayListCAPI_U_GetArrayListCAPI_U_GetArrayListCAPI_U_GetArrayList(CAPI_HANDLE handlehandlehandlehandle,
 CAPI_CONTROLLER_ID controllerIdcontrollerIdcontrollerIdcontrollerId);

Description:
This returns an array of CAPI_ARRAY structures.

handle is the handle of the controller that executes the command.
controllerId specifies which controller to get the array list from; one of: CAPI_CONTROLLER_A,

CAPI_CONTROLLER_B, CAPI_CONTROLLER_BOTH.

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_U_GET_ARRAY_LIST
errorCode Completion status of the command.
identifier controllerHandle is valid.
param1 Number of CAPI_ARRAY structs returned.
param2 Configuration sequence number for controller A.
param3 Configuration sequence number for controller B.
dataPtr Pointer to the first element of an array of CAPI_ARRAY structures; there are

param1 elements in the array.

Events:

Remarks:
The application developer needs to make sure that the configuration sequence number on their copy of the
array list (an array of CAPI_ARRAY structures retrieved with a call to CAPI_GetArrayList) matches the
configuration sequence number on their copy of CAPI_CONTROLLER (retrieved with a call to
CAPI_UpdateController). A CAPI_ERROR_FAILURE_DUE_TO_CONFIG_CHANGE will occur if a
configuration change is attempted with incompatible structures.

The list of arrays is returned sorted by the creation timestamp. Note that this means that if controllerId is
specified as CAPI_CONTROLLER_BOTH, arrays owned by both controllers will be sorted into one list.

Lengthy Operation
Need Current Configuration
May Change Configuration

✔ See Capability Bits

See also:
CAPI_GetArrayList()

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

272 Chaparral document #07-0003-340

Unified Get Array Partitions in CAPI 3.4

Syntax:
CAPI_RC CAPI_U_GetArrayPartitionsCAPI_U_GetArrayPartitionsCAPI_U_GetArrayPartitionsCAPI_U_GetArrayPartitions(CAPI_HANDLE handlehandlehandlehandle,
 CAPI_U8 *arraySerialNumber *arraySerialNumber *arraySerialNumber *arraySerialNumber);

Description:
Gets a list of partitions contained in the specified array.

handle is the handle of the controller that executes the command.
arraySerialNumber is a pointer to the serial number of the array which contains the partitions.

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_U_GET_ARRAY_PARTITIONS
errorCode Completion status of the command.
identifier controllerHandle is valid.
param1 Number of CAPI_ARRAY_PARTITION structs returned.
param2 Configuration sequence number of the controller that owns the array.
dataPtr Pointer to the first element of an array of CAPI_ARRAY_PARTITION structures;

there are param1 elements in the array.

Events:

Remarks :
This command is valid if the CAPI_CAPABILITY_2_ARRAY_PARTITIONS capability flag is set. The
maximum number of partitions supported by one array is given by
CAPI_MAX_PARTITIONS_PER_ARRAY.

Lengthy Operation
✔ Need Current Configuration

May Change Configuration
✔ See Capability Bits

See also:
CAPI_GetArrayPartitions()
CAPI_U_AddArrayPartition()

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 273

Unified Get Config Sequence Number in CAPI 3.4

Syntax:
CAPI_RC CAPI_U_GetConfigSequenceNumberCAPI_U_GetConfigSequenceNumberCAPI_U_GetConfigSequenceNumberCAPI_U_GetConfigSequenceNumber(CAPI_HANDLE handlehandlehandlehandle);

Description:
Replies with both controllers� current configuration sequence numbers, which can be used to determine if a
controller structures update is required (CAPI_U_GetControllerData, CAPI_U_GetDriveList,
CAPI_U_GetArrayList). (See commands in this document with a check next to �Need Current
Configuration�; for example, CAPI_U_SetControllerParams.)

handle is the handle of the controller that executes the command.

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_U_GET_CONFIG_SEQ_NUMBER
errorCode Completion status of the command.
identifier controllerHandle is valid.
param1
param2 Configuration sequence number for controller A.
param3 Configuration sequence number for controller B.
dataPtr

Events:

Remarks:

Lengthy Operation
Need Current Configuration
May Change Configuration

✔ See Capability Bits

See also:
CAPI_GetConfigSequenceNumber()

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

274 Chaparral document #07-0003-340

Unified Get Controller Data in CAPI 3.4

Syntax:
CAPI_RC CAPI_U_GetControllerDataCAPI_U_GetControllerDataCAPI_U_GetControllerDataCAPI_U_GetControllerData(CAPI_HANDLE handlehandlehandlehandle);

Description:
Returns a current copy of the CAPI_UNIFIED_CONTROLLER structure through a subsequent callback.
This is used to update your copy of the unified controller structure.

handle is the handle of the controller that executes the command.

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_U_GET_CONTROLLER_DATA
errorCode Completion status of the command.
identifier controllerHandle is valid.
param1
param2 Configuration sequence number for controller A.
param3 Configuration sequence number for controller B.
dataPtr Contains a pointer to a CAPI_UNIFIED_CONTROLLER structure.

Events:

Remarks :
A pointer to the structure is provided to the callback function in a temporary buffer that must be copied by
the application into a permanent copy.

Lengthy Operation
Need Current Configuration
May Change Configuration
See Capability Bits

See also:
CAPI_UpdateController() is the corresponding non-unified command.

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 275

Unified Get Debug Data in CAPI 3.4

Syntax:
CAPI_RC CAPI_U_GetDebugDataCAPI_U_GetDebugDataCAPI_U_GetDebugDataCAPI_U_GetDebugData(CAPI_HANDLE handlehandlehandlehandle,
 CAPI_DEBUG_DATA_REGION regionregionregionregion,
 CAPI_U32 debugDataOffsetdebugDataOffsetdebugDataOffsetdebugDataOffset,
 CAPI_CONTROLLER_ID controllerIdcontrollerIdcontrollerIdcontrollerId);

Description:
This command allows a CAPI application to get the debug data that has been logged in the controller.
Debug data is logged by many parts of the controller software. Data is in ASCII text format and consists of
printable characters plus space, tab, and new-line characters. Many lines start with a time stamp.

handle is the handle of the controller that executes the command.
region is the portion of the debug data to get.
debugDataOffset is the offset (in bytes, 0-based) at which to start retrieving the debug data in the

controller.
controllerId specifies which controller to send this command to; one of: CAPI_CONTROLLER_A,

CAPI_CONTROLLER_B.

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_U_GET_DEBUG_DATA
errorCode Completion status of the command.
identifier controllerHandle is valid.
param1 The number of characters that have been put in the data buffer pointed to by

dataPtr.
param2
dataPtr CAPI_CHAR *

Events:

Remarks:
The data is not null-terminated; use param1 to determine how much data is available. There may be
garbage characters in the data buffer after the valid data.

Notes on using debugDataOffset

The area on a controller that is dedicated to saving debug data is typically several hundred kilobytes. It is
not possible to get all of this data in one call to this function, because of size limitations of the data buffer in
the LMX. The maximum size of a block of data that will be returned by a call to this function is
CAPI_MAX_DEBUG_DATA_PER_GET (defined as 32768 as of this writing). Your CAPI application should
call this function repeatedly (with the region set to the same value) until it returns with param1 set to a
value that is less than CAPI_MAX_DEBUG_DATA_PER_GET. Each time you call this function, you should
increase the value of debugDataOffset by CAPI_MAX_DEBUG_DATA_PER_GET, starting with 0. For
example, if a particular controller has debug data in the boot-up region that has a total size of 70000 bytes,
the first time your app calls this command, debugDataOffset should be set to 0 and the callback will contain
32768 characters and param1 will be 32768. The second time the app calls this command,

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

276 Chaparral document #07-0003-340

debugDataOffset should be set to 32768 and the callback will contain 32768 characters and param1 will be
32768. The third time the app calls this command, debugDataOffset should be set to 65536. This call will
get the remaining 4464 characters (70000 � 65536 = 4464). The callback will contain 4464 characters and
param1 will be 4464. Your app should concatenate these 3 blocks of data for display to a user.

If the debugDataOffset is beyond the end of valid debug data, 0 characters will be put in the data buffer and
param1 will be 0.

When this function is called with offset = 0, a snapshot copy is made of the debug data in the specified
region. Subsequent calls to this function with offset != 0 will retrieve data from that snapshot buffer.

WARNING: If more than one application is calling this function at the same time, there is the potential for
interaction between the applications and the data that it retrieved may not be the desired data. (This is
because the large buffer sizes involved require that all CAPI apps share a single, global snapshot buffer.)

Organization of the debug data into regions
The debug data is organized into 6 separate regions. They are:
• Boot-up prints (region = CAPI_DEBUG_DATA_REGION_BOOT_LOG)
• 4 crash-dump regions (region = CAPI_DEBUG_DATA_REGION_CRASH_LOG1 through 4)
• General debug prints (region = CAPI_DEBUG_DATA_REGION_PRINT_LOG)

Note that a CAPI application should not assume a region is any particular size, since this will vary from
product to product and may vary with future releases of a product. Instead, the application should keep
asking for data until param1 indicates all data has been retrieved, as discussed above. But to give you
some idea as to the size, as of this writing the boot-up region is 20480 bytes; the other regions are each
102400 bytes.

Each region fills up from the lowest address. If the buffer has not filled up, param1 will indicate how many
bytes of data you have received, and this number may even be 0. Once the buffer fills up, older data will be
lost. The oldest line of debug data may be an incomplete line.

The 4 crash-dump regions wrap in this way: Crash-dump region 1 is used to save the first crash, then the
second crash-dump region is used to save the second crash, and so on till all 4 are used, then the first
crash-dump region is reused, then successive crash-dump regions are reused.

If a controller is gracefully shut down or put off line (for example, via CAPI_PutOffline,
CAPI_RebootController, or CAPI_ShutDownController), all the debug data is cleared. If a controller is
ungracefully shut down or forced off line (for example, killed by the other controller, or the power is shut off,
or via CAPI_ForceOffline) then the debug data will be preserved in battery-backed RAM on the controller.

Lengthy Operation
Need Current Configuration
May Change Configuration
See Capability Bits

See also:
CAPI_GetDebugData()

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 277

Unified Get Drive Error Statistics in CAPI 3.4

Syntax:
CAPI_RC CAPI_U_GetDriveErrorStatisticsCAPI_U_GetDriveErrorStatisticsCAPI_U_GetDriveErrorStatisticsCAPI_U_GetDriveErrorStatistics(CAPI_HANDLE handlehandlehandlehandle,
 CAPI_U8 *driveSerialNumber*driveSerialNumber*driveSerialNumber*driveSerialNumber);

Description:
This command gets drive error statistics for a specified disk drive.
Not implemented yet. Use CAPI_GetDriveErrorStatistics.

handle is the handle of the controller that executes the command.
driveSerialNumber is a pointer to a drive serial number.

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_U_GET_DRIVE_ERROR_STATS
errorCode Completion status of the command.
identifier controllerHandle is valid.
param1
param2
dataPtr Pointer to a CAPI_DRIVE_ERROR_STATS structure.

Events:

Remarks:

Lengthy Operation
Need Current Configuration
May Change Configuration
See Capability Bits

See also:
CAPI_GetDriveErrorStatistics()
CAPI_U_ResetDriveErrorStatistics()

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

278 Chaparral document #07-0003-340

Unified Get Drive List in CAPI 3.4

Syntax:
CAPI_RC CAPI_U_GetDriveListCAPI_U_GetDriveListCAPI_U_GetDriveListCAPI_U_GetDriveList(CAPI_HANDLE handlehandlehandlehandle,
 CAPI_CONTROLLER_ID controllerId controllerId controllerId controllerId);

Description:
This returns an array of CAPI_DRIVE structures.

handle is the handle of the controller that executes the command.
controllerId specifies which controller to get the drive list from; one of: CAPI_CONTROLLER_A,

CAPI_CONTROLLER_B, CAPI_CONTROLLER_BOTH.

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_U_GET_DRIVE_LIST
errorCode Completion status of the command.
identifier controllerHandle is valid.
param1 Number of CAPI_DRIVE structs returned.
param2 Configuration sequence number for controller A.
param3 Configuration sequence number for controller B.
dataPtr Pointer to the first element of an array of CAPI_DRIVE structures; there are param1

elements in the array.

Events:

Remarks:
The application developer needs to make sure that the configuration sequence number on their copy of the
drive list (an array of CAPI_DRIVE structures retrieved with a call to CAPI_U_GetDriveList) matches the
configuration sequence number on their copy of CAPI_UNIFIED_CONTROLLER (retrieved with a call to
CAPI_U_GetControllerData). A CAPI_ERROR_FAILURE_DUE_TO_CONFIG_CHANGE will occur if a
configuration change is attempted with incompatible structures.

A controller does not have visibility to drives that are members of an array owned by the other controller nor
to drives that are dedicated spares of an array owned by the other controller, and therefore does not return
these drives in its list of drives. For example, if CAPI_CONTROLLER_A is specified for controllerId, drives
that are members or dedicated spares of arrays owned by Controller B are not included in the list of drives.

If CAPI_CONTROLLER_BOTH is specified for controllerId, lists from both controllers are combined into a
single list. The controller combines them by starting with Controller A's list, then compares the drive serial
number of each element of Controller B's list against Controller A's list and adds it to the list after Controller
A's list if its serial number differs from all elements of Controller A's list. If a developer of a CAPI app
doesn't like this algorithm, the app can call CAPI_U_GetDriveList twice, once to get Controller A's list and
then again to get Controller B's list, and deal with the 2 lists any way the developer chooses.

While it is handy to be able to specify CAPI_CONTROLER_BOTH for controllerId to get a combined list of
drives, note the following caveats:
• The dualPorted member of CAPI_DRIVE may differ between Controller A�s list and Controller B�s list in

the event of a hardware failure that causes one of the two controllers to be connected as single-ported;
thus, when CAPI_CONTROLLER_BOTH is specified for controllerId, only Controller A�s value for
dualPorted is returned.

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 279

• The value of struct member seeErrorStats may also differ between the two controllers; a logical �or� of
the values from the two controllers is returned in this case.

• The value of struct member blinking may also differ between the two controllers (since only the
controller that executed the command to blink the drive will have this flag set in CAPI_DRIVE); a logical
�or� of the values from the two controllers is returned in this case to accurately reflect the state of the
drive.

Lengthy Operation
Need Current Configuration
May Change Configuration

✔ See Capability Bits

See also:
CAPI_GetDriveList()

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

280 Chaparral document #07-0003-340

Unified Get Event in CAPI 3.4

Syntax:
CAPI_RC CAPI_U_GetEventCAPI_U_GetEventCAPI_U_GetEventCAPI_U_GetEvent(CAPI_HANDLE handlehandlehandlehandle,
 CAPI_U32 eventNumeventNumeventNumeventNum,
 CAPI_CONTROLLER_ID controllerId controllerId controllerId controllerId);

Description:
Get event information from the controller.

handle is the handle of the controller that executes the command.
eventNum is the sequential number of the event to retrieve (zero is an invalid event number).
controllerId specifies which controller to get the event from; one of: CAPI_CONTROLLER_A,

CAPI_CONTROLLER_B.

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_U_GET_EVENT
errorCode Completion status of the command.
identifier controllerHandle is valid.
param1 The requested event sequence number.
param2 The first event sequence number available on the controller.
param3 The last event sequence number available on the controller.
dataPtr A pointer to a CAPI_EVENT structure.

Events:

Remarks:
Event numbers start at one. If the controller reports that the last event sequence number is zero, then this
indicates an empty event log.

Lengthy Operation
Need Current Configuration
May Change Configuration
See Capability Bits

See also:
CAPI_GetEvent()
CAPI_U_GetFirstEvent()
CAPI_U_GetLastEvent()

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 281

Unified Get First Event in CAPI 3.4

Syntax:
CAPI_RC CAPI_U_GetFirstEventCAPI_U_GetFirstEventCAPI_U_GetFirstEventCAPI_U_GetFirstEvent(CAPI_HANDLE handlehandlehandlehandle,
 CAPI_CONTROLLER_ID controllerId controllerId controllerId controllerId);

Description:
Gets the first event information in the event queue from the controller.

handle is the handle of the controller that executes the command.
controllerId specifies which controller to get the event from; one of: CAPI_CONTROLLER_A,

CAPI_CONTROLLER_B.

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_U_GET_FIRST_EVENT
errorCode Completion status of the command.
identifier controllerHandle is valid.
param1 The first event sequence number available on the controller.
param2 The event sequence number of the last controller power up; that is, the most recent

event that has an event code of CAPI_EVENT_POWER_UP.
param3 The last event sequence number available on the controller.
dataPtr A pointer to a CAPI_EVENT structure.

Events:

Remarks:
Event numbers start at one. If the controller reports that the last event sequence number is zero, then this
indicates an empty event log. As the controller runs, the sequence numbers increment and the event trace
will wrap. The first and last event numbers allow the application to determine how many events are in the
event log.

Lengthy Operation
Need Current Configuration
May Change Configuration
See Capability Bits

See also:
CAPI_GetFirstEvent()
CAPI_U_GetEvent()
CAPI_U_GetLastEvent()

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

282 Chaparral document #07-0003-340

Unified Get Free Array Partitions in CAPI 3.4

Syntax:
CAPI_RC CAPI_U_GetFreeArrayPartitionsCAPI_U_GetFreeArrayPartitionsCAPI_U_GetFreeArrayPartitionsCAPI_U_GetFreeArrayPartitions(CAPI_HANDLE handlehandlehandlehandle,
 CAPI_U8 *arraySerialNumber *arraySerialNumber *arraySerialNumber *arraySerialNumber);

Description:
Gets the list of free array partitions contained in the specified array. These are essentially the unpartitioned
or �free� areas on the array. Each of these free areas is a location where a new partition can be added or
into which an adjacent (and physically lower) partition can be expanded.

handle is the handle of the controller that executes the command.
arraySerialNumber is a pointer to the serial number of the array that contains the free partitions.

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_U_GET_FREE_ARRAY_PARTITIONS
errorCode Completion status of the command.
identifier controllerHandle is valid.
param1 Number of CAPI_ARRAY_PARTITION structs returned.
param2 Configuration sequence number of the controller that owns this array.
dataPtr Pointer to the first element of an array of CAPI_ARRAY_PARTITION structures;

there are param1 elements in the array.

Events:

Remarks :
This command is valid if the CAPI_CAPABILITY_2_ARRAY_PARTITIONS capability bit is set. The
maximum number of free partitions supported by one array is given by
CAPI_MAX_FREE_PARTITIONS_PER_ARRAY. Note that the only fields of interest in the returned
CAPI_ARRAY_PARTITION structure are startLba and sizeLba.

Lengthy Operation
✔ Need Current Configuration

May Change Configuration
✔ See Capability Bits

See also:
CAPI_GetFreeArrayPartitions()
CAPI_U_AddArrayPartition()
CAPI_U_GetArrayPartitions()

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 283

Unified Get Host Nicknames in CAPI 3.4

Syntax:
CAPI_RC CAPI_U_GetHostNicknamesCAPI_U_GetHostNicknamesCAPI_U_GetHostNicknamesCAPI_U_GetHostNicknames(CAPI_HANDLE handlehandlehandlehandle);

Description:
This command allows a CAPI application to get a structure containing a list of all hosts that have
nicknames defined. This structure maps worldwide names to nicknames. This mapping can be used by a
CAPI application to allow a user to use nicknames instead of worldwide names.

handle is the handle of the controller that executes the command.

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_U_GET_HOST_NICKNAMES
errorCode Completion status of the command.
identifier controllerHandle is valid.
param1
param2
dataPtr Pointer to a CAPI_HOST_NICKNAMES structure.

Events:

Remarks:
See CAPI_U_AddHost for a discussion of how a typical application might best use this command.

This function requires capability bit CAPI_CAPABILITY_2_INFOSHIELD to be set.

Lengthy Operation
Need Current Configuration
May Change Configuration

✔ See Capability Bits

See also:
CAPI_GetHostNicknames()
CAPI_U_AddHostNickname()
CAPI_U_GetKnownHosts()
CAPI_U_AddHost()
CAPI_U_RemoveHost()

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

284 Chaparral document #07-0003-340

Unified Get Host Table in CAPI 3.4

Syntax:
CAPI_RC CAPI_CAPI_CAPI_CAPI_U_U_U_U_GetHostTableGetHostTableGetHostTableGetHostTable(CAPI_HANDLE handlehandlehandlehandle,
 CAPI_U32 channelIndexchannelIndexchannelIndexchannelIndex,
 CAPI_U32 unitNumunitNumunitNumunitNum,
 CAPI_U8 *partitionSerialNumber*partitionSerialNumber*partitionSerialNumber*partitionSerialNumber);

Description:
This function returns the table of hosts that either do or do not have access to the specified unitNum or
partitionSerialNumber.

handle is the handle of the controller that executes the command.
channelIndex host channel index that the array or device is being presented on.
unitNum LUN that this array or device is being presented as.
partitionSerialNumber is the serial number of the partition; if partitions are not supported (capability bit

CAPI_CAPABILITY_2_ARRAY_PARTITIONS not set), then this is an array serial number. (Applies to
RAID only; not routers.)

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_U_GET_HOST_TABLE
errorCode Completion status of the command.
identifier controllerHandle is valid.
param1
param2
dataPtr Pointer to a CAPI_HOST_TABLE structure.

Events:

Remarks:
If partitionSerialNumber is not NULL, it will be used; if it is NULL, channelIndex and unitNum will be used.

Lengthy Operation
✔ Need Current Configuration
✔ May Change Configuration
✔ See Capability Bits

See also:
CAPI_GetHostTable()
CAPI_U_AddHost()
CAPI_U_RemoveHost()
CAPI_U_ChangeInfoshieldType()

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 285

Unified Get Known Hosts in CAPI 3.4

Syntax:
CAPI_RC CAPI_U_GetKnownHostsCAPI_U_GetKnownHostsCAPI_U_GetKnownHostsCAPI_U_GetKnownHosts(CAPI_HANDLE handlehandlehandlehandle,
 CAPI_CONTROLLER_ID controllerId controllerId controllerId controllerId);

Description:
This function returns the table of hosts that are known to have communicated with the controller.

handle is the handle of the controller that executes the command.
controllerId specifies which controller to get the list of known hosts from; one of: CAPI_CONTROLLER_A,

CAPI_CONTROLLER_B, CAPI_CONTROLLER_BOTH.

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_U_GET_KNOWN_HOSTS
errorCode Completion status of the command.
identifier controllerHandle is valid.
param1
param2
dataPtr Pointer to a CAPI_KNOWN_HOSTS structure.

Events:

Remarks:
See CAPI_U_AddHost for a discussion of how a typical application might best use this command.

The list can contain up to 64 hosts; if more hosts contact the controller than 64, the oldest entries are
dropped.

If controllerId is specified as CAPI_CONTROLLER_BOTH, then the CAPI_KNOWN_HOSTS struct will
contain all hosts known to either or both controllers. Some hosts may be known to both controllers; other
hosts may only be known to one controller. We start by getting a list of known hosts from controller A and a
separate list of known hosts from controller B. We combine them by starting with Controller A's list, then we
compare each element of Controller B's list against Controller A's list and add it to the list after Controller
A's list if it differs from all elements of Controller A's list. We set the value of the controllerId field in the list
as we go through this algorithm, marking each element of the list as known to A-only, B-only, or BOTH.
Then we sort the list by the controllerId field so it is in order of BOTH, A, B. If a developer of a CAPI app
doesn't like this algorithm, the app can call CAPI_U_GetKnownHosts twice, once to get Controller A's list
and then again to get Controller B's list, and deal with them any way the developer chooses.

Lengthy Operation
✔ Need Current Configuration
✔ May Change Configuration
✔ See Capability Bits

See also:
CAPI_GetKnownHosts()
CAPI_U_GetHostTable()

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

286 Chaparral document #07-0003-340

Unified Get Last Event in CAPI 3.4

Syntax:
CAPI_RC CAPI_U_GetLastEventCAPI_U_GetLastEventCAPI_U_GetLastEventCAPI_U_GetLastEvent(CAPI_HANDLE handlehandlehandlehandle,
 CAPI_CONTROLLER_ID controllerIdcontrollerIdcontrollerIdcontrollerId);

Description:
Gets the last event information in the event queue from the controller.

handle is the handle of the controller that executes the command.
controllerId specifies which controller to get the last event from; one of: CAPI_CONTROLLER_A,

CAPI_CONTROLLER_B.

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_U_GET_LAST_EVENT
errorCode Completion status of the command.
identifier controllerHandle is valid.
param1 The last event sequence number available on the controller.
param2 The first event sequence number available on the controller.
dataPtr A pointer to a CAPI_EVENT structure.

Events:

Remarks:
Event numbers start at one. If the controller reports that the last event sequence number is zero, then this
indicates an empty event log.

Lengthy Operation
Need Current Configuration
May Change Configuration
See Capability Bits

See also:
CAPI_GetLastEvent()
CAPI_U_GetEvent()
CAPI_U_GetFirstEvent()

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 287

Unified Get Percent Complete in CAPI 3.4

Syntax:
CAPI_RC CAPI_U_GetPercentCompleteCAPI_U_GetPercentCompleteCAPI_U_GetPercentCompleteCAPI_U_GetPercentComplete(CAPI_HANDLE handlehandlehandlehandle,
 CAPI_U8 *arraySerialNumber arraySerialNumber arraySerialNumber arraySerialNumber);

Description:
Returns the percent complete of the currently running utility.

handle is the handle of the controller that executes the command.
arraySerialNumber is a pointer to the serial number of the target array.

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_U_GET_PERCENT_COMPLETE
errorCode Completion status. If successful, param1 contains a valid percentage.
identifier controllerHandle is valid.
param1 Contains the percent complete value as a 32-bit unsigned integer.
param2 Contains the CAPI_UTILITY_RUNNING type of utility running.
dataPtr

Events:

Remarks :
If param2 equals CAPI_NO_UTILITY_RUNNING, then param1 is undefined.

Lengthy Operation
✔ Need Current Configuration

May Change Configuration
See Capability Bits

See also:
CAPI_GetPercentComplete

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

288 Chaparral document #07-0003-340

Unified Get SCSI Maintenance Data in CAPI 3.4

Syntax:
CAPI_RC CAPI_U_GetScsiMaintenanceDataCAPI_U_GetScsiMaintenanceDataCAPI_U_GetScsiMaintenanceDataCAPI_U_GetScsiMaintenanceData(CAPI_HANDLE handlehandlehandlehandle,
 CAPI_U32 dataBufferSize dataBufferSize dataBufferSize dataBufferSize);

Description:
Retrieves the additional data returned from a maintenance command.

handle is the handle of the controller that executes the command.
dataBufferSize is the number of bytes of data that you want to be returned in the

CAPI_MAINT_DATA_STRUCT. You can specify a value that is appropriate for the SCSI command sent
by CAPI_ScsiMaintenance. The maximum size that can be specified is
sizeof(CAPI_MAINT_DATA_STRUCT); if you specify more that that number of bytes, only that many
bytes will be returned.

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_U_GET_SCSI_MAINT_DATA
errorCode Completion status of the command.
identifier controllerHandle is valid.
param1 The number of bytes of data that have been put in the data buffer pointed to by

dataPtr. (Normally equal to dataBufferSize, but never greater than
sizeof(CAPI_MAINT_DATA_STRUCT).)

param2
dataPtr A pointer to a CAPI_MAINT_DATA_STRUCT. See page 82.

Events:

Remarks:
If you need to get more than the amount of data that will fit in CAPI_MAINT_DATA_STRUCT, use the non-
CAPI SCSI pass through capability described in Chapter 17.

Note that all calls to CAPI_ScsiMaintenance and CAPI_U_DoScsiMaintenance make use of a single buffer.
Thus, it is important that one SCSI maintenance operation be complete before the next one starts. The
sequence of commands should be as follows:
• Call CAPI_ScsiMaintenance or CAPI_U_DoScsiMaintenance.
• Wait for an event to be posted to indicate that the operation is complete (normally

CAPI_EVENT_SCSI_MAINT_DONE).
• Call CAPI_ScsiMaintRetrieveData or CAPI_U_GetScsiMaintenanceData to get any data.
• Repeat this sequence as desired.

Lengthy Operation
Need Current Configuration
May Change Configuration

✔ See Capability Bits

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 289

See also:
CAPI_ScsiMaintRetrieveData() is the corresponding non-unified command.
CAPI_U_DoScsiMaintenance()

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

290 Chaparral document #07-0003-340

Unified Log Event in CAPI 3.4

Syntax:
CAPI_RC CAPI_U_LogEventCAPI_U_LogEventCAPI_U_LogEventCAPI_U_LogEvent(CAPI_HANDLE handlehandlehandlehandle,
 CAPI_EVENT *eventeventeventevent,
 CAPI_CONTROLLER_ID controllerIdcontrollerIdcontrollerIdcontrollerId);

Description:
This command allows a CAPI application to make an entry in the event log that is maintained by and on a
Chaparral controller board. This command is for Chaparral internal use only.

handle is the handle of the controller that executes the command.
event is a pointer to a structure containing the event data to be logged.
controllerId specifies which controller to get the last event from; one of: CAPI_CONTROLLER_A,

CAPI_CONTROLLER_B.

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_U_LOG_EVENT
errorCode Completion status of the command.
identifier controllerHandle is valid.
param1
param2
dataPtr

Events:

Remarks:
This command is intended for use by Chaparral�s software only (specifically, to allow the LAN Subsystem
to log events in the event log maintained by the Storage Controller processor). This function should not be
used by external CAPI applications to avoid using up the limited space available for events (400 events at
this writing).

Lengthy Operation
Need Current Configuration
May Change Configuration
See Capability Bits

See also:
CAPI_LogEvent()

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 291

Unified Pause Bus in CAPI 3.4

Syntax:
CAPI_RC CAPI_U_PauseBusCAPI_U_PauseBusCAPI_U_PauseBusCAPI_U_PauseBus(CAPI_HANDLE handlehandlehandlehandle,
 CAPI_U32 channelIndexchannelIndexchannelIndexchannelIndex);

Description:
Suspends I/O to all back-end SCSI buses.

handle is the handle of the controller that executes the command.
channelIndex is the index of the bus or channel on the specified controller. However, this parameter is not

used at this time. By default, all buses will be paused.

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_U_PAUSE_BUS
errorCode Status of the operation. If successful, the disk channels are paused.
identifier controllerHandle is valid.
param1
param2
dataPtr

Events:

Remarks :
While some connectors are designed to allow hot-plugging SCSI drives, most are not. In all cases, the
SCSI bus should be paused to prevent corrupted data. If a SCSI drive is inserted or removed from the bus,
the pins may disrupt the signals. This function can be used to pause I/O on the bus while drives are added
or removed.

After a call to CAPI_PauseBus, the bus remains paused until a call to CAPI_UnpauseBus. When the
pause is issued, any SCSI commands currently in progress are allowed to complete. Any SCSI commands
received after the pause is issued are queued by the RAID controller. If the queue becomes full, a status of
queue full is returned to the host via the SCSI interface. Pass CAPI_NULL_ID in channelIndex to pause all
buses.
This command may not be implemented on this controller or you may not be able to pause individual
buses. See CAPI Versions
Different Chaparral products support different versions of CAPI. If the major version (for example, the 3 in
version 3.4) is the same for two products, you should be able to easily design a single CAPI app that
manages both products, although the product with the lower minor version number (for example, the 4 in
version 3.4) will not have all the features of the product with the higher minor version number. Specifically,
there may be additional CAPI commands added for a higher version number and there may be additional
members in some of the data structures passed to and from CAPI commands, but the members that
existed in the lower version of CAPI are still in the same locations in the same structures.

When a new version of the CAPI SDK is released, typically the most recent Chaparral product(s) are
released simultaneously with the SDK and the version of CAPI that is running in the controller corresponds
to the SDK version. However, developers of new CAPI apps can use a more recent version of the CAPI
SDK to talk to older products, provided the major version number matches, and, of course, the app cannot
use the newest features that have been added to CAPI which are not supported on that product.

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

292 Chaparral document #07-0003-340

Conversely, if a CAPI app was developed using an older version of the CAPI SDK (for example, CAPI 3.2),
it can still be used for managing a newer product that supports a newer version of CAPI (for example,
CAPI3.4), but of course the app will not be able to take advantage of the newer features that have been
added to CAPI 3.4 in the product but which are not in the CAPI 3.2 SDK.

As of this writing (September 2002), the following products support the corresponding version of CAPI:
• CAPI 2.x: G5312, G7313, all Kxxxx.
• CAPI 3.4: RIO, Stratis RAID S3300 (JFF224). (Thus, the features marked � in CAPI 3.3� and �

in CAPI 3.4� in this document are supported by these products only.)
• CAPI 3.2: All other Chaparral products.

CAPI Capabilities on page 29. Requires CAPI_CAPABILITY_2_PAUSE_INDIVIDUAL_BUS set to pause
an individual bus.

Lengthy Operation
Need Current Configuration
May Change Configuration

✔ See Capability Bits

See also:
CAPI_PauseBus()
CAPI_U_UnpauseBus()

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 293

Unified Put Offline in CAPI 3.4

Syntax:
CAPI_RC CAPI_U_PutOfflineCAPI_U_PutOfflineCAPI_U_PutOfflineCAPI_U_PutOffline(CAPI_HANDLE handlehandlehandlehandle,
 CAPI_MODULE_TYPE moduleTypemoduleTypemoduleTypemoduleType,
 CAPI_MODULE_INDEX moduleIndexmoduleIndexmoduleIndexmoduleIndex,
 CAPI_U8 param3param3param3param3);

Description:
Puts the replaceable module (FRU) offline gracefully. The controller will carry out this request even if it
affects performance (for example, putting one Data Manager offline in an active-active RAID system), but
will reject this request if it affects availability (for example, putting a Data Manager offline in a RAID system
when the other Data Manager is already offline). If the request is rejected, this command returns an
errorCode indicating the problem.

handle is the handle of the controller that executes the command.
moduleType is the type of FRU that is being put offline. At this writing, only CAPI_MODULE_TYPE_DM

and CAPI_MODULE_TYPE_DG are supported.
moduleIndex identifies the specific module. This must be one of 0 through 3 for Data Gates. It must be

CAPI_MODULE_A or CAPI_MODULE_B for Data Managers.
param3 is reserved for possible future use.

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_U_PUT_OFFLINE
errorCode Completion status of the command.
identifier ControllerHandle is valid.
param1
param2
dataPtr

Events:

Remarks:
Putting a Data Manager (DM) offline is equivalent to shutting it down.

CAPI_ShutDownController provides similar functionality to this function. However, that function can only act
on Data Managers and it can shut down both controller boards with a single function call.

Calling CAPI_PutOffline is equivalent to calling CAPI_ShutDownController for a single DM with fwUpdate
set to FALSE except that CAPI_PutOffline does availability checking first.

This function requires capability bit CAPI_CAPABILITY_3_REPLACEABLE_MODULE to be set.

Lengthy Operation
✔ Need Current Configuration
✔ May Change Configuration
✔ See Capability Bits

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

294 Chaparral document #07-0003-340

See also:
CAPI_PutOffline()
CAPI_U_PutOnline()
CAPI_U_ForceOffline()
CAPI_U_ForceOnline()
CAPI_U_ShutDownController()

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 295

Unified Put Online in CAPI 3.4

Syntax:
CAPI_RC CAPI_U_PutOnlineCAPI_U_PutOnlineCAPI_U_PutOnlineCAPI_U_PutOnline(CAPI_HANDLE handlehandlehandlehandle,
 CAPI_MODULE_TYPE moduleTypemoduleTypemoduleTypemoduleType,
 CAPI_MODULE_INDEX moduleIndexmoduleIndexmoduleIndexmoduleIndex,
 CAPI_U8 param3param3param3param3);

Description:
Puts the replaceable module (FRU) online gracefully. Putting a module online gracefully means running its
diagnostics and running compatibility checks to see if the hardware and firmware of the FRU are
compatible with the other FRUs. If these checks do not pass, this command returns an errorCode indicating
the problem.

handle is the handle of the controller that executes the command.
moduleType is the type of FRU that is being put offline. At this writing, only CAPI_MODULE_TYPE_DM

and CAPI_MODULE_TYPE_DG are supported.
moduleIndex identifies the specific module. This must be one of 0 through 3 for Data Gates. It must be

CAPI_MODULE_A or CAPI_MODULE_B for Data Managers.
param3 is reserved for possible future use.

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_U_PUT_ONLINE
errorCode Completion status of the command.
identifier controllerHandle is valid.
param1
param2
dataPtr

Events:

Remarks:
This function requires capability bit CAPI_CAPABILITY_3_REPLACEABLE_MODULE to be set.

Lengthy Operation
✔ Need Current Configuration
✔ May Change Configuration
✔ See Capability Bits

See also:
CAPI_PutOnline()
CAPI_U_PutOffline()
CAPI_U_ForceOffline()
CAPI_U_ForceOnline()

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

296 Chaparral document #07-0003-340

Unified Reboot Controller in CAPI 3.4

Syntax:
CAPI_RC CAPI_U_RebootControllerCAPI_U_RebootControllerCAPI_U_RebootControllerCAPI_U_RebootController(CAPI_HANDLE handle,handle,handle,handle,
 CAPI_CONTROLLER_ID controllerId controllerId controllerId controllerId);

Description:
This command does the same thing as CAPI_ShutDownController or CAPI_U_ShutDownController and
then reboots. It is also used to reboot a controller when it is in a shutdown state as a result of
CAPI_ShutDownController or CAPI_U_ShutDownController.

handle is the handle of the controller that executes the command.
controllerId specifies which controller you want to reboot; one of: CAPI_CONTROLLER_A,

CAPI_CONTROLLER_B, CAPI_CONTROLLER_BOTH.

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_U_REBOOT_CONTROLLER_START
errorCode Completion status of the command.
identifier controllerHandle is valid.
param1
param2
dataPtr

Events:
CAPI_EVENT_CONTROLLER_REBOOT_COMPLETE

Remarks :
Rebooting will flush the controller�s write back cache to disk.

See CAPI_U_ShutDownController for additional information.

✔ Lengthy Operation
✔ Need Current Configuration
✔ May Change Configuration
✔ See Capability Bits

See also:
CAPI_RebootController()
CAPI_U_UpdateFirmware()
CAPI_U_ShutDownController()

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 297

Unified Remove Host in CAPI 3.4

Syntax:
CAPI_RC CAPI_CAPI_CAPI_CAPI_U_U_U_U_RemoveHostRemoveHostRemoveHostRemoveHost(CAPI_HANDLE handlehandlehandlehandle,
 CAPI_U8 *partitionSerialNumber*partitionSerialNumber*partitionSerialNumber*partitionSerialNumber,
 CAPI_FLEX_ID hostIdhostIdhostIdhostId);

Description:
This function removes a host from the list of hosts that is allowed to communicate with a particular partition
or is blocked from communication with a particular partition.

handle is the handle of the controller that executes the command.
partitionSerialNumber is the serial number of the partition; if partitions are not supported (capability bit

CAPI_CAPABILITY_2_ARRAY_PARTITIONS not set), then this is an array serial number.
hostId is the Fibre Channel or SCSI ID of the host.

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_U_REMOVE_HOST
errorCode Completion status of the command.
identifier controllerHandle is valid.
param1
param2
dataPtr

Events:

Remarks:
The list of hosts associated with this partition is either allowed access or blocked from access by the value
of the include parameter in CAPI_U_ChangeInfoShieldType.

Lengthy Operation
✔ Need Current Configuration
✔ May Change Configuration
✔ See Capability Bits

See also:
CAPI_RemoveHost()
CAPI_U_GetHostTable()
CAPI_U_AddHost()
CAPI_U_ChangeInfoShieldType()

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

298 Chaparral document #07-0003-340

Unified Rescan Bus in CAPI 3.4

Syntax:
CAPI_RC CAPI_U_RescanBusCAPI_U_RescanBusCAPI_U_RescanBusCAPI_U_RescanBus(CAPI_HANDLE handlehandlehandlehandle,
 CAPI_U32 channelIndexchannelIndexchannelIndexchannelIndex);

Description:
Scans the drives on the back-end drive bus to detect new, moved, or deleted drives.

handle is the handle of the controller that executes the command.
channelIndex is the index of the channel to rescan. Pass CAPI_NULL_ID to rescan all channels.

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_U_RESCAN_BUS_START
errorCode Completion status of the command.
identifier controllerHandle is valid.
param1
param2
dataPtr

Events:
CAPI_EVENT_RESCAN_BUS_START
CAPI_EVENT_RESCAN_BUS_COMPLETE

Remarks :
To avoid any performance degradation, the controller does not scan the SCSI buses for changes in
configuration unless instructed to do so through CAPI or SAF-TE. This function should be called after new
SCSI drives are added, if drives are moved to different IDs, or if unused or spare drives are removed. SAF-
TE processors can do automatic rescans. Some controllers may do a rescan on a SCSI bus reset.

See CAPI Versions
Different Chaparral products support different versions of CAPI. If the major version (for example, the 3 in
version 3.4) is the same for two products, you should be able to easily design a single CAPI app that
manages both products, although the product with the lower minor version number (for example, the 4 in
version 3.4) will not have all the features of the product with the higher minor version number. Specifically,
there may be additional CAPI commands added for a higher version number and there may be additional
members in some of the data structures passed to and from CAPI commands, but the members that
existed in the lower version of CAPI are still in the same locations in the same structures.

When a new version of the CAPI SDK is released, typically the most recent Chaparral product(s) are
released simultaneously with the SDK and the version of CAPI that is running in the controller corresponds
to the SDK version. However, developers of new CAPI apps can use a more recent version of the CAPI
SDK to talk to older products, provided the major version number matches, and, of course, the app cannot
use the newest features that have been added to CAPI which are not supported on that product.

Conversely, if a CAPI app was developed using an older version of the CAPI SDK (for example, CAPI 3.2),
it can still be used for managing a newer product that supports a newer version of CAPI (for example,
CAPI3.4), but of course the app will not be able to take advantage of the newer features that have been
added to CAPI 3.4 in the product but which are not in the CAPI 3.2 SDK.

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 299

As of this writing (September 2002), the following products support the corresponding version of CAPI:
• CAPI 2.x: G5312, G7313, all Kxxxx.
• CAPI 3.4: RIO, Stratis RAID S3300 (JFF224). (Thus, the features marked � in CAPI 3.3� and �

in CAPI 3.4� in this document are supported by these products only.)
• CAPI 3.2: All other Chaparral products.

CAPI Capabilities on page 29 to determine if the controller supports rescanning of individual channels; if
not, then channelIndex should be CAPI_NULL_ID. Requires
CAPI_CAPABILITY_2_RESCAN_INDIVIDUAL_BUS set to rescan an individual bus.

✔ Lengthy Operation
Need Current Configuration
May Change Configuration

✔ See Capability Bits

See also:
CAPI_RescanBus()

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

300 Chaparral document #07-0003-340

Unified Reset Array Statistics in CAPI 3.4

Syntax:
CAPI_RC CAPI_U_ResetArrayStatisticsCAPI_U_ResetArrayStatisticsCAPI_U_ResetArrayStatisticsCAPI_U_ResetArrayStatistics(CAPI_HANDLE handlehandlehandlehandle,
 CAPI_U8 *arraySerialNumber *arraySerialNumber *arraySerialNumber *arraySerialNumber);

Description:
Resets temporary array statistics.

handle is the handle of the controller that executes the command.
arraySerialNumber is a pointer to the serial number of the target array.

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_U_RESET_ARRAY_STATS
errorCode Completion status of the command.
identifier controllerHandle is valid.
param1
param2
dataPtr

Events:
CAPI_EVENT_RESET_ARRAY_STATS

Remarks :
This function clears array statistics but those are not visible from the Disk Array Administrator or through a
CAPI app. In earlier versions of Chaparral products we were only able to create 1 partition per array. Now
we are able to create 1 or more partitions in an array so the array statistics are not used anymore but are
replaced with array partition statistics.

Lengthy Operation
✔ Need Current Configuration

May Change Configuration
✔ See Capability Bits

See also:
CAPI_ResetArrayStatistics()
CAPI_U_ResetArrayPartitionStatistics()

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 301

Unified Reset Array Partition Statistics in CAPI 3.4

Syntax:
CAPI_RC CAPI_U_ResetArrayPartitionStatisticsCAPI_U_ResetArrayPartitionStatisticsCAPI_U_ResetArrayPartitionStatisticsCAPI_U_ResetArrayPartitionStatistics(CAPI_HANDLE handlehandlehandlehandle,
 CAPI_U8 *partitionSerialNumber *partitionSerialNumber *partitionSerialNumber *partitionSerialNumber);

Description:
Resets temporary array partition statistics.

handle is the handle of the controller that executes the command.
partitionSerialNumber is a pointer to the serial number of an existing partition.

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_U_RESET_ARRAY_PARTITION_STATS
errorCode Completion status of the command.
identifier controllerHandle is valid.
param1
param2
dataPtr

Events:
CAPI_EVENT_RESET_ARRAY_PARTITION_STATS

Remarks :

Lengthy Operation
✔ Need Current Configuration

May Change Configuration
✔ See Capability Bits

See also:
CAPI_ResetArrayPartitionStatistics()
CAPI_U_GetArrayPartitions()

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

302 Chaparral document #07-0003-340

Unified Reset Drive Error Statistics in CAPI 3.4

Syntax:
CAPI_RC CAPI_U_ResetDriveErrorStatisticsCAPI_U_ResetDriveErrorStatisticsCAPI_U_ResetDriveErrorStatisticsCAPI_U_ResetDriveErrorStatistics(CAPI_HANDLE handlehandlehandlehandle,
 CAPI_U8 *driveSerialNumber *driveSerialNumber *driveSerialNumber *driveSerialNumber);

Description:
This command allows a CAPI application to reset the drive error statistics for a designated disk drive. All
values are set to 0.
Not implemented yet. Use CAPI_ResetDriveErrorStatistics.

handle is the handle of the controller that executes the command.
driveSerialNumber is a pointer to a drive serial number.

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_U_RESET_DRIVE_ERROR_STATS
errorCode Completion status of the command.
identifier controllerHandle is valid.
param1
param2
dataPtr

Events:

Remarks:

Lengthy Operation
Need Current Configuration
May Change Configuration
See Capability Bits

See also:
CAPI_ResetDriveErrorStatistics()
CAPI_U_GetDriveErrorStatistics()

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 303

Unified Reset LAN in CAPI 3.4

Syntax:
CAPI_RC CAPI_U_ResetLANCAPI_U_ResetLANCAPI_U_ResetLANCAPI_U_ResetLAN(CAPI_HANDLE handlehandlehandlehandle,
 CAPI_CONTROLLER_ID controllerId controllerId controllerId controllerId);

Description:
Resets the LAN Subsystem if one is present.

handle is the handle of the controller that executes the command.
controllerId specifies which controller you want to reset its LAN processor; one of:

CAPI_CONTROLLER_A, CAPI_CONTROLLER_B, CAPI_CONTROLLER_BOTH.

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_U_RESET_LAN
errorCode Completion status of the command.
identifier controllerHandle is valid.
param1
param2
dataPtr

Events:
CAPI_EVENT_RESET_LAN

Remarks :

Lengthy Operation
Need Current Configuration
May Change Configuration
See Capability Bits

See also:
CAPI_ResetLAN()

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

304 Chaparral document #07-0003-340

Unified Restore Controller Defaults in CAPI 3.4

Syntax:
CAPI_RC CAPI_U_RestoreControllerDefaultsCAPI_U_RestoreControllerDefaultsCAPI_U_RestoreControllerDefaultsCAPI_U_RestoreControllerDefaults(CAPI_HANDLE handlehandlehandlehandle,
 CAPI_CONTROLLER_ID controllerId controllerId controllerId controllerId);

Description:
Restores the factory defaults of the controller.

handle is the handle of the controller that executes the command.
controllerId specifies which controller you want to restore defaults on; one of: CAPI_CONTROLLER_A,

CAPI_CONTROLLER_B, CAPI_CONTROLLER_BOTH.

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_U_RESTORE_CONTROLLER_DEFAULTS
errorCode Completion status of the command.
identifier controllerHandle is valid.
param1
param2
dataPtr

Events:

Remarks :
A reboot is required for all defaults to take effect. See the controller�s documentation to determine which
defaults are restored immediately and which defaults take effect after the next reboot.

This command does not cause the following to be reset to defaults:
CAPI LUN (a.k.a. controller LUN or bridge LUN)
controller mode
drive channel speed
LAN Subsystem IP address
LAN Subsystem IP subnet mask
LAN Subsystem IP gateway

Lengthy Operation
Need Current Configuration
May Change Configuration
See Capability Bits

See also:
CAPI_RestoreControllerDefaults()

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 305

Unified Set Advanced Network Interface

Description:
There is no need for a unified version of this function because the members of the
CAPI_ADVANCED_NETWORK_INTERFACE structure can be gotten and set with
CAPI_U_GetControllerData and CAPI_U_SetControllerParams.

See also:
CAPI_SetAdvancedNetworkInterface()
CAPI_GetAdvancedNetworkInterface()
CAPI_U_GetControllerData()
CAPI_U_SetControllerParams()

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

306 Chaparral document #07-0003-340

Unified Set Array Partition Cache Params in CAPI 3.4

Syntax:
CAPI_RC CAPI_U_SetArrayPartitionCacheParamsCAPI_U_SetArrayPartitionCacheParamsCAPI_U_SetArrayPartitionCacheParamsCAPI_U_SetArrayPartitionCacheParams(CAPI_HANDLE handlehandlehandlehandle,
 CAPI_U8 *partitionSerialNumber*partitionSerialNumber*partitionSerialNumber*partitionSerialNumber,
 CAPI_CACHE_PARAMS *cacheParams*cacheParams*cacheParams*cacheParams);

Description:
This command allows a CAPI application to set parameters that determine characteristics of the cache
associated with the specified partition.

handle is the handle of the controller that executes the command.
partitionSerialNumber is a pointer to the serial number of an existing partition.
cacheParams is a pointer to a structure that contains the new values for the cache parameters.

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_U_SET_ARRAY_PARTITION_CACHE_PARAMS
errorCode Completion status of the command.
identifier controllerHandle is valid.
param1
param2
dataPtr

Events:

Remarks:
At this writing, the only parameters in CAPI_CACHE_PARAMS that are supported are writeBackEnable
and readAheadSize.

When writeBackEnable is set to TRUE, the write back cache is enabled.

readAheadSize should be set to 0 or to a power of 2 between 64KB and 32MB or to the default. That is,
use one of these values: 0 (which disables read ahead), 0x10000, 0x20000, 0x40000, 0x80000, 0x100000,
0x200000, 0x400000, 0x800000, 0x1000000, 0x2000000, or CAPI_DEFAULT_READ_AHEAD_SIZE
(which tells the controller to use an algorithm that tries to optimize read ahead based on whether reads are
sequential or random). More cache improves performance of sequential reads but will hurt performance of
random reads.

To apply CAPI_CACHE_PARAMS to all partitions in an array via a single function call, you can use
CAPI_SetCacheParams.

This function requires capability bit CAPI_CAPABILITY_2_ARRAY_PARTITIONS to be set.

CAUTION: The RAID controller’s default cache parameters are preset to provide optimal
performance for virtually all applications. Modification of these parameters may
significantly decrease performance.

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 307

Lengthy Operation
✔ Need Current Configuration
✔ May Change Configuration
✔ See Capability Bits

See also:
CAPI_SetArrayPartitionCacheParams()
CAPI_U_SetCacheParams()

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

308 Chaparral document #07-0003-340

Unified Set Battery Monitor in CAPI 3.4

Syntax:
CAPI_RC CAPI_U_SetBatteryMonitorCAPI_U_SetBatteryMonitorCAPI_U_SetBatteryMonitorCAPI_U_SetBatteryMonitor(CAPI_HANDLE handlehandlehandlehandle,
 CAPI_BOOL monitorOnmonitorOnmonitorOnmonitorOn,
 CAPI_U8 monthsmonthsmonthsmonths,
 CAPI_CONTROLLER_ID controllerId controllerId controllerId controllerId);

Description:
This function sets the age of the battery and enables/disables end-of-life monitoring.

handle is the handle of the controller that executes the command.
monitorOn set to TRUE to enable battery life monitoring.
months set to the number of months the battery has been installed (set to zero if the controller is new).
controllerId specifies which controller you want to set the battery monitor on; one of:

CAPI_CONTROLLER_A, CAPI_CONTROLLER_B.

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_U_SET_BATTERY_MONITOR
errorCode Completion status of the command.
identifier controllerHandle is valid.
param1
param2
dataPtr

Events:

Remarks:

Lengthy Operation
Need Current Configuration
May Change Configuration
See Capability Bits

CAPI_EVENT_BATTERY_END_OF_LIFE will occur at the end of the battery life.

See also:
CAPI_SetBatteryMonitor()

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 309

Unified Set Cache Params in CAPI 3.4

Syntax:
CAPI_RC CAPI_U_SetCacheParamsCAPI_U_SetCacheParamsCAPI_U_SetCacheParamsCAPI_U_SetCacheParams(CAPI_HANDLE handlehandlehandlehandle,
 CAPI_U8 *arraySerialNumber*arraySerialNumber*arraySerialNumber*arraySerialNumber,
 CAPI_CACHE_PARAMS *cacheParams*cacheParams*cacheParams*cacheParams);

Description:
This command allows a CAPI application to set parameters that determine characteristics of the cache
associated with the specified array.

This function is not implemented yet. Use CAPI_SetCacheParams or
CAPI_U_SetArrayPartitionCacheParams.

handle is the handle of the controller that executes the command.
arraySerialNumber is a pointer to the serial number of the target array. Pass a pointer to an array of 12

bytes of all zeros to configure all arrays with these parameters.
cacheParams points to a CAPI_CACHE_PARAMS structure containing the new cache parameter settings.

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_U_SET_CACHE_PARAMS
errorCode Completion status of the command.
identifier controllerHandle is valid.
param1
param2
dataPtr

Events:
CAPI_EVENT_SET_CACHE_PARAMS

Remarks :
Some of these parameters can also be set through SCSI mode pages from the host.

At this writing, the only parameter in CAPI_CACHE_PARAMS that is supported is writeBackEnable. When
writeBackEnable is set to TRUE, the write back cache is enabled.

For more recent products that support multiple partitions (from RIO onward), readAheadSize is also
supported. See CAPI_SetArrayPartitionCacheParams for details on this parameter.

Note that for arrays containing multiple partitions, the cache parameters for all partitions in the array are
updated when this command is issued.

CAUTION: The RAID controller’s default cache parameters are preset to provide optimal
performance for virtually all applications. Modification of these parameters may
significantly decrease performance.

Lengthy Operation
✔ Need Current Configuration
✔ May Change Configuration
✔ See Capability Bits

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

310 Chaparral document #07-0003-340

See also:
CAPI_SetCacheParams()
CAPI_U_FlushCache()
CAPI_U_FreeCache()
CAPI_U_SetArrayPartitionCacheParams()

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 311

Unified Set Channel Params

Description:
There is no need for a unified version of this function because, as of CAPI 3.4, the channel parameters are
now set as part of the data structure passed to the CAPI_U_SetControllerParams function.

See also:
CAPI_SetChannelParams()
CAPI_U_SetControllerParams()

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

312 Chaparral document #07-0003-340

Unified Set Controller Params in CAPI 3.4

Syntax:
CAPI_RC CAPI_U_SetControllerParamsCAPI_U_SetControllerParamsCAPI_U_SetControllerParamsCAPI_U_SetControllerParams(CAPI_HANDLE handlehandlehandlehandle,
 CAPI_UNIFIED_CONTROLLER_PARAMS *controllerParams*controllerParams*controllerParams*controllerParams);

Description:
Sets the controller�s parameters.

handle is the handle of the controller that executes the command.
controllerParams is a pointer to a CAPI_UNIFIED_CONTROLLER_PARAMS structure with the new controller

settings.

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_U_SET_CONTROLLER_PARAMS
errorCode Completion status of the command.
identifier controllerHandle is valid.
param1
param2
dataPtr

Events:
CAPI_EVENT_SET_CONTROLLER_PARAMS

Remarks :
Developers can read the current parameters or pending parameters using CAPI_U_GetControllerData,
modify the parameters, and update them with CAPI_U_SetControllerParams. Some parameters go into
effect immediately, others require that the controller be restarted. Normally, an app should read and modify
the pending parameters rather than the current parameters. This is because the pending parameters will
reflect any changes that have been made by previous call(s) to CAPI_U_SetControllerParams but which
have not gone into effect because a restart is required.

Note that parameters in CAPI_UNIFIED_CONTROLLER_PARAMS are divided into two classes: those
parameters that are applied uniquely to each controller in a dual-controller system and those parameters
that are applied to both controllers. A call to this function always sets the parameters on both controllers.

Note that this unified command sets the channel parameters, unlike CAPI_SetControllerParams which
does not set channel parameters.

Lengthy Operation
✔ Need Current Configuration
✔ May Change Configuration

See Capability Bits

See also:
CAPI_SetControllerParams() and CAPI_SetChannelParams() are the corresponding non-unified commands.
CAPI_U_GetControllerData()

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 313

Unified Set Controller Time Date in CAPI 3.4

Syntax:
CAPI_RC CAPI_U_SetControllerTimeDateCAPI_U_SetControllerTimeDateCAPI_U_SetControllerTimeDateCAPI_U_SetControllerTimeDate(CAPI_HANDLE handlehandlehandlehandle,
 CAPI_TIME timeDate timeDate timeDate timeDate);

Description:
Sets the controller time and date settings on both controllers.

handle is the handle of the controller that executes the command.
timeDate contains the number of seconds since January 1, 1970 (i.e., UNIX time).

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_U_SET_CONTROLLER_TIMEDATE
errorCode Completion status of the command.
identifier controllerHandle is valid.
param1
param2
dataPtr

Events:
CAPI_EVENT_SET_CONTROLLER_TIMEDATE

Remarks :
The standard library provided with many �C� compilers includes functions for manipulating CAPI_TIME (of
type time_t, usually an unsigned long) and generating a standard �tm� structure. See time, gmtime,
localtime, mktime, and strftime in your compiler�s documentation. Note that a timeDate value of zero is
invalid.

Lengthy Operation
Need Current Configuration
May Change Configuration
See Capability Bits

See also:
CAPI_SetControllerTimeDate()

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

314 Chaparral document #07-0003-340

Unified Set Preferred Owner in CAPI 3.4

Syntax:
CAPI_RC CAPI_U_SetPreferredOwnerCAPI_U_SetPreferredOwnerCAPI_U_SetPreferredOwnerCAPI_U_SetPreferredOwner(CAPI_HANDLE handlehandlehandlehandle,
 CAPI_U8 *arraySerialNumber*arraySerialNumber*arraySerialNumber*arraySerialNumber);

Description:
Allows the application to change the owner of an array from one controller to another. A call to this function
will result in a change from the current owner to the other controller, no matter which controller is the
current owner.

handle is the handle of the controller that executes the command.
arraySerialNumber is a pointer to the serial number of the target array.

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_U_SET_PREFERRED_OWNER
errorCode Completion status of the command.
identifier controllerHandle is valid.
param1
param2
dataPtr

Events:

Remarks :

Lengthy Operation
✔ Need Current Configuration
✔ May Change Configuration
✔ See Capability Bits

See also:
CAPI_SetPreferredOwner()
CAPI_U_CreateArray()

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 315

Unified Set Unit Mapping in CAPI 3.4

Syntax:
CAPI_RC CAPI_U_SetUnitMappingCAPI_U_SetUnitMappingCAPI_U_SetUnitMappingCAPI_U_SetUnitMapping(CAPI_HANDLE handlehandlehandlehandle,
 CAPI_U8 *arraySerialNumber*arraySerialNumber*arraySerialNumber*arraySerialNumber,
 CAPI_U32 newUnitNumnewUnitNumnewUnitNumnewUnitNum);

Description:
Allows the application to change the LUN that an array presents to the host.

handle is the handle of the controller that executes the command.
arraySerialNumber is a pointer to the serial number of the target array.
newUnitNum is the desired LUN for the specified array.

Return Code:
Indicates if the request was sent to the RAID controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_U_SET_LUN_MAPPING
errorCode Completion status of the command. A LUN conflict will return an error.
identifier controllerHandle is valid.
param1
param2
dataPtr

Events:
CAPI_EVENT_UNIT_MAPPING

Remarks :
A reboot may be necessary on some products for the new LUN mapping to take effect.

Lengthy Operation
Need Current Configuration
May Change Configuration
See Capability Bits

See also:
CAPI_SetUnitMapping()
CAPI_U_CreateArray()

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

316 Chaparral document #07-0003-340

Unified Shut Down Controller in CAPI 3.4

Syntax:
CAPI_RC CAPI_U_ShutDownControllerCAPI_U_ShutDownControllerCAPI_U_ShutDownControllerCAPI_U_ShutDownController(CAPI_HANDLE handle,handle,handle,handle,
 CAPI_CONTROLLER_ID controllerId,controllerId,controllerId,controllerId,
 CAPI_BOOL fwUpdatefwUpdatefwUpdatefwUpdate);

Description:
Perform a graceful shutdown on the specified controller.

handle is the handle of the controller that executes the command.
controllerId specifies which controller you want to shut down (CAPI_CONTROLLER_A,
CAPI_CONTROLLER_B, or CAPI_CONTROLLER_BOTH.)
fwUpdate is set to true if a firmware update is to follow, this lets the other controller know why we are

shutting down. This parameter does not affect this operation; it just provides information to the on-line
controller so it is accessible via the failoverReason structure member obtainable via
CAPI_UpdateController or CAPI_U_GetControllerData.

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_U_SHUTDOWN_CONTROLLER
errorCode Completion status of the command.
identifier controllerHandle is valid.
param1 controllerId
param2
dataPtr

Events:
CAPI_EVENT_SHUTDOWN_CONTROLLER

Remarks :
Shutting down will flush the controllers� write back cache to disk. The controller shuts down, then calls the
callback function. The controller is then in a special state where it does no data I/O and it responds only to
a limited selection of CAPI commands, most notably:

♦ CAPI_UpdateFirmware/CAPI_U_UpdateFirmware
♦ CAPI_RebootController/CAPI_U_RebootController

(For a complete list of CAPI commands that are supported during shutdown, see column
allowWhileShutdown in the table in file capicmdsup.c.)

Also, once a controller is shut down, its serial port will no longer respond to the CTRL-P then CTRL-Z
character sequence (which is used to restore terminal mode after a serial CAPI application has run). The
reason is that a CAPI_COMMAND_UPDATE_CONTROLLER_FIRMWARE request over the serial port
could have the CTRL-P/CTRL-Z sequence embedded in its binary data, which if recognized would cause
the serial port to unintentionally transition to terminal mode.

If both controllers are shut down at the same time via this function, both can receive firmware updates from
the host in-band. If only one controller is shut down, the shut down controller cannot receive firmware
downloads in-band since the one that is not shut down is �impersonating� the shut down controller to the
host and so the shut down controller has no host interface. If both controllers are shut down one after the

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 317

other, the second one to be shut down still has a host interface so it can receive firmware downloads in-
band. No matter what sequence is used to shut a controller down, the RS-232 connection can be used to
download firmware (except that RS-232 download of firmware via CAPI is not supported on RIO since the
serial LMX is not supported on RIO).

Lengthy Operation
Need Current Configuration

✔ May Change Configuration
See Capability Bits

See also:
CAPI_ShutDownController()
CAPI_U_UpdateFirmware()
CAPI_U_RebootController()
CAPI_U_PutOffline()

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

318 Chaparral document #07-0003-340

Unified Silence Alarm in CAPI 3.4

Syntax:
CAPI_RC CAPI_U_SilenceAlarmCAPI_U_SilenceAlarmCAPI_U_SilenceAlarmCAPI_U_SilenceAlarm(CAPI_HANDLE handlehandlehandlehandle);

Description:
This command temporarily silences both controllers� on-board audible alarm. (Depending on the storage
system design, it may or may not silence an enclosure alarm produced by an EMP.) As soon as the
controller has another event that causes it to turn on the alarm, the alarm will sound. To permanently
disable the alarm, set the alarmMute field in the CAPI_UNIFIED_CONTROLLER_PARAMS structure and
call CAPI_U_SetControllerParams.

handle is the handle of the controller that executes the command.

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_U_SILENCE_ALARM
errorCode Completion status of the command.
identifier controllerHandle is valid.
param1
param2
dataPtr

Events:

Remarks :
If the alarm is caused by unwritable cache data (see CAPI_EVENT_ORPHAN_DATA), the cache data is
not purged. If the alarm is caused by A/D failure, the command is ignored and the alarm will stay on. If the
alarm is not on, this command is accepted successfully, but ignored.

Lengthy Operation
Need Current Configuration
May Change Configuration
See Capability Bits

See also:
CAPI_SilenceAlarm()
CAPI_U_SetControllerParams()

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 319

Unified Test Drive in CAPI 3.4

Syntax:
CAPI_RC CAPI_U_TestDriveCAPI_U_TestDriveCAPI_U_TestDriveCAPI_U_TestDrive(CAPI_HANDLE handlehandlehandlehandle,
 CAPI_U8 *driveSerialNumber*driveSerialNumber*driveSerialNumber*driveSerialNumber);

Description:
Performs simple tests on a drive.

handle is the handle of the controller that executes the command.
driveSerialNumber is a pointer to the serial number of the drive to perform the test on.

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_U_TEST_DRIVE
errorCode Completion status of the command.
identifier controllerHandle is valid.
param1
param2
dataPtr

Events:

Remarks :
Currently, this command only executes a command that causes an indicator lamp on the specified drive to
blink. In the future this command may be implemented to do additional testing of the drive that is
nondestructive to the drive and the drive�s data. See the controller�s documentation.

Lengthy Operation
✔ Need Current Configuration

May Change Configuration
✔ See Capability Bits

See also:
CAPI_TestDrive()
CAPI_U_BlinkDrive()
CAPI_U_UnblinkDrive()

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

320 Chaparral document #07-0003-340

Unified Test Spares in CAPI 3.4

Syntax:
CAPI_RC CAPI_U_TestSparesCAPI_U_TestSparesCAPI_U_TestSparesCAPI_U_TestSpares(CAPI_HANDLE handlehandlehandlehandle,
 CAPI_BOOL testSparestestSparestestSparestestSpares);

Description:
Enable or disable the RAID core�s testing of spare drives to verify that they are still available. Applies to
both controllers. Power up default is TRUE.

handle is the handle of the controller that executes the command.
testSpares can be set to TRUE to enable spare tests or to FALSE to disable spare tests.

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_U_TEST_SPARES
errorCode Completion status of the command.
identifier controllerHandle is valid.
param1
param2
dataPtr

Events:

Remarks :
This is a continuous background test on all spare drives (global spares and pool spares) until a subsequent
call is made to disable the test. See the controller�s documentation for specific implementation details. If a
test fails, then a CAPI_EVENT_DOWN_DRIVE event is generated and the spare is removed from the spare
list.

Lengthy Operation
Need Current Configuration
May Change Configuration

✔ See Capability Bits

See also:
CAPI_TestSpares()

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 321

Unified Trust Array in CAPI 3.4

Syntax:
CAPI_RC CAPI_U_TrustArrayCAPI_U_TrustArrayCAPI_U_TrustArrayCAPI_U_TrustArray(CAPI_HANDLE handlehandlehandlehandle,
 CAPI_U8 *arraySerialNumber *arraySerialNumber *arraySerialNumber *arraySerialNumber);

Description:
This function allows use of an array that is unusable because of failed drives. The data may be corrupt,
and therefore this function should only be used for testing or data recovery purposes.

handle is the handle of the controller that executes the command.
arraySerialNumber is a pointer to the serial number of the target array.

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_U_TRUST_ARRAY
errorCode Completion status of the command.
identifier controllerHandle is valid.
param1
param2
dataPtr

Events:
CAPI_EVENT_TRUST_ARRAY

Remarks :

Lengthy Operation
✔ Need Current Configuration
✔ May Change Configuration

See Capability Bits

See also:
CAPI_TrustArray()

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

322 Chaparral document #07-0003-340

Unified Unblink Drive in CAPI 3.4

Syntax:
CAPI_RC CAPI_U_UnblinkDriveCAPI_U_UnblinkDriveCAPI_U_UnblinkDriveCAPI_U_UnblinkDrive(CAPI_HANDLE handlehandlehandlehandle,
 CAPI_U8 *driveSerialNumber*driveSerialNumber*driveSerialNumber*driveSerialNumber);

Description:
This command stops blinking of the drive�s activity light.

handle is the handle of the controller that executes the command.
driveSerialNumber is a pointer to the serial number of the drive to unblink.

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_U_UNBLINK_DRIVE
errorCode Completion status of the command.
identifier controllerHandle is valid.
param1
param2
dataPtr

Events:

Remarks :
Blinking a drive activity light is initiated by a call to CAPI_U_BlinkDrive. The controller continues blinking
the drive light until this function is called.

Lengthy Operation
Need Current Configuration
May Change Configuration
See Capability Bits

See also:
CAPI_UnblinkDrive()
CAPI_U_BlinkDrive()

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 323

Unified Unpause Bus in CAPI 3.4

Syntax:
CAPI_RC CAPI_U_UnpauseBusCAPI_U_UnpauseBusCAPI_U_UnpauseBusCAPI_U_UnpauseBus(CAPI_HANDLE handlehandlehandlehandle,
 CAPI_U32 channelIndexchannelIndexchannelIndexchannelIndex);

Description:
Resumes I/O to the specified back-end SCSI bus.

handle is the handle of the controller that executes the command.
channelIndex is the index of the disk channel on the specified controller. Pass CAPI_NULL_ID to

unpause all disk channels.

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_U_UNPAUSE_BUS
errorCode Completion status of the command.
identifier controllerHandle is valid.
param1
param2
dataPtr

Events:

Remarks :
I/O to a back-end SCSI bus is paused through a call to CAPI_PauseBus. This command may not be
implemented on this controller or you may not be able to pause individual buses. See CAPI Versions
Different Chaparral products support different versions of CAPI. If the major version (for example, the 3 in
version 3.4) is the same for two products, you should be able to easily design a single CAPI app that
manages both products, although the product with the lower minor version number (for example, the 4 in
version 3.4) will not have all the features of the product with the higher minor version number. Specifically,
there may be additional CAPI commands added for a higher version number and there may be additional
members in some of the data structures passed to and from CAPI commands, but the members that
existed in the lower version of CAPI are still in the same locations in the same structures.

When a new version of the CAPI SDK is released, typically the most recent Chaparral product(s) are
released simultaneously with the SDK and the version of CAPI that is running in the controller corresponds
to the SDK version. However, developers of new CAPI apps can use a more recent version of the CAPI
SDK to talk to older products, provided the major version number matches, and, of course, the app cannot
use the newest features that have been added to CAPI which are not supported on that product.

Conversely, if a CAPI app was developed using an older version of the CAPI SDK (for example, CAPI 3.2),
it can still be used for managing a newer product that supports a newer version of CAPI (for example,
CAPI3.4), but of course the app will not be able to take advantage of the newer features that have been
added to CAPI 3.4 in the product but which are not in the CAPI 3.2 SDK.

As of this writing (September 2002), the following products support the corresponding version of CAPI:
• CAPI 2.x: G5312, G7313, all Kxxxx.
• CAPI 3.4: RIO, Stratis RAID S3300 (JFF224). (Thus, the features marked � in CAPI 3.3� and �

in CAPI 3.4� in this document are supported by these products only.)

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

324 Chaparral document #07-0003-340

• CAPI 3.2: All other Chaparral products.

CAPI Capabilities on page 29. Requires CAPI_CAPABILITY_2_PAUSE_INDIVIDUAL_BUS set to unpause
an individual bus.

Lengthy Operation
Need Current Configuration
May Change Configuration

✔ See Capability Bits

See also:
CAPI_UnpauseBus()
CAPI_U_PauseBus()

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 325

Unified Update Firmware in CAPI 3.4

Syntax:
CAPI_RC CAPI_U_UpdateFirmwareCAPI_U_UpdateFirmwareCAPI_U_UpdateFirmwareCAPI_U_UpdateFirmware(CAPI_HANDLE handlehandlehandlehandle,
 CAPI_U8 *firmwareImage*firmwareImage*firmwareImage*firmwareImage,
 CAPI_U32 sizesizesizesize,
 CAPI_CONTROLLER_ID controllerId controllerId controllerId controllerId);

Description:
Loads new firmware into the controller(s).

handle is the handle of the controller that executes the command.
firmwareImage is a pointer to the new firmware image to be loaded.
size is the size of the image in bytes.
controllerId specifies which controller you want to update the firmware on; one of:

CAPI_CONTROLLER_A, CAPI_CONTROLLER_B, CAPI_CONTROLLER_BOTH.

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_U_UPDATE_CONTROLLER_FIRMWARE_START
errorCode CAPI_NO_ERROR indicates that the firmware image was received without errors.
identifier controllerHandle is valid.
param1
param2
dataPtr

Events:
CAPI_EVENT_UPDATE_FIRMWARE_COMPLETE, posted after the controller reboots.

Remarks :
A call to CAPI_ShutdownController must precede this call.

Automatic reboot occurs if there are no errors updating the firmware.

Firmware updates are not permitted when orphan data is present in the controller.

Note: Since the firmware image is large, transfer of data from the host to the controller
occurs as multiple messages, which are handled by code in the ReceivePacket
function in capi2pak.c (part of the CAPI Client in the SDK). The callback function is
not called until the entire firmware image has been transferred.

✔ Lengthy Operation
Need Current Configuration

✔ May Change Configuration
✔ See Capability Bits

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

326 Chaparral document #07-0003-340

See also:
CAPI_UpdateFirmware()
CAPI_U_ShutdownController()
CAPI_U_FreeCache()

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 327

Unified Verify Array in CAPI 3.4

Syntax:
CAPI_RC CAPI_U_VerifyArrayCAPI_U_VerifyArrayCAPI_U_VerifyArrayCAPI_U_VerifyArray(CAPI_HANDLE handlehandlehandlehandle,
 CAPI_U8 *arraySerialNumber*arraySerialNumber*arraySerialNumber*arraySerialNumber);

Description:
Verifies the state of a RAID 1, 3, 4, 5, 10, or 50 array.

handle is the handle of the controller that executes the command.
arraySerialNumber is a pointer to the serial number of the target array.

Return Code:
Indicates if the request was sent to the controller and if not, provides an error status.

Callback:
replyCode CAPI_REPLY_U_VERIFY_ARRAY_START
errorCode Completion status of the command.
identifier controllerHandle is valid.
param1
param2
dataPtr

Events:
CAPI_EVENT_VERIFY_ARRAY_START
CAPI_EVENT_VERIFY_ARRAY_COMPLETE

Remarks :
The Verify function allows you to verify the data on the selected array (RAID 1, RAID 3, RAID 4, RAID 5,
RAID 10, and RAID 50 only):

• RAID 3, RAID 4, RAID 5, and RAID 50: Verifies all parity blocks in the selected array and corrects
any bad parity.

• RAID 1 and RAID 10: Compares the primary and secondary drives. If a mismatch occurs, the
primary is copied to the secondary.

You may want to verify an array when you suspect there is a problem.

The number of fixes made is included with event CAPI_EVENT_VERIFY_ARRAY_COMPLETE.

✔ Lengthy Operation
✔ Need Current Configuration

May Change Configuration
✔ See Capability Bits

See also:
CAPI_VerifyArray()

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

328 Chaparral document #07-0003-340

◊◊◊◊ ◊◊◊◊ ◊◊◊◊

REPLY CODE REFERENCE
This chapter provides a reference for the replies that the configuration application may receive through the
callback routine. Comments after each event specify which event fields are valid. The fields that are always
valid are replyCode, errorCode, and identifier.controllerHandle. See Callback Function on page 6 for
description of the call back parameters.

NOTE: This list is complete for products prior to RIO and for the non-unified CAPI
commands supported by RIO. But because this table is redundant with data
included in Chapter 5, CAPI Function Reference, it has not been updated to include
the reply codes for the Unified CAPI commands introduced with RIO. See the
Callback section of each function description in Chapter 5 for details of the reply
code and the other parameters that are returned with the callback.

The actual #define statements for each reply codes are in capi_event_reply.h (for non-unified commands)
and in capu_v1.h (for unified commands). In most cases, the reply code (the name, not the number) is the
same for corresponding unified and non-unified commands except that the unified reply codes all use the
prefix �CAPI_REPLY_U_�. For Unified CAPI, the reply code value is always 1000 (decimal) greater than
the corresponding command code that leads to that reply.

The data type CAPI_REPLY_CODE is used for reply codes and is typedef�d as a CAPI_U32.

Table 6-1. Reply Code Descriptions

Reply Code Description
CAPI_REPLY_ADD_ARRAY_PARTITION Array partition has been added (created)
CAPI_REPLY_ADD_DEDICATED_SPARE A dedicated spare drive was added.

identifier Describes arrayIndex, channelIndex, and driveIndex.
CAPI_REPLY_ADD_HOST A host has been added to a host table
CAPI_REPLY_ADD_HOST_NICKNAME

 in CAPI 3.3
A host nickname has been added to the host
nickname table

CAPI_REPLY_ADD_POOL_SPARE A pool spare drive was added to the specified
controller.

identifier Describes channelIndex and driveIndex.
CAPI_REPLY_ARRAY_DELETE An array was deleted.

identifier Describes arrayIndex.
CAPI_REPLY_ARRAY_NAME_CHANGE The name of an array changed.

identifier Describes arrayIndex.
CAPI_REPLY_ARRAY_PARTITION_NAME_CHANGE Array partition name change is complete
CAPI_REPLY_ARRAY_PARTITION_LUN_CHANGE Array partition LUN change is complete
CAPI_REPLY_ARRAY_PARTITION_GEOMETRY_CHANGE Array partition geometry change is complete
CAPI_REPLY_ARRAY_UTIL_PRIORITY_CHANGE The utility priority changed.

identifier Describes arrayIndex.
CAPI_REPLY_CACHE_FLUSH The cache data was flushed. If arrayIndex is equal

to CAPI_NULL_ID, then all of the arrays are flushed.
identifier Describes arrayIndex.

CAPI_REPLY_CACHE_FREE The dirty cache data was purged.
param1 SCSI LUN of the missing array.

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 329

CAPI_REPLY_CACHE_TEST TBD.
CAPI_REPLY_CAPI_VERSION_MISMATCH The controller is running an incompatible version of

the CAPI interface.
CAPI_REPLY_CHANGE_INFOSHIELD_TYPE Change InfoShield type is complete
CAPI_REPLY_COMMUNICATION_ERROR A communication error occurred on the remote link.
CAPI_REPLY_COMMUNICATION_TIMEOUT A communication time-out occurred on the remote

link.
CAPI_REPLY_CONTROLLER_REBOOT_START A controller reboot started.
CAPI_REPLY_CONTROLLER_UPDATE A new controller structure was received.

dataPtr A pointer to the new controller structure.
CAPI_REPLY_CREATE_ARRAY_START Array creation has started.

identifier Describes arrayIndex.
CAPI_REPLY_DELETE_ARRAY_PARTITION Array partition has been deleted
CAPI_REPLY_DEBUG_LOOP_BACK_TEST A loop back test reply package was received.

dataPtr A pointer to CAPI_DEBUG_STRUCT structure.
CAPI_REPLY_DOWN_DRIVE The specified drive was taken offline.

identifier Describes arrayIndex, channelIndex, and driveIndex.
CAPI_REPLY_DRIVE_BLINK The specified drive is blinking.

identifier Describes channelIndex and driveIndex.
CAPI_REPLY_DRIVE_UNBLINK The specified drive stopped blinking.

identifier Describes channelIndex and driveIndex.
CAPI_REPLY_ENVIRON_READ A CAPI_EnvironRead or CAPI_U_EnvironRead

command was completed.
param1 The length of the read.
dataPtr A pointer to CAPI_ENVIRON_PROCESSOR_DATA.

CAPI_REPLY_ENVIRON_WRITE A CAPI_EnvironWrite or CAPI_U_EnvironWrite
command was completed.

CAPI_REPLY_EVENT_LOG_CLEAR The event log was cleared.
CAPI_REPLY_EXPAND_ARRAY_START The expand array utility has begun.

identifier Describes arrayIndex.
CAPI_REPLY_FIND_NEXT_ENVIRON_PROCESSOR Identifies a possibly found environmental processor.

dataPtr a pointer to CAPI_ENVIRON_PROCESSOR_INFO.
CAPI_REPLY_FORCE_CRITICAL_ERROR

 in CAPI 3.3
A critical error (i.e., controller dump) will be forced.

CAPI_REPLY_FORCE_OFFLINE
 in CAPI 3.3

The module has been forced offline.

param1
 in CAPI 3.3

Error code that would have been returned if this was
a reply to a CAPI_PutOffline.

CAPI_REPLY_FORCE_ONLINE
 in CAPI 3.3

The module has been forced online.

CAPI_REPLY_GET_ADV_ENVIRONMENTALS
 in CAPI 3.3

Advanced Controller Environmentals Structure was
retrieved.

dataPtr
 in CAPI 3.3

A pointer to
CAPI_ADVANCED_CONTROLLER_ENVIRONMENTALS.

CAPI_REPLY_GET_ADV_NETWORK_INTF Advanced Network Interface Structure was retrieved.

dataPtr A pointer to
CAPI_ADVANCED_NETWORK_INTERFACE.

CAPI_REPLY_GET_ADVANCED_UNIT_MAPPING Gets an array of CAPI_UNIT_MAP�s
param1 number of CAPI_UNIT_MAP�s returned
dataPtr a pointer to the first CAPI_UNIT_MAP in an array []

CAPI_REPLY_GET_ARRAY_LIST A list of CAPI_ARRAY has been returned
param1 number of CAPI_ARRAY�s returned as an array []
param2 configuration sequence number
dataPtr A pointer to the first CAPI_ARRAY

If param1 is 0, then the pointer is not valid.
CAPI_REPLY_GET_ARRAY_PARTITIONS Get list of array partitions is complete
CAPI_REPLY_GET_CONFIG_SEQ_NUMBER Current configuration sequence number for the

controller is returned
param1 configuration sequence number

CAPI_REPLY_GET_DEBUG_DATA Debug data was returned.

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

330 Chaparral document #07-0003-340

 in CAPI 3.3
dataPtr

 in CAPI 3.3
A pointer to CAPI_CHAR (that is, an array of
CAPI_CHARs containing the debug data).

CAPI_REPLY_GET_DRIVE_ERROR_STATS
 in CAPI 3.3

Drive error statistics structure was returned.

dataPtr
 in CAPI 3.3

A pointer to CAPI_DRIVE_ERROR_STATS.

CAPI_REPLY_GET_DRIVE_LIST A list of CAPI_DRIVE has been returned
param1 number of CAPI_DRIVEs returned as an array []
param2 configuration sequence number
dataPtr A pointer to the first CAPI_DRIVE

If param1 is 0, then the pointer is not valid.
CAPI_REPLY_GET_EVENT The specified event was returned.

param1 Requested event number (a value of 0 indicates an
empty log file).

param2 First event sequence number.
dataPtr A pointer to an event structure. If param1 is 0, then

the event is not valid.
CAPI_REPLY_GET_FIRST_EVENT The first chronologically available event was

returned.
param1 First event sequence number (a value of 0 indicates

empty log file).
param2 Last controller power up sequence number. Zero if

none are found.
dataPtr A pointer to an event structure. If param1 is 0, then

the event is not valid.
CAPI_REPLY_GET_FREE_ARRAY_PARTITIONS Get list of free array partitions is complete
CAPI_REPLY_GET_KNOWN_HOSTS Get known hosts is complete
CAPI_REPLY_GET_HOST_NICKNAME

 in CAPI 3.3
Host nickname struct was returned

dataPtr
 in CAPI 3.3

A pointer to CAPI_HOST_NICKNAMES.

CAPI_REPLY_GET_HOST_TABLE A CAPI_HOST_TABLE has been returned
CAPI_REPLY_GET_LAST_EVENT The last chronologically available event was

returned.
param1 Last event sequence number (a value of 0 indicates

an empty log file).
param2 First event sequence number.
dataPtr A pointer to an event structure. If param1 is 0, then

the event is not valid.
CAPI_REPLY_INITIALIZE_COMPLETE CAPI initialization is complete. Note: The identifier

controllerHandle is not valid.
CAPI_REPLY_KILL_OTHER Holding the other controller in reset.
CAPI_REPLY_LOG_EVENT

 in CAPI 3.3
The event has been logged.

CAPI_REPLY_LOG_IN Not currently used. TBD.
CAPI_REPLY_LOG_OUT Not currently used. TBD.
CAPI_REPLY_MODEL_SPECIFIC Not currently used. TBD.
CAPI_REPLY_PAUSE_BUS The specified bus is paused. This means that I/O is

not being performed on the drives until an unpause.
identifier Describes channelIndex.

CAPI_REPLY_PREFERRED_OWNER_SET An array preferred owner has been changed
CAPI_REPLY_PUT_OFFLINE

 in CAPI 3.3
The module has been put offline.

CAPI_REPLY_PUT_ONLINE
 in CAPI 3.3

The module has been put online.

CAPI_REPLY_REMOVE_HOST A host has been removed from a host table
CAPI_REPLY_RESCAN_BUS_START The bus rescan started.

identifier Describes channelIndex.
CAPI_REPLY_RESET_ARRAY_PARTITION_STATS The array partition statistics have been reset
CAPI_REPLY_RESET_ARRAY_STATS The array statistics were reset.

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 331

identifier Describes arrayIndex.
CAPI_REPLY_RESET_DRIVE_STATS The drive statistics were reset.

identifier Describes arrayIndex, channelIndex, and driveIndex.
CAPI_REPLY_RESET_LAN Reset LAN subsystem command reply
CAPI_REPLY_RESTORE_CONTROLLER_DEFAULTS The controller defaults were restored. See

controller�s documentation for default settings.
CAPI_REPLY_SCSI_MAINT_DATA A SCSI maintenance command returned data.

identifier Describes channelIndex and driveIndex.
dataPtr A pointer to a CAPI_MAINT_DATA_STRUCT

structure.
CAPI_REPLY_SCSI_MAINT_START A SCSI maintenance command has started.

identifier Describes channelIndex and driveIndex.
param1 comandId

CAPI_REPLY_SET_ADVANCED_NETWORK_INTF Advanced Network Interface Structure was set

CAPI_REPLY_SET_ADVANCED_UNIT_MAPPING Controller has received an array of
CAPI_UNIT_MAP�s

CAPI_REPLY_RESET_DRIVE_ERROR_STATS
 in CAPI 3.3

New cache parameters have been set for the
specified array partition.

CAPI_REPLY_SET_ARRAY_PARTITION_CACHE_PARAMS
 in CAPI 3.3

New cache parameters have been set for the
specified array partition.

CAPI_REPLY_SET_BATTERY_MONITOR The Battery Life Monitor has been set.
CAPI_REPLY_SET_CACHE_PARAMS The new cache parameters for the specified array

have been set. If arrayIndex is CAPI_NULL_ID, then
all arrays have been set.

identifier Describes arrayIndex.
CAPI_REPLY_SET_CHANNEL_PARAMS New channel parameters have been set.
CAPI_REPLY_SET_CONTROLLER_PARAMS The new controller parameters have been set.
CAPI_REPLY_SET_CONTROLLER_TIMEDATE The time and date for the specified controller were

set.
CAPI_REPLY_SET_PREFERRED_OWNER Sets the preferred owner of an array.
CAPI_REPLY_SHUTDOWN_CONTROLLER The controller is in a shutdown state.
CAPI_REPLY_SILENCE_ALARM Controller alarm has been silenced.
CAPI_REPLY_SPARE_DELETE A spare drive was deleted.

identifier Describes arrayIndex (CAPI_NULL_ID if pool spare),
channelIndex, and driveIndex.

CAPI_REPLY_TEST_DRIVE The drive test was completed.
identifier Describes channelIndex and driveIndex.

CAPI_REPLY_TEST_SPARES The test spares request was processed.
CAPI_REPLY_TRUST_ARRAY Controller has finished clearing dead drives.
CAPI_REPLY_UNIT_MAPPING The assigned LUN for the specified array changed.

identifier Describes arrayIndex.
CAPI_REPLY_UNKILL_OTHER Released the other controller from reset.
CAPI_REPLY_UNPAUSE_BUS The bus was unpaused.

identifier Describes channelIndex.
CAPI_REPLY_UPDATE_FIRMWARE The controller has received a firmware update.
CAPI_REPLY_USE_KEY Digital key has been used.

CAPI_REPLY_UTILITY_ABORT The utility for the specified array was aborted.
identifier Describes arrayIndex.

param1 Utility Running
CAPI_REPLY_UTILITY_PERCENT The percent complete for the specified array was

returned.
identifier Describes arrayIndex.

param1 Percent complete.
param2 Utility Running (CAPI_UTILITY_RUNNING).

CAPI_REPLY_VERIFY_ARRAY_START The verify operation for the specified array started.
identifier Describes arrayIndex.

CAPI_REPLY_VERSION_MISMATCH Major CAPI version on the controller does not match
major CAPI version of the host application.

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

332 Chaparral document #07-0003-340

◊◊◊◊ ◊◊◊◊ ◊◊◊◊
EVENT CODE REFERENCE
This chapter provides a reference for the event codes received by the configuration application through the
call back routine. Comments after each event specify which fields in the CAPI_EVENT structure are valid.
The fields that are always valid are sequenceNumber, timeStamp, eventCode, errorCode, criticality, and
id.controllerHandle.

The serialNumbers.arraySerialNumber field is valid for any event having an arrayIndex;
serialNumbers.driveSerialNumber is valid for any event having a driveIndex (not CAPI_NULL_ID). See the
CAPI_EVENT structure for a full description of the fields.

The data type CAPI_EVENT_CODE is used for event codes and is typedef�d as a CAPI_U32.

NOTE: This list is complete for products prior to RIO. For additional event codes and their
descriptions, please see file capi_event_reply.h in the SDK. File capi_event_reply.h
also contains additional descriptive comments for some of these event codes.

Table 7-1. Event Code Descriptions

Event Code Description
CAPI_EVENT_3RD_PARTY_DISK_BUS_RESET A disk channel was reset by a third-party device.

id Describes the channelIndex.
CAPI_EVENT_AA_ENABLED Active-active configuration is now enabled.
CAPI_EVENT_AD_FAILURE An analog to digital converter failure occurred.

param1 See CAPI_AD_ALARM_SIGNAL in ◊ ◊ ◊ 3
Typedefs and Defines starting on page 18.

CAPI_EVENT_AD_OK The analog to digital converter is now functional.
param1 See CAPI_AD_ALARM_SIGNAL in ◊ ◊ ◊ 3

Typedefs and Defines starting on page 18.
CAPI_EVENT_AD_WARNING An analog to digital converter warning.

param1 See CAPI_AD_ALARM_SIGNAL in ◊ ◊ ◊ 3
Typedefs and Defines starting on page 18.

CAPI_EVENT_ADD_ARRAY_PARTITION_COMPLETE Array partition has been added.
CAPI_EVENT_ADD_DEDICATED_SPARE A dedicated spare drive was added.

id Describes arrayIndex, channelIndex, and driveIndex.
CAPI_EVENT_ARRAY_CRITICAL One drive in the specified array failed and the array is running in

degraded mode.
id Describes the arrayIndex.

param1 Number of suitable spare drives.
CAPI_EVENT_ARRAY_DELETE The array was deleted.

id Describes the arrayIndex.
CAPI_EVENT_ ARRAY_HOST_ID_CHANGED
CAPI_EVENT_ ARRAY_LUN_CONFLICT
CAPI_EVENT_ARRAY_NAME_CHANGE The array name has been changed.

id Describes the arrayIndex.
CAPI_EVENT_ARRAY_OFFLINE The drives in an array without redundancy failed and the array is

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 333

now off-line.
id Describes arrayIndex.

CAPI_EVENT_ARRAY_PARTITION_GEOMETRY_CHA
NGE

Array partition geometry change is complete.

CAPI_EVENT_ARRAY_PARTITION_LUN_CHANGE Array partition LUN change is complete.
CAPI_EVENT_ARRAY_PARTITION_NAME_CHANGE Array partition name change is complete.
CAPI_EVENT_BACKEND_CHAN_LINK_DOWN The link for this back-end port is down

The id.channelIndex field is the port number
CAPI_EVENT_BACKEND_CHAN_LINK_UP The link for this back-end port is up

The id.channelIndex field is the port number
CAPI_EVENT_BATTERY_CHARGE_COMPLETE The controller�s battery used for cache backup is now charged.
CAPI_EVENT_BATTERY_FAILURE A battery failure occurred on the controller.

param1 Battery failure code.
param4 State of the battery.

CAPI_EVENT_BATTERY_HW_FAILURE_INFO Product-specific battery failure. Parameters are product-
dependent.

CAPI_EVENT_BATTERY_TEMPERATURE_WARNING Battery temperature is in the warning range.
CAPI_EVENT_BLOCK_REASSIGNED A member of an array had an uncorrectable error and the controller

reassigned the block.
id Describes arrayIndex and driveLocation.

param1 Block number.
CAPI_EVENT_BOOT_SDRAM_UNCORR_ECC_ERR An uncorrectable ECC error occurred on the SDRAM memory on

bootup. The controller scrubbed the memory and continued.
CAPI_EVENT_CACHE_INIT The cache was initialized as a result of power up

param1 0 initialized from clean shutdown
1 initialized with dirty (unwritten)

 param2 0 memory region A
 1 memory region B
 this parameter is valid only for products supporting failover

CAPI_EVENT_CONFIGURATION_DEFAULTS The controller is using default configuration settings. This event
will occur on the first power up, and may sometimes occur after a
firmware update. If you have just performed a firmware update and
your system requires special configuration settings, you must make
those configuration changes before your system will operate as
before.

CAPI_EVENT_CONFIGURATION_HAS_CHANGED The array configuration changed on the controller. Applications
should update their information.

CAPI_EVENT_CONTROLLER_REBOOT_COMPLETE The controller rebooted. (Not implemented.)
CAPI_EVENT_CORRUPT_EVENT_ENTRY This event entry is corrupt. This can happen when the power is lost

while the controller is in the process of writing an event into the
flash memory.

CAPI_EVENT_CREATE_ARRAY_COMPLETE The array creation is complete.
id Describes arrayIndex.

CAPI_EVENT_CREATE_ARRAY_START An array creation started.
id Describes arrayIndex.

CAPI_EVENT_CRITICAL_ERROR_ENCOUNTERED A critical error has been encountered by the controller
software. The severity of this error requires that
the controller software be restarted -- this is done
automatically, except in an Active-Active configuration,
where the surviving controller will kill the controller
that hit the critical error.

CAPI_EVENT_DELETE_ARRAY_PARTITION_COMPLE
TE

Array partition has been deleted.

CAPI_EVENT_DIAGNOSTIC_FAILURE A controller diagnostic failed or returned a warning message.
param1 Diagnostic error code.

CAPI_EVENT_DISK_CHANNEL_ERROR The controller�s software observed an error while talking to a SCSI
device on a disk channel. The error was detected by the controller,
not the disk.

id Describes the arrayIndex, channelIndex, and driveIndex.
deviceId SCSI ID.
param1 Product dependent.

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

334 Chaparral document #07-0003-340

param2 CDB length
cdb SCSI CDB related to this event

CAPI_EVENT_DISK_CHANNEL_FAILURE A serious error was detected on one of the disk channels. This may
indicate a hardware failure; however, the controller will attempt a
recovery.

id Describes the channelIndex.
CAPI_EVENT_DISK_CHANNEL_ID_CONFLICT
CAPI_EVENT_DISK_DETECTED_ERROR A disk drive or other SCSI device on the disk channel bus (such as

a SAF-TE SEP device) reported a check condition and the
following SCSI sense data was returned.

id Describes arrayIndex, channelIndex, and driveIndex.
deviceId SCSI ID.
param1 SCSI sense key.
param2 SCSI sense code.
param3 SCSI sense code qualifier.
param4 sense data information field, usually the LBA associated with the

sense key. (Note, this param4 was CDB length in CAPI 3.1)
cdb SCSI CDB related to this event.

CAPI_EVENT_DISKSET_OWNER_CHANGE This is an information only event that is logged when the controller
detects that new disks have been added that are from a different
controller and have an existing array on them. The controller takes
ownership of the disksets.

id Describes arrayIndex.
CAPI_EVENT_DOMAIN_VALIDATION_FALLBACK This event only applies to controllers with parallel SCSI disk

channels. It indicates that Ultra 160 domain validation failed on
one of the controllers disk channels. Parameters indicate the
minimum and maximum negotiated rates on the disk channel, and
which device ids were affected.

param1 (LSW) Minimum negotiated rate, in MB/s
param1 (MSW) width of minimum negotiated rate (8 or 16 bits)
param2 (LSW) Maximum negotiated rate, in MB/s
param2 (MSW) width of maximum negotiated rate (8 or 16 bits)

param3 16 bit bitmap of device ids that failed domain validation
CAPI_EVENT_DRIVE_DOWN An array member failed and the array either changed to a critical or

off-line state.
id Describes arrayIndex and driveLocation.

param1 ArrayDriveIndex (index into array).
deviceId SCSI ID.

CAPI_EVENT_EMP_EVENT During Active/Active operations, an event (a potential error) has
occurred while coordinating communications with the Enclosure
Management Processor (used for SAF-TE or SES).

param1 Contains one of the event codes:
 EMP_SLAVE_REQ_FAILED
 EMP_BAD_EMP_ID

param2 If param1 == EMP_BAD_EMP_ID, this contains the EMP id.
CAPI_EVENT_EMP_FAILURE A communications failure has occurred between the controller and

the Enclosure Management Processor (used for SAF-TE or SES).
param1 If the error code is set to CAPI_ERROR_CAN'T_TALK_TO_EMP,

then param1 contains the HIM Task Status codes:
 EMP_EVENT_UNDEFINED (0x00)
 EMP_RB_HIOB_NO_RESPONSE (0x01)
 EMP_RB_HIOB_UNKNOWN_ERROR (0x02)
 EMP_WB_HIOB_NO_RESPONSE (0x03)

param2 If param1 == EMP_RB_HIOB_UNKNOWN_ERROR, then this
contains the actual HIOB task status value.

CAPI_EVENT_ENCLOSURE_FAILURE The enclosure reported a general failure.
CAPI_EVENT_ENGLISH_STRING Not implemented.
CAPI_EVENT_ENVIRON_COMMAND This command is used internally by the controller to send

commands to the environmental processor.
CAPI_EVENT_ENVIRON_FAILURE Could not communicate with an environmental processor (EMP).
CAPI_EVENT_EXPAND_ARRAY_COMPLETE The Expand Array utility was completed.

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 335

CAPI_EVENT_EXPAND_ARRAY_START The Expand Array utility has begun.
id Describes the arrayIndex.

CAPI_EVENT_FAILBACK The controller has started failing over, or completed failing over.
param1 0 = initiated, 1 = completed
param2 failover set: 0=B, 1=A

CAPI_EVENT_FAILOVER Description: the controller has started failing over, or completed
failing over

param1 0 = initiated, 1 = completed
param2 failover set: 0=B, 1=A

CAPI_EVENT_GLOBAL_DISK_SETTING_CHANGE The controller modified some mode parameters on one or more
drives

param1 CAPI_DISK_SETTING (enable or disable only)
param2 1 write back cache

2 SMART support
CAPI_EVENT_HOST_CHANNEL_ERROR The controller either generated or detected an error on one of its

host channels.
param1 1 for controller detected errors, 2 for generated errors
param2 controller internal error code (when param1 == 1) or SCSI status

byte (when param1 == 2)

param3 SCSI sense key (when param1 == 2 and param2 == 2)
param4 SCSI ASC/ASCQ (when param1 == 2 and param2 == 2)

CAPI_EVENT_HOST_CHAN_LINK_DOWN The link for this host port is up
The id.channelIndex field is the port number

CAPI_EVENT_HOST_CHAN_LINK_DOWN The link for this host port is up
The id.channelIndex field is the port number

CAPI_EVENT_HOST_TERMINATION_WARNING The controller�s termination may be bad.
CAPI_EVENT_KILL_OTHER_CONTROLLER

Reason for killing the other controller. See
CAPI_FR_FAILOVER_REASON for a list of valid reason codes.

CAPI_EVENT_MODEL_SPECIFIC This is a model-specific event.
CAPI_EVENT_NO_EVENT Obsolete.
CAPI_EVENT_NON_NATIVE_WWN_BEING_USED This replacement controller has assumed the World Wide Name

(node and port) of the original controller. This is done to make the
replacement of a controller in an Active-Active configuration
transparent to the host. However, if both controllers lose power or
are otherwise rebooted, then the original controller's WWN will be
lost, and the current controller will generate a new WWN based on
its own unique serial number. This means that a dual controller
reboot will cause the controller's WWN to change from the host's
perspective.

param1 First 4 bytes of current node WWN
param2 Last 4 bytes of current node WWN
param3 First 4 bytes of native node WWN
param4 Last 4 bytes of native node WWN

CAPI_EVENT_OEM_ENCLOSURE_STATUS The OEM's enclosure has detected a change in the status of one
of the items that it monitors.

param1 The device which has changed state:
1 = Enclosure Fan 2 Status
2 = Enclosure Fan 1 Status
3 = Fibre Channel Loop 2 GBIC Receiver Loss Of Signal
4 = Fibre Channel Loop 1 GBIC Receiver Loss Of Signal
5 = Enclosure power supply 1 status
6 = Enclosure power supply 2 status
7 = RS-232 configuration port switch

param2 Current state of the device:
0 = Device is operating correctly (for fans) or signal detected (for
receivers) or external terminal mode (for RS-232 configuration port
switch.)
1 = Device failed (for fans), or no receive signal detected (for
receivers) or Internal LCD Mode (for configuration port switch)

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

336 Chaparral document #07-0003-340

CAPI_EVENT_ORPHAN_DATA Dirty cache data exists on the controller without a corresponding
array. Use CAPI_FreeCache to purge the data.

param1 LUN for which the data is associated with.
param2 Percentage of data occupied in the controller�s memory.

CAPI_EVENT_OTHER_WRITE_BACK_DATA_LOST
param1 new state:

 10 = other shutting down to update firmware
 11 = other shutting down
 12 = other rebooting

CAPI_EVENT_OTHER_STATE_CHANGE The other controller was in the process of mirroring write-back data
to this controller after a failback, when the other controller was
killed. This means that some writes to the storage LUNs owned by
the other controller may have been lost.

CAPI_EVENT_POOL_SPARE_ADDED A pool spare drive (available to all arrays) has been added.
id Describes arrayIndex.

CAPI_EVENT_POWER_UP The controller powered up.
CAPI_EVENT_REBOOT_TO_AVOID_OTHER_LOST_W
RITE_DATA

The other controller was in the process of mirroring write-back data
to this controller after a failback when the other controller was
killed. We rebooted to avoid losing the data in the other controller's
cache.
If the other controller does not reboot successfully the data was
lost.

CAPI_EVENT_RECONSTRUCT_ARRAY_COMPLETE A reconstruct was completed on an array that is now fault-tolerant.
id Describes arrayIndex.

CAPI_EVENT_RECONSTRUCT_ARRAY_START A reconstruct operation was started.
id Describes arrayIndex.

deviceId SCSI ID of the drive being reconstructed.
CAPI_EVENT_RELEASE_OTHER_CONTROLLER Release the other controller from reset.
CAPI_EVENT_RESCAN_BUS_COMPLETE A bus scan was completed.

id Describes channelIndex.
CAPI_EVENT_RESET_ARRAY_PARTITION_STATS The statistics for the specified array have been reset.
CAPI_EVENT_RESET_ARRAY_STATS The array statistics were cleared.

id Describes arrayIndex.
CAPI_EVENT_RESET_DRIVE_STATS The drive statistics were cleared.

id Describes arrayIndex and driveLocation.
CAPI_EVENT_RESTORE_CONTROLLER_DEFAULT The factory default settings were restored. Some controllers

require a reboot for the default settings to be restored. See the
controller�s documentation.

id Describes controllerHandle.
CAPI_EVENT_SCSI_MAINT_DONE A SCSI maintenance command was completed. See errorCode for

completion status.
id Describes the channelIndex.

deviceId SCSI ID.
param1 maintCommand.
param2 Sense key if failure.
param3 Sense ASC if failure.

CAPI_EVENT_SET_CHANNEL_PARAMS Channel parameters have been changed.
CAPI_EVENT_SET_PREFERRED_OWNER The array has been given to the other controller.
CAPI_EVENT_SDRAM_CORR_ECC_ERR A correctable ECC error occurred on the SDRAM.

 param1 address of memory with ECC error

CAPI_EVENT_SDRAM_UNCORR_ECC_ERR An uncorrectable ECC error occurred on the SDRAM.
 param1 address of memory with ECC error

CAPI_EVENT_SET_ARRAY_PARTITION_CACHE_PAR
AMS

The new cache parameters for an array partition were set.

CAPI_EVENT_SET_CACHE_PARAMS The new cache parameters for an array were set.
id Describes arrayIndex.

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 337

CAPI_EVENT_SET_CONTROLLER_PARAMS The new controller parameters were set.
CAPI_EVENT_SET_CONTROLLER_TIMEDATE The time and date were set on the controller.
CAPI_EVENT_SHUTDOWN_CONTROLLER The controller is in a shutdown state.
CAPI_EVENT_SMART_EVENT A SMART event occurred on a SCSI device.

id Describes the arrayIndex, channelIndex, and driveIndex.
deviceId SCSI ID.
param1 SCSI sense key.
param2 SCSI sense code.
param3 SCSI sense qualifier.

CAPI_EVENT_SPARE_DELETE A spare drive was deleted.
id Describes driveLocation.

deviceId SCSI ID.
CAPI_EVENT_SPARE_DRIVE_FAILURE A spare drive failed.

id Describes the arrayIndex, channelIndex, and driveIndex.
deviceId SCSI ID.
param1 SCSI sense key.
param2 SCSI sense code.
param3 SCSI sense qualifier.

CAPI_EVENT_SPARE_KICKED_IN A spare drive automatically started to reconstruct due to a drive
failure.

id Describes arrayIndex and driveLocation.
param1 ArrayDriveIndex (index into array).

deviceId SCSI ID.
CAPI_EVENT_SPARE_UNUSABLE The controller could not use an assigned spare drive for an array

because of a conflict in the spare's metadata. (The spare's
metadata may indicate it was once part of the array that needs to
be reconstructed, or it may have once been a member of another,
no longer existent array. In either case, the metadata on the spare
drive must be cleared before it can be used as a spare.)

CAPI_EVENT_TEST_DRIVE A drive test was completed.
id Describes driveLocation.

errorCode Results of a successful drive test.
CAPI_EVENT_TRANSPORT_MODE_CHANGE A disk channel changed from single-ended to LVD mode or Vice

versa.
id Describes the arrayIndex, channelIndex, driveIndex.

CAPI_EVENT_TRIGGER_EMP_UPDATE Controller internal use only. CAPI applications should ignore this
event.

CAPI_EVENT_TRUST_ARRAY The controller cleared dead drives on an array

CAPI_EVENT_UNIT_MAPPING The assigned LUN number for this array changed.
id Describes arrayIndex.

param1 New unit number (the array is seen as a LUN).
deviceId SCSI ID of mapped single drive (if arrayIndex is CAPI_NULL_ID).

CAPI_EVENT_UPDATE_FIRMWARE_COMPLETE Firmware update operation is complete. A controller reboot is
necessary for the new firmware to take effect. See errorCode for
completion status of the operation.

CAPI_EVENT_UTILITY_ABORT An array utility was aborted.
id Describes arrayIndex.

param1 Type of utility aborted (CAPI_UTILITY_RUNNING).
CAPI_EVENT_VERIFY_ARRAY_COMPLETE A verify operation was completed. See the errorCode in the

CAPI_EVENT structure for completion status.
id Describes arrayIndex.

param1 Number of fixes made.
CAPI_EVENT_VERIFY_ARRAY_START A verify operation started.

id Describes arrayIndex.
CAPI_EVENT_WWN_HAS_CHANGED This controller was replaced at some time in the past and assumed

the World Wide Names (node and port) of the original controller.
However, a dual controller reboot has been done, and this
controller is now using WWNs based on its own serial number.

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

338 Chaparral document #07-0003-340

This transition takes place on a dual controller reboot because it is
not advisable to assume another controller's WWNs indefinitely (in
case that controller is repaired and plugged back into the same
fabric), and because host operations have already been disrupted
by the dual reboot. If you see this event, then you need to verify
the WWN information for this controller on all hosts that access it.

param1 First 4 bytes of current node WWN
param2 Last 4 bytes of current node WWN
param3 First 4 bytes of previous node WWN
param4 Last 4 bytes of previous node WWN

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 339

◊◊◊◊ ◊◊◊◊ ◊◊◊◊
RETURN CODE REFERENCE
This chapter provides a reference for the return codes that are returned by CAPI functions.

The data type CAPI_RETURN_CODE is used for return codes and is typedef�d as a CAPI_U32.

NOTE: In the CAPI Function Reference starting on page 115, the return codes are shown
as CAPI_RC – this is just an abbreviation. The actual define for return code is listed
in capi3.h as CAPI_RETURN_CODE.

Table 8-1. Return Code Descriptions
Return Code Description
CAPI_STATUS_COMMUNICATION_ERROR A communication error occurred.
CAPI_STATUS_FIRMWARE_DOWNLOAD_ERROR An error occurred during the controller�s firmware download.
CAPI_STATUS_GOOD The status of the command is good.
CAPI_STATUS_INVALID_PARAM An invalid param was used.
CAPI_STATUS_LINK_BUSY The Remote Link is busy. Retry in a few seconds.
CAPI_STATUS_NOT_IMPLEMENTED The command is not implemented.
CAPI_STATUS_NOT_SUPPORTED The command that was issued is not supported.
CAPI_STATUS_NULL_POINTER A bad pointer was used in a call to CAPI

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

340 Chaparral document #07-0003-340

◊◊◊◊ ◊◊◊◊ ◊◊◊◊
ERROR CODE REFERENCE
This chapter provides a reference for the errors that a CAPI application can receive through the callback
routine.

The data type CAPI_ERROR_CODE is used for error codes and is typedef�d as a CAPI_U32.

NOTE: This list is complete for products prior to RIO. For additional error codes and their
descriptions, please see file capi3.h in the SDK.

Table 9-1. Return Code Descriptions

Error Code Description
CAPI_NO_ERROR No error was received.
CAPI_ERROR_AA_INCOMPAT_FIRMWARE_IMAGE Firmware is incompatible with other controller in Active-Active cfg.
CAPI_ERROR_ARRAY_DOWN Not allowed to modify the array when it is down.
CAPI_ERROR_ARRAY_INIT This error occurs during a create array.
CAPI_ERROR_ARRAY_PARTITION_OVERLAP The array partition that was added overlaps an existing partition.
CAPI_ERROR_ARRAY_PARTITION_TOO_SMALL The array partition that was added is too small.
CAPI_ERROR_ARRAY_TOO_LARGE Controller may not allow creation of an array that is bigger than 2

TB.
CAPI_ERROR_BACKOFF_PERCENT_TOO_LARGE The backoff percent value given is 100.0% (i.e. 1000) or greater.

This is illegal.
CAPI_ERROR_BAD_CONTROLLER_MODE An invalid combination of dualPort and standAlone bits or an

invalid controllerMode was selected in
CAPI_CONTROLLER_PARAMS. (e.g. Some products only
support standalone/single port, and some support dual port, but
only in standalone mode.) Note: this event was called
CAPI_ERROR_BAD_DUAL_SA_OPTION in CAPI3.1

CAPI_ERROR_BAD_IDENTIFIER An invalid device was specified.
CAPI_ERROR_BAD_PASSWORD An incorrect password was received.
CAPI_ERROR_BAD_PRIORITY A bad utility priority was specified.
CAPI_ERROR_BUS_SPEED_OUT_OF_RANGE The bus speed specified is beyond the maximum capable speed

for this channel.
CAPI_ERROR_CANNOT_CHANGE_FAILOVER_ARRAY_LUN The LUN value of an array belonging to a failed controller cannot

be changed from the non-native controller. Repair the failed
controller and change the LUN value from the native controller.
Changing an array LUN value when failed over can cause LUN
conflicts when the array fails back.

CAPI_ERROR_CANNOT_CHANGE_FAILOVER_CHAN_PAR
AMS

Host channel parameters for a failed over host channel cannot be
changed from the non-native controller. Repair the failed
controller and change the channel parameters from the native
controller. Changing host channel information while failed over
can cause problems when control of the channel fails back.

CAPI_ERROR_CANT_ADD_ARRAY_MAXED_OUT Cannot add an array because there are already the maximum
number of arrays.

CAPI_ERROR_CANT_ADD_ARRAY_MAXED_OWNER This error is returned when a controller is already the preferred
owner of its maximum number of arrays and an add array

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 341

command is attempted.
CAPI_ERROR_CANT_ADD_SPARE_DURING_INIT Cannot add spare drive while the array initialization is running.
CAPI_ERROR_CANT_ADD_SPARE_MAXED_OUT Cannot add anymore spare drives.
CAPI_ERROR_CANT_RESCAN_DURING_ZERO_INIT Cannot rescan while an array utility is running.
CAPI_ERROR_CANT_START_UNIT SCSI failure.
CAPI_ERROR_CANT_TALK_TO_SEP Cannot communicate with the SAF-TE device.
CAPI_ERROR_CANT_VERIFY_WHEN_CRITICAL Cannot run verify utility because the array is not fault-tolerant.
CAPI_ERROR_CDB_DATA_TOO_LARGE The amount of data on a maintenance use-CDB command is too

large.
CAPI_ERROR_CHANNEL_NUM_OUT_OF_RANGE Request for channel number that does not exist.
CAPI_ERROR_CHECK_CONDITION A SCSI check condition occurred while communicating with the

device.
CAPI_ERROR_COMMAND_FAILED The command failed for non-specified reasons.
CAPI_ERROR_CONTROLLER_SHUTDOWN The command cannot be completed because the controller is in a

special shutdown state.
CAPI_ERROR_DMEP_BUFFER_SIZE_TOO_LARGE The SCSI DMEP (Device Memory Export Protocol) memory

buffer size specified in the controller parameters is
too large. The "maxDmepMemoryBufferSize" field in
the controller structure indicates the maximum buffer
size.

CAPI_ERROR_DRIVE_NOT_ONLINE The specified drive is not online.
CAPI_ERROR_DRIVE_TOO_SMALL Proposed drive is too small to use.
CAPI_ERROR_FAILURE_DUE_TO_CONFIG_CHANGE The command failed because the requesting application has

outdated configuration information.
CAPI_ERROR_GET_PARAMS SCSI failure. Could not get drive parameters.
CAPI_ERROR_INQUIRY SCSI inquiry failure.
CAPI_ERROR_INVALID_ARRAY_FORMAT_TYPE The create array command had an invalid formatType field.
CAPI_ERROR_INVALID_CHANNEL_ID The SCSI or Fibre Channel ID specified is invalid.
CAPI_ERROR_INVALID_CHANNEL_TYPE The channel type specified must be either a host or drive channel.

The value was neither.
CAPI_ERROR_INVALID_CMD_IN_THIS_MODE The controller is running in a mode (see controllerMode) that does

not allow the requested command. The command may work if
controllerMode is set differently.)

CAPI_ERROR_INVALID_CRITICAL_ERROR_PARAMETER An invalid "magic number" value or error type parameter was
supplied with the "force critical error command.

CAPI_ERROR_INVALID_DATA_CHUNK_SIZE Invalid/bad data chunk sizes was specified.
CAPI_ERROR_INVALID_ENCLOSURE_FEATURE_FLAG A bad enclosure feature flag was submitted to the controller. This

enclosure may not support the specified feature flag. occurred
CAPI_ERROR_INVALID_FC_LINK_SPEED The Fibre Channel link speed must be set to "1GB"

or "2GB" or "AUTO". It was set to none of these.
CAPI_ERROR_INVALID_FC_TOPOLOGY The Fibre Channel topology must be set to "loop" or "point-to-

point". It was set to neither.
CAPI_ERROR_INVALID_FIRMWARE_CRC Firmware is invalid because of CRC
CAPI_ERROR_INVALID_FIRMWARE_HEADER Firmware is invalid because of header information
CAPI_ERROR_INVALID_FIRMWARE_MACHINE_TYPE Firmware is invalid because of machine type
CAPI_ERROR_INVALID_FIRMWARE_SIZE Firmware is invalid because of size of image
CAPI_ERROR_INVALID_KEY An invalid digital key was used
CAPI_ERROR_INVALID_KEY_MAXIMUM_RETRIES_EXCEE
DED

An invalid digital key was used more than the maximum number
of times allowed. You must reboot the controller before you will be
allowed to turn on features using a digital key

CAPI_ERROR_INVALID_NUM_OF_LOW_LEVEL_DRIVES An invalid number of low level drives has been specified
when creating a RAID50 array. The number of drives is
too large, too small, or not evenly divisible into the
number of drives specified for the array.

CAPI_ERROR_INVALID_NUMBER_OF_DRIVES Invalid number of drives was specified.
CAPI_ERROR_INVALID_NUMBER_OF_SPARES Invalid number of spare drives was specified.
CAPI_ERROR_INVALID_RAID_TYPE Invalid RAID type given.
CAPI_ERROR_INVALID_TIME_DATE The time and date parameter submitted to the controller was bad.

The time/date parameter is the number of seconds since January
1, 1970. A date after December 31st, 2037 is not currently

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

342 Chaparral document #07-0003-340

accepted.
CAPI_ERROR_INVALID_UNIT_NUM Invalid SCSI LUN was specified.
CAPI_ERROR_LUN_AUTO_SETTING_NOT_SUPPORTED LUN auto-setting cannot be enabled for this product.
CAPI_ERROR_MAX_ONE_OCE Can only have 1 OCE per controller/controller pair.
CAPI_ERROR_MODE_SENSE SCSI failure.
CAPI_ERROR_NEW_ARRAY_CONFIG Create array failure.
CAPI_ERROR_NO_ORPHAN_DATA Could not find orphan data for serial number.
CAPI_ERROR_NO_RESOURCES No resources are available to complete the request.
CAPI_ERROR_NO_SUCH_DRIVE Invalid drive was specified.
CAPI_ERROR_NO_SUCH_EVENT No such event exists on the controller.
CAPI_ERROR_NO_SUCH_ENVIRON_PROCESSOR The specified SAF-TE or SES processor (EMP) does not exist.
CAPI_ERROR_NO_UTILITY_RUNNING There is no utility running to abort.
CAPI_ERROR_NO_UTILITY_TO_ABORT There is no utility to abort.
CAPI_ERROR_NOT_A_VALID_DRIVE_TO_RECONSTRUCT Invalid drive was specified.
CAPI_ERROR_NOT_SUPPORTED The command is not supported.
CAPI_ERROR_OCE_INTERNAL_ERROR This is an OCE (Online Capacity Expansion) software error.
CAPI_ERROR_ORPHAN_DATA_PRESENT Cannot complete the operation due to dirty cache that is present

on the non-existent array. Use CAPI_FreeCache to purge the
data. param1 on the reply contains the LUN number to purge.

CAPI_ERROR_OTHER_NOT_UP The command cannot complete because the other controller in a
dual-controller system is not running.

CAPI_ERROR_PARITY_NOT_VALID This error is returned in the array offline event. It indicates the
array is offline because parity is not known to be good. If the
array is missing a member drive, then data has been lost. This
situation can arise if a controller with a critical array is not shut
down cleanly, and is replaced with a different controller. The
parity information in the first controller's NVRAM is not available,
and the disk parity may be inconsistent. If the array is not missing
any drives, a verify will restore parity and make the array usable
again

CAPI_ERROR_READ_CAPACITY SCSI failure.
CAPI_ERROR_RECONSTRUCT_NOT_NEEDED A reconstruction is not needed on the array.
CAPI_ERROR_SPARE_UNUSABLE Refer to the comment for CAPI_EVENT_SPARE_UNUSABLE
CAPI_ERROR_SPARE_USED Cannot add spare because the drive is already being used.
CAPI_ERROR_START_UNIT SCSI failure.
CAPI_ERROR_TEST_UNIT_READY SCSI failure.
CAPI_ERROR_TOO_MANY_ARRAY_PARTITIONS The array partitions that was added overlaps an existing array

partition.
CAPI_ERROR_UNIT_NUM_IN_USE Invalid SCSI LUN number.
CAPI_ERROR_UTILITY_ABORTED_BY_USER The user aborted the utility.
CAPI_ERROR_UTILITY_ALREADY_RUNNING A utility is already running.
CAPI_ERROR_VERIFY_FAILED Obsolete.
CAPI_ERROR_WRITE_RESERVED_SECTOR Could not write data to array members.
CAPI_ERROR_WRONG_TOPOLOGY_FOR_PRIVATE_LOOP The Fibre Channel topology must be set to "loop" in order to set

"force private loop".
CAPI_ERROR_WWN_NOT_FOUND The controller can't find the requested world wide name.
CAPI_ERROR_WWN_TABLE_FULL The controller can't perform the requested operation because

its world wide name table is already full.
CAPI_ERROR_ZERO_DRIVES Could not write data to array members.

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 343

◊◊◊◊ ◊◊◊◊ ◊◊◊◊
LINK MANAGER EXCHANGE (LMX)
The Link Manager Exchange (LMX) is the layer between the CAPI Client and the data exchange interface
and resides on the computer that is running the CAPI Client. (An LMX is also used within the controller.)
The basic model of the CAPI stack is shown in Figure 10-1. This model allows the interface from
application to CAPI Client to remain constant over a wide variety of environments.

Figure 10-1. General CAPI Architecture

Application
CAPI Client (master)

Master LMX

Communication

H
ost

C
om

puter

Communication

Slave LMX

CAPI Server (slave)

C
ontroller

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

344 Chaparral document #07-0003-340

The layers with bold borders remain the same, regardless of the data exchange layer. The LMX is used to
match CAPI messages to the appropriate data exchange layer. The Data Link Manager (DLM) provides a
reliable protocol over a serial link. The diagram also illustrates how an application may be used either from
a host or from within the external controller.

Figure 10-2. Example LMX Protocol Stacks

Application layer Application layer Application layer
External CAPI layer External CAPI layer External CAPI layer

Serial LMX layer ASPI LMX layer Independent LMX
DLM ASPI Manager SCSI Interface

Serial Driver SCSI Driver SCSI Driver

Host System Computer(s)

External Controller

Serial Driver Application
DLM

SCSI Driver
Internal CAPI

Serial LMX SCSI LMX Embedded LMX
System Specific System Specific System Specific

An LMX is used by both the host and controller sides; however, the actual code may be different. Often,
they are referred to as the host LMX and the controller LMX. They are also referred to as a Master LMX
and a Slave LMX.

Figure 10-3 shows a diagram of the LMX software.

Figure 10-3. LMX Software Diagram

Application

CAPI2PAK

Master LMX

I/O Interface

I/O Interface

Slave LMX

Controller Internals

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 345

Include Files

LMX.H
lmx.h is a general file that contains information common to all LMXs. It also contains �#includes� for all
LMXs. The #includes are activated by the use of one or more of the USE_xxx_LMX defines. For example,
to use SCSI, the compile line should contain /DUSE_SCSI_LMX. This causes the inclusion of the file
LMXSCSI.H. Multiple LMXs may be used.

LMX_IOB
The LMX I/O Block (LMX_IOB) is used to control I/O to the LMX. It is defined in lmx.h and contains the
following:

typedef struct _LMX_IOB
{
 void *pControllerContext;
 LMX_CONTEXT *pLmxContext;
 LMX_ENTRIES *pLmxEntries;
 void (*receivePacketCallback)(struct _LMX_IOB *plmxIob);
 unsigned char *sendBuf;
 unsigned long sendLength;
 unsigned char *recBuf;
 unsigned long recLength;
 unsigned long maxRecLength;
 LMX_STATUS status;
 unsigned char linkType;
} LMX_IOBLMX_IOBLMX_IOBLMX_IOB;

Table 10-4. LMX_IOB fields.

Field Description
pControllerContext Pointer to a context used by CAPI. It is not to be used by the LMX.
pLmxContext Pointer to a context which the LMX may use to keep I/O relevant information.

The size of the context area is the size of the context structure in this LMX�s
.h file. See LMX Context on page 347.

pLmxEntries Pointer to a structure containing pointers to each of the LMX�s exported
routines. See LMX_ENTRIES on page 348.

receivePacketCallback Pointer to a call back routine that must be called upon completion of an I/O
operation. The LMX must pass a pointer to this LMX_IOB to this routine.
Before calling this routine, be sure to set the status field.

sendBuf Pointer to the buffer that contains data to be sent.
sendLength Length of the data in sendBuf.
recBuf Pointer to the buffer in which to place received data. The maxRecLength field

gives the maximum size of this buffer.
recLength Set by the LMX to the number of bytes received into recBuf. It must be set

prior to calling receivePacketCallback.
maxRecLength Size of the recBuf buffer. Do not to overflow the size of the recBef buffer.
status Set by the LMX to the status of the completed operation. It must be set prior

to calling receivePacketCallback.
linkType This field contains the link type, as defined in the lmx.h file.

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

346 Chaparral document #07-0003-340

Values for receivePacketCallback status
Values for the status field of the LMX_IOB structure are as follows:

#define LMX_STATUS_NO_STATUS 0
#define LMX_STATUS_GOOD 1
#define LMX_STATUS_LINK_BUSY 2
#define LMX_STATUS_COMMUNICATION_ERROR 3
#define LMX_STATUS_COMMUNICATION_TIMEOUT 4
#define LMX_STATUS_READY_FOR_PROCESSING 5

Table 10-5. LMX_STATUS_* typedef descriptions.

Status Description
LMX_STATUS_NO_STATUS Set by CAPI before calling an I/O routine. This value must not be

returned in status when receivePacketCallback is called.
LMX_STATUS_GOOD Set by the LMX if the operation is good.
LMX_STATUS_LINK_BUSY Set by the LMX if, when called for an I/O operation, the previous

I/O operation is not complete. It is not required that the LMX check
for busy because CAPI does not make any overlapping calls. The
LMX may optionally provide this status as a cross check.

LMX_STATUS_COMMUNICATION_ERROR Set by the LMX if an unrecoverable communications error exists.
For example, if SCSI gets a selection timeout, it may return this
error.

LMX_STATUS_COMMUNICATION_TIMEOUT Set by the LMX if an operation takes too long. Most operations
should finish well within one second. A timeout of at least 5
seconds is recommended. Calls to the timerTick routine occur
every ½ second. You can use that to time your I/O.

LMX_STATUS_READY_FOR_PROCESSING Used internally by CAPI and must not be returned by the LMX.

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 347

lmxXXX.h
There is a file called lmxXXX.h for each type of exchange used. The XXX letters are replaced with the
respective LMX name. There must be a #include for this file in file lmx.h. Some are already included in
lmx.h and are enabled with a compiler define, as explained above in the lmx.h section. If you are creating
a new LMX, you will need to edit lmx.h. See lmx.h for details.

Defining the LMX’s initialization routine
The entry name of the LMX is defined in the lmxXXX.h file. The #define called
xxx_yyy_LMX_INITIALIZE_NAME defines the name of the entry point, where xxx is replaced with SLAVE
or MASTER, and yyy is replaced with the interface type (SERIAL, SCSI, or whatever). These names are
picked up by capi2pak.c and are used to initialize each LMX. For example, lmxscsi.h may contain:

 #define MASTER_SCSI_LMX_INITIALIZE_NAME SCSILMX_Initialize.

Defining a Master or Slave
As stated previously, there are two types of LMXs: master and slave. A master LMX is used to interface
between an application CAPI and the link. A slave LMX is used within the controller to interface between
the CAPI layer and the interface. This master/slave relationship is given in LMXxxx.H and is usually (but not
always) determined by the ifdef called REALHW.

For example, on the host side, the SCSI LMX is a master, so the name used there would be
MASTER_SCSI_LMX_INITIALIZE_NAME. On the controller side, the name would be
SLAVE_SCSI_LMX_INITIALIZE_NAME.

(Master LMXs are also used within the controller. For example, the LAN Subsystem communicates with
the Storage Controller processor via CAPI; the LAN Subsystem is the master and the Storage Controller
processor is the slave. Also, for Unified CAPI, communications between the two controller boards is via
CAPI operated in a master/slave relationship.)

LMX Context
The LMX context is an area of memory passed to the LMX by CAPI. The LMX may do
whatever it wants with this area of memory. The LMX supplies its memory via the
following typedef (which is placed in lmxXXX.h):

typedef struct _LMXxxx_CONTEXT
{
 int whateverYouNeedHere;
} LMXxxx_CONTEXT;

xxx is replaced with SCSI, 232, or whatever.

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

348 Chaparral document #07-0003-340

Routines

Initialization Routine
The initialization routine is named by xxx_yyy_LMX_INITIALIZE_NAME as discussed in Defining the LMX’s
initialization routine on page 347. Its prototype is:

void xxx_yyy_initialization_namexxx_yyy_initialization_namexxx_yyy_initialization_namexxx_yyy_initialization_name(void *pContext*pContext*pContext*pContext,
 LMX_INIT_CALLBACK_FUNCTION *pInitCompleteCallback*pInitCompleteCallback*pInitCompleteCallback*pInitCompleteCallback,
 struct _LMX_ENTRIES *pLmxEntries*pLmxEntries*pLmxEntries*pLmxEntries);

For example, if the name of your initialization routine is SCSILMX_Initialize, your lmxscsi.h file may contain:

#define MASTER_SCSI_INITIALIZE_NAME SCSILMX_Initialize
void SCSILMX_InitializeSCSILMX_InitializeSCSILMX_InitializeSCSILMX_Initialize(void *pContext*pContext*pContext*pContext,
 LMX_INIT_CALLBACK_FUNCTION *pInitCompleteCallback*pInitCompleteCallback*pInitCompleteCallback*pInitCompleteCallback,
 struct _LMX_ENTRIES *pLmxEntries*pLmxEntries*pLmxEntries*pLmxEntries);

Table 10-6. LMX_IOB fields:

Field Description
pContext Points to an area of memory used by CAPI to keep track of the initialization

progress. Although it has a similar name, it is not related to the typedef
LMXxxx_CONTEXT. This pointer must be passed as the first argument when
calling pInitCompleteCallback.

pInitCompleteCallback Points to a function which the LMX must be called when the initialization is
complete. The pContext argument is passed back to CAPI via this callback.
The callback also gives the status of the initialization. The status argument
uses the same values as the LMX_IOB status. See Values for
receivePacketCallback status on page 346. (must be LMX_STATUS_GOOD)

pLmxEntries points to a structure which is to be filled in by the initialization routine. See
structure definition below.

LMX_ENTRIES Structure Definition:

typedef struct _LMX_ENTRIES
{
 void (*slaveReceive)(struct _LMX_IOB *pLmxIob);
 void (*sendAndReceive)(struct _LMX_IOB *pLmxIob);
 void (*timerTick)(void);
 CAPI_S32 (*findNextControllerfindNextControllerfindNextControllerfindNextController)(CAPI_S32 firstTime, CAPI_S32 *lastTime,
 struct _LMX_CONTEXT *pLmxContext);
} LMX_ENTRIESLMX_ENTRIESLMX_ENTRIESLMX_ENTRIES;

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 349

Table 10-7. LMX_ENTRIES field descriptions:

Field Description
slaveReceive Pointer to the (SLAVE LMX, applicable to the LMX on the controller only)

receive routine.
sendAndReceive Pointer to the send and receive routine.
timerTick Pointer to the timer tick routine. This routine is called by CAPI every ½ second.

This gives an O/S independent LMX timing that can be used to time I/Os.
findNextController Pointer to the find next routine. Note that when this routine is used in SLAVE

context, it finds a connection not a controller.

Find Next Controller
This routine (not to be confused with CAPI_FindNextController), finds the next controller on a master
system or finds the next connection on a slave system and returns TRUE if a controller/connection is found;
otherwise it returns FALSE. It finds as many controllers/connections that exist for the LMX it supports. CAPI
calls this routine until it returns with either NOT FOUND or lastTime equals TRUE.

int findNextControllerfindNextControllerfindNextControllerfindNextController(int firstTimefirstTimefirstTimefirstTime,
 int *lastTime,*lastTime,*lastTime,*lastTime,
 struct _LMX_CONTEXT *pLmxContext struct _LMX_CONTEXT *pLmxContext struct _LMX_CONTEXT *pLmxContext struct _LMX_CONTEXT *pLmxContext);

Table 10-8. findNextController parameter descriptions:
Parameter Description
firstTime Set to TRUE to start the list at the beginning. Set to FALSE to get the

remaining controllers..
lastController Set by this function routine when it does not want to be called again.
pLmxContext Passed in with a pointer to an area of memory which the LMX can use and will

have a size at least as large as the LMXxxx_CONTEXT structure given in
LMXxxx.H. Each LMX_IOB contains a pointer to this same context.

Send And Receive
void sendAndReceivesendAndReceivesendAndReceivesendAndReceive(struct _LMX_IOB *pLmxIobpLmxIobpLmxIobpLmxIob);

This routine is used by both master and slave LMXs. It is used to send a block of information and then
receive a resulting block.

The LMX must set the status field of the LMX_IOB prior to returning from this function. If the I/O can be
started, the status field must be set to LMX_STATUS_GOOD and there must be an accompanying call
back. If the I/O cannot start, the status field must be set to some other value and a call back must not
occur. See LMX_IOB on page 345 and Values for receivePacketCallback status on page 346.

After the receive operation is complete or if an unrecoverable error occurs after the I/O is started, this
routine must call pLmxIob->receivePacketCallback(pLmxIob). The IOB pointer passed (pLmxIob) must be
used when calling the receivePacketCallback routine. Also, pLmxIob->recLength and pLmxIob->status
must be set. See LMX_IOB on page 345 and Values for receivePacketCallback status on page 346.

Slave Receive
This routine is called by the SLAVE interface only (the controller code). It is used to place the slave LMX in
a receive mode.

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

350 Chaparral document #07-0003-340

void slaveReceiveslaveReceiveslaveReceiveslaveReceive(struct _LMX_IOB *pLmxIobpLmxIobpLmxIobpLmxIob);

The status field of the LMX_IOB must be set prior to returning from this function. If the I/O can be started,
the status field must be set to LMX_STATUS_GOOD and there must be an accompanying call back. If the
I/O cannot start, the status field must be set to some other value and a call back must not occur.

After the receive operation is complete or if an unrecoverable error occurs after the I/O is started, this
routine must call pLmxIob->receivePacketCallback(pLmxIob). The IOB pointer passed (pLmxIob) must be
used when calling the receivePacketCallback routine. Also, pLmxIob->recLength and pLmxIob->status
must be set. See LMX_IOB on page 345 and Values for receivePacketCallback status on page 346.

Timer Tick
This is called every LMX_TIME_FREQ microseconds. LMX_TIME_FREQ has been fixed at ½ second to
allow CAPI to be in a separate DLL. This define is found in lmx.h.

void timerTicktimerTicktimerTicktimerTick(void);

timerTick is called only once per tick even if more than one controller/connection exists for the LMX. (For
example, if this LMX supports multiple connections, a call is not made for each connection.)
Not all LMXs need to have this function called; see this function in the LMX you are using to determine if it
really does anything.

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 351

Adding a New Type of LMX
The LMX types defined thus far are for SCSI and RS-232 (plus ones defined for internal use within and
between controllers). To add a new type, modify the following files:

makefile
The makefile defines which LMX(s) are to be used in the system. For example, USE_SERIAL_LMX specifies the use
the RS-232 LMX. Define a new USE_xxx_LMX for the new interface.

lmxXXX.h
This contains the name of the initialization routine. Create a new MASTER_xxx_LMX_INITIALIZE_NAME and/or
SLAVE_ xxx _LMX_INITIALIZE_NAME. Define if the name should be used as a MASTER or a SLAVE by defining
USE_xxx_LMX_MASTER and/or USE_xxx_LMX_SLAVE. Define the LMXxxx_CONTEXT.

capi2pak.c
There is a table called LmxMasterTable. This contains pointers to each MASTER initialization routine. The pointers are
obtained from lmxXXX.h. You will see an ifdef around each pointer. Note that the ifdef has the word _MASTER
appended to the normal USE_xxx_LMX (for example, USE_SERIAL_LMX_MASTER). This is defined in the lmxXXX.h
file. Add a new pointer using the new define.

lmx.h
Modify this to include the new lmxXXX.h file name.

Specific Cases
The I/O hardware interface is not provided by this architecture. The application must interact with the
hardware interface to set up its transmission characteristics such as data rates. For example, with a SCSI
LMX, the LMX does not deal with fast/ultra, narrow/ wide, initiator IDs and so on; and with a Serial LMX, the
LMX does not deal with data rates and methods used for polling.

Independent LMX
An Independent LMX is one that interfaces to user-supplied code. This can be used, for example, for an
application that already has internal links to SCSI. This type of application only needs to supply a CAPI
packet to the interface and receive a resulting packet back from the interface. One such implementation:

Figure 10-9. Independent LMX

CAPI Client
Master LMX

User�s current SCSI
interface layer
SCSI Driver

In this example, the LMX only supplies a block of data to the user�s current SCSI Interface, receives a block
from the interface, calls the CAPI Client module back, and returns. This LMX may loop or block until the
SCSI driver returns the CAPI result allowing the sequence of events to be synchronous rather than
asynchronous.

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

352 Chaparral document #07-0003-340

Assume the user �s current SCSI interface sends data via a function int PutData(char *buffer, cdb) and
receives data via a function int GetData(char *buffer, cdb). These functions return 0 if there was a SCSI
timeout and GetData() returns the number of bytes received. The LMX would be written as follows:

/**/
void Lmx_InitializeLmx_InitializeLmx_InitializeLmx_Initialize(void *pContext, LMX_INIT_CALLBACK_FUNCTION
 *initCompleteCallback, struct _LMX_ENTRIES *pLmxEntries)
/**/
{
 pLmxEntries->findNextController = Lmx_FindNextController;
 pLmxEntries->sendAndReceive = Lmx_SendAndReceivePacket;
 pLmxEntries->slaveReceive = NULL;
 pLmxEntries->timerTick = NULL;

 initCompleteCallbackinitCompleteCallbackinitCompleteCallbackinitCompleteCallback(pContext, LMX_STATUS_GOOD);
}

/**/
int Lmx_FindNextControllerLmx_FindNextControllerLmx_FindNextControllerLmx_FindNextController(int firstTime, int *lastController,
 struct _LMX_CONTEXT *pLmxContext)
/**/
{
 /* For completeness, you may want to scan the bus here and fill in
 LMX_CONTEXT with nexus information to allow for multiple controllers.
 A pointer to the LMX_CONTEXT is passed in the LMX_IOB. */

 *lastController = TRUE;
}

/**/
void Lmx_SendAndReceivePacketLmx_SendAndReceivePacketLmx_SendAndReceivePacketLmx_SendAndReceivePacket(struct _LMX_IOB *pLmxIob)
/**/
{
 static CAPI_U8 writeCdb[10] = { 0x3B,1,0,0,0,0,0,0,0,0 };
 static CAPI_U8 readCdb[10] = { 0x3C,1,0,0,0,0,0,0,0,0 };
 (CAPI_U16)(&writeCdb[7]) = BigEndian16BigEndian16BigEndian16BigEndian16(pLmxIob->sendLength);

 if(PutDataPutDataPutDataPutData(pLmxIob->sendBuf, writeCdb))
 {
 (CAPI_U16)(&readCdb[7]) = BigEndian16BigEndian16BigEndian16BigEndian16(pLmxIob->maxRecLength);

 if(pLmxIob->recLength == GetDataGetDataGetDataGetData(pLmxIob->recBuf, readCdb))
 pLmxIob->status = LMX_STATUS_GOOD;
 else
 pLmxIob->status = LMX_STATUS_COMMUNICATIONS_ERROR;
 }
 else
 pLmxIob->status = LMX_STATUS_COMMUNICATIONS_ERROR;

 pLmxIob->receivePacketCallbackreceivePacketCallbackreceivePacketCallbackreceivePacketCallback(pLmxIob);
}

Notes:
♦ A timerTick() is not needed because the example does not time the SCSI I/O at this level.
♦ Since this is a master, there is no need for the slaveReceive routine.
♦ The lmxXXX.h file appropriately reflects the initialization routine name.
♦ The function BigEndian16 is hypothetical and is not supplied by the CAPI SDK.

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 353

Serial LMX
The serial LMX is called lmx232.c and lmx232.h. It uses a Data Link Manager called dlm.c and dlm.h that
includes the file mt_call.h.

This LMX is the same code for both the host and controller. The define called REALHW tells the LMX which
side it is running on. If defined, the code is running in the controller and if it is not defined, it is running on
the host.

Figure 10-10. Serial LMX

Application

CAPI2PAK.C

LMX232.C

DLM.C

Serial Interface

SendData() SerialDataReceive()

The application opens the serial interface, sets the baud rate and port numbering before initializing CAPI. If
the serial line is polled, the application must do this on a timely basis. In the Chaparral sample code, these
are done via InitComPort(), CheckSerialPort(), and CloseSerialPort().

Application supplied.
In the sample code,
this is commport.c

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

354 Chaparral document #07-0003-340

Functions

SerialDataReceived
The LMX exports one entry point to be called by the user each time data is received. Its prototype is:

void SerialDataReceivedSerialDataReceivedSerialDataReceivedSerialDataReceived(CAPI_U32 portNumportNumportNumportNum, CAPI_U8 *bufbufbufbuf, CAPI_U32 lengthlengthlengthlength);

Field Description
portNum Port number in which to send the data. This is a 0 relative number used between the

DLM and the serial interface and may not represent the physical serial port number.
buf Pointer to the buffer that contains the data received.
length Length, in bytes, of the data received.

If the communications is to run using polling, the application must call the serial interface often enough to
keep the data flowing. In the software example in commport.c, this is done by calling CheckSerialPort().
The prototype is:

void CheckSerialPort(void);

If communications runs on interrupts or if commport.c is not used, this function is not called.

SendData
The LMX imports one entry point which it calls each time data is to be sent. Its prototype is:

CAPI_U32 SendDataSendDataSendDataSendData(CAPI_U32 portNumportNumportNumportNum, CAPI_U8 *datadatadatadata, CAPI_U32 lengthlengthlengthlength);

Field Description
portNum The port number in which to send the data. This is a 0 relative number used between the

DLM and the Serial Interface and may not represent the physical serial port number.
data Pointer to the data that is to be sent.
length Length of the data.

The function returns CAPI_STATUS_GOOD if the transmit was successful (this means that the data started
OK, not that it continued to transmit OK). CAPI_STATUS_COMMUNICATIONS error is returned if it could not
start.

The portNum is a number passed between the serial interface and the DLM. It is 0 relative and does not
necessarily mean a physical port number. It can be thought of more as a serial controller number. The serial
interface must route these to the physical port that is connected to a controller. For example, a "0" could go
out COM2 and a "1" could go out COM3.

Serial Line Characteristics
The serial line must be set for 8 data bits, no parity, and one stop bit. The data rate must agree with the
rate set in the controller.

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 355

◊ ◊ ◊

SCSI LMX
Introduction
CAPI command packets may be sent via the SCSI protocol by using the SCSI Link Manager Exchange
(LMX). Currently supported transports for SCSI are parallel SCSI and Fibre Channel. This is frequently
referred to as �in-band CAPI.�

Terminology note: The LUN used to communicate with the CAPI code on a controller (router or RAID
controller board) is referred to in this chapter as the �controller LUN.� In the code and in some Chaparral
documentation, this is often referred to as the �bridge LUN� and sometimes as the �CAPI LUN�; these are
all the same thing. This same LUN is used for both CAPI and for the non-CAPI pass through feature
(described in Chapter 17).

Read Buffer and Write Buffer Command Usage
CAPI requests to an LMX in our sample CAPI app consist of a single send/receive action. This allows the
caller to send a request and receive a confirmation with a single call. Since most SCSI interfaces do not
support back-to-back Data In and Data Out phases, two CDBs are used for each CAPI packet. The first
CDB performs a Write Buffer command that sends the CAPI packet during the Data Out phase. The
second CDB performs a Read Buffer command that receives the confirmation or result in the Data In
phase.

Read Buffer and Write Buffer Error Handling
The controller can handle more than one SCSI initiator, and will gracefully handle this at a low level by
returning Queue Full or Busy status (discussed more below). At a higher level, you may want to have the
initiators communicate to ensure they do not interfere with each other; for example, you may not want to
allow two users to simultaneously engage in configuration activities.

Each SCSI initiator must maintain its own Write Buffer/Read Buffer sequence. That is, it must successfully
complete a Write Buffer command before it sends a Read Buffer command, and then successfully
complete the Read Buffer command before sending another Write Buffer command.

Check condition with sense key 0x05 (ILLEGAL REQUEST), additional sense code 0x3b (PAPER JAM),
and qualifier 0x05 is returned if a single initiator:

• sends a read buffer command without a prior successful write buffer command, or
• sends two write buffer commands in a row, or
• sends two read buffer commands in a row.

Other than the cases listed just above, sense data values follow standard SCSI practices. See the
Request Sense section below for a list of other sense data that a CAPI app may encounter.

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

356 Chaparral document #07-0003-340

The controller will return Queue Full status (0x28) when it is out of resources due to too many commands
being queued to any and all LUNs. Busy status (0x8) will only be returned by the controller LUN for the
following reasons:

• An application attempts to send a command to the controller LUN before the previous command
has completed. (You have to wait for each command to finish before you send another one. You
can still use tagged commands, however.)

• A command is received when the controller has sense data pending (i.e., contingent allegiance) for
a different initiator. (The SCSI spec permits a target to respond with busy status while waiting for
an initiator to request sense data, and we make use of this in our controllers.) This only applies to
parallel SCSI, since FC returns sense data immediately (i.e., autosense) and contingent allegiance
is effectively cleared immediately.

• The initiator sending a CAPI Read Buffer command is different from the one that sent the previous
CAPI write buffer command. This means that more than one initiator is doing CAPI work; the
write/read pair has to be done without interruption from another initiator.

• An initiator sends a CAPI Write Buffer command after a different initiator has sent a CAPI Write
Buffer, but before that different initiator has sent a CAPI Read Buffer command. This means that
more than one initiator is doing CAPI work; the write/read pair has to be done without interruption
from another initiator.

Host LMX
LMX code on the host system uses the SCSI Inquiry command to find targets that are CAPI-capable. CAPI
commands are sent to the controller LUN, which is a processor device type LUN on the controller. All
LUNs on a target should be checked since the controller LUN may have been assigned to any LUN. It is
also possible for there to be LUN gaps. For example, the controller LUN may be LUN 2, but LUNs 0 and 1
may be unassigned. However, some operating systems may only recognize contiguous LUNs starting at 0.

Send and Receive
For a send and receive LMX call, the sample code for an LMX performs the following actions:

1. Sends the WRITE BUFFER CDB and waits for completion.
2. Sends the READ BUFFER CDB and waits for completion.
3. Calls the CAPI layer�s callback routine to signal completion.

These CDBs should be very quick and so spinning may be OK; however, if your operating system does not
tolerate this, some form of blocking must be implemented in your CAPI application.

Figure 11-1. Example CAPI Protocol Stack

Application
CAPI Client

Master SCSI LMX
SCSI Driver

SCSI Driver
Slave SCSI LMX

CAPI Server

Host

External
RAID

controller

SCSI bus

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 357

Hints
Here are some hints and caveats, mostly pulled from articles on the Microsoft Developers Network (MSDN)
CDs:
• Windows NT by default applies the scanner device driver to all SCSI processor device type (0x03)

devices. Thus, it sees CAPI as a scanner. But there is a bug in the scanner device driver that
prevents more than one device from being seen by the OS. This limits CAPI. The workaround for this
is to disable the scanner device driver on the PC running your CAPI application. The sample code in
lmx_sc32.c assumes that this device driver has been disabled and the lmx_sc32.c code can find
multiple controllers running CAPI. For Windows 2000, this is not an issue since the OS does not have
a scanner device driver. To disable the device driver on an NT PC, select:
Start|Settings|Control Panel|Devices|Scsiscan|Startup|Disabled|OK|Yes

• For Windows NT 4.0 and Windows 2000, SCSI pass through (SPT) requests are always synchronous,
even if the caller to DeviceIoControl() has specified overlapped I/O (FILE_FLAG_OVERLAPPED). The
sample code in lmx_sc32.c does not specify overlapped I/O and all commands are sent synchronously.

• For Windows NT 4.0 and Windows 2000, a SCSI command can be sent to the SCSI device as either
untagged or tagged, but the SPT always uses untagged queuing while sending commands to the
device. This should be a non-issue for CAPI applications; CAPI ignores whether commands are
tagged or untagged. All commands to CAPI must be synchronous, as discussed at the beginning of
this chapter and as implemented in the sample code in lmx_sc32.c.

• Starting with Windows NT 4.0 Service Pack 4 and beyond (including Windows 2000), there are new
access requirements for SCSI pass through requests. For SCSI pass through requests, both
GENERIC_READ and GENERIC_WRITE access must be specified in the dwDesiredAccess parameter
of the CreateFile() call. If both read and write access are not specified, the DeviceIoControl() call will
fail with ERROR_ACCESS_DENIED (5L). The sample code in lmx_sc32.c implements this
requirement.

• For Win NT and Win 2000, only members of the administrator's group have the correct authority to
send SCSI pass through requests. Users without administrator authority typically fail either CreateFile()
or DeviceIoControl() with ERROR_ACCESS_DENIED (5L).

• For Win NT 3.5, when transferring data via the SCSI pass through (IOCTL_SCSI_PASS_THROUGH
and IOCTL_SCSI_PASS_THROUGH_DIRECT), a transfer larger than the targeted SCSI host bus
adapter (HBA) can support may crash the system.

• The sample code in lmx_sc32.c makes use of a call to DeviceIoControl() with a command of
IOCTL_SCSI_GET_INQUIRY_DATA to find attached Chaparral controllers. This command returns the
data that the OS found when it was booted up and may not reflect the current state of the SCSI devices
connected to the PC. For example, if the Chaparral controller is not powered up at the time that the PC
is booted, the code will not be able to find the CAPI LUN, so no CAPI management will be possible.

• Older versions of Solaris do not have a device driver that can see SCSI devices with a processor
device type. A third-party device driver must be installed. One such driver is �sg� (generic SCSI device
driver) available from Uniq Software Services. Solaris 8 apparently includes a driver called �sgen� that
performs this function.

• Big-endian/little-endian issues are not addressed with the sample code in lmx_sc32.c. The embedded
CAPI code runs on a processor that is compatible with Intel processors.

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

358 Chaparral document #07-0003-340

Controller SCSI Commands for CAPI

Inquiry
The controller responds to Inquiry requests with data identifying it as a CAPI device. The controller LUN
and all SEP LUNs return with the peripheral device type set to SCSI processor device. The response data
for the Inquiry command is of the standard form with some vendor-specific fields.

Table 11-1: INQUIRY Data

Bit
Byte 7 6 5 4 3 2 1 0
0 Peripheral Qualifier (0h) Peripheral Device Type (03h)

1 RMB (0) Reserved (00h)

2 0 0 0 0 0 ANSI-approved Version (03h)

3 AERC (0) Obsolete (0) NormACA (0) HiSup (1) Response Data Format (02h)

4 Additional Length (n-4) (9Bh)

5 SCCS (0) Reserved (00h)

6 BQue (0) EncServ (0) VS (0) MultiP (1) MChngr (0) Obsolete (0) Obsolete (0) Addr16 (0)

7 Rel Addr (0) Wbus32 (0) Wbus16 (0) Sync (0) Linked (0) Obsolete (0) CmdQue (1) SoftRst (0)

8 (MSB)

- - - Vendor Identification (�CNSi �)

15 (LSB)

16 (MSB)

- - - Product Identification

31 (LSB)

32 (MSB)

- - - Product Revision Level

35 (LSB)

36 (MSB)

- - - Unused

43 (LSB)

44 (MSB)

- - - CAPI / SAF-TE Interface Identification String (�CAPI �)

49 (LSB)

50 (MSB)

- - - Unused

95 (LSB)

96 (MSB)

- - - Controller Identification String (�Chaptec Bridge �)

110 (LSB)

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 359

111 (MSB)

- - - Controller Firmware Version

119 (LSB)

120
- - - Unused

130
131 (MSB)

- - - SEP Vendor Identification

138 (LSB)

139 (MSB)

- - - SEP Product Identification

154 (LSB)

155 (MSB)

- - - SEP Product Revision Level

158 (LSB)

Table 11-2: Inquiry Data Descriptions

CDB Field Description
Peripheral Qualifier Indicates if the selected LUN is a valid SCSI device. This field will be 000b.
Peripheral Device Type Indicates the type of SCSI device. This field will be 03h (SCSI Processor

Device).
ANSI-Approved Version This field is 03h to indicate compliance with the ANSI SCSI-3 specifications.
Response Data Format This field is 02h to indicate that the format of the INQUIRY response data is

as defined in the ANSI SCSI-2 specification.
Additional Length This field indicates the number of bytes of additional INQUIRY command

parameters available for transfer, beginning with byte 05h. This value is not
adjusted if the Allocation Length in the CDB is too large or too small to
accommodate the entire response.

Rel Addr Indicates the device supports relative addressing. Always 0.
WBus32 Indicates the device supports 32-bit wide data transfers. Always 0.
WBus16 Indicates the device supports 16-bit wide data transfers. (0 if Fibre Channel)
Sync Indicates the device supports synchronous transfers. (0 if Fibre Channel)
Linked Indicates the device supports linked commands. Always 0.
Reserved Always 0.
CmdQue Indicates the device supports tagged command queuing. Always 1 to be

consistent with RAID LUNs, but not really supported for CAPI. (See
explanation above in the section titled �Read Buffer and Write Buffer Error
Handling.�)

SoftRst Indicates the device supports soft resets. Always 0.
Vendor Identification 8-byte ASCII string that identifies the product vendor. It contains the same

string used for data LUN INQUIRYs. This is �CNSi � or, in older
firmware, �ChapTec�.

Product Identification 16-byte ASCII string that specifies the product ID. It contains the same
string used for data LUN INQUIRYs.

Product Revision Level 4-byte ASCII string that specifies the product revision level (firmware level).
It contains the same string used for data LUN INQUIRYs.

CAPI / SAF-TE Interface
Identification String

6-byte ASCII string: It contains either the text string �CAPI �, left aligned for
the controller LUN and all data LUNs, or the string �SAF-TE� for any SEP

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

360 Chaparral document #07-0003-340

LUNs.
Note: The host CAPI LMX should check this string for �CAPI �.

Controller Identification
String

14-byte ASCII string that contains the key phrase �Chaptec Bridge� with a
15th pad character containing a blank (20h) before the next string. This text
string is used by host-based CAPI applications to identify this as a CAPI
controller.

Controller Firmware
Version

8-byte ASCII string that contains the firmware version number with a 9th pad
character containing a blank (20h) before the next string.

Note: The following definitions in bytes 131 through 158 are valid only if this is a SEP LUN and the
Insert Bridge Temperature option is enabled. In this case, we save the original SEP inquiry vendor and
product data in the vendor-specific parameters area below and insert the bridge�s vendor identification
and product identification data into the standard inquiry positions from the bridge�s flash data.
SEP Vendor
Identification

8-byte product vendor identification string reported by the SEP.

SEP Product
Identification

16-byte product identification string reported by the SEP.

SEP Product Revision
Level

4-byte product revision level string reported by the SEP.

Note: The following Read Buffer and Write Buffer commands are used to implement the
CAPI interface over SCSI and should not be confused with SAF-TE Read and Write
Buffer commands.

Write Buffer
The Write Buffer command is used to send a CAPI request during the Data Out phase. The contents of the
data packet are described by the CAPI_PACKET structure in the file capipak.h. The CDB is as follows:

Table 11-3: Write Buffer Command CDB

Bit
Byte 7 6 5 4 3 2 1 0
0 Operation Code (3Bh)

1 Logical Unit Number Reserved Mode (01h)

2 Buffer Id (00h)

3 00h

4 00h

5 00h

6
7
8

(MSB)

Transfer Length
(LSB)

9 00h

Table 11-4: Write Buffer CDB field Descriptions

CDB Field Description
Operation Code 3Bh is the Write Buffer command code.
Logical Unit Number This field is ignored (LUN is specified via identify message.)
Mode Should be set to 01h to indicate vendor specific mode.

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 361

Buffer Id Set to 00h to indicate the CAPI command format.
Transfer Length The number of bytes of data to be sent to the target

= sizeof(CAPI_PACKET) + sizeof(any extra data).

Read Buffer
The Read Buffer command is used to receive data from CAPI in a Data In phase. The contents of the data
packet is described by the CAPI_PACKET structure in the file capipak.h. The CDB is as follows:

Table 11-5: Read Buffer Command CDB

Bit
Byte 7 6 5 4 3 2 1 0
0 Operation Code (3Ch)

1 Logical Unit Number Reserved Mode (01h)

2 Buffer Id (00h)

3 00h

4 00h

5 00h

6
7
8

(MSB)

Transfer Length
(LSB)

9 00h

Table 11-6: Read Buffer CDB field Descriptions

CDB Field Description
Operation Code 3Bh is the Write Buffer command code.
Logical Unit Number This field is ignored (LUN is specified via identify message.)
Mode Should be set to 01h to indicate vendor specific mode.
Buffer Id Set to 00h to indicate the CAPI command format.
Transfer Length The maximum number of bytes of data to be returned from the target

 = sizeof(CAPI_PACKET) + sizeof(CAPI_EXTRA_DATA), which is slightly
less than 216 (65536) at this writing.

Test Unit Ready
This is the standard Test Unit Ready command, which returns a good status when the controller has
completed its self-tests on power up.

Request Sense
The Request Sense command returns normal (standard SCSI) sense data. See above in the section titled
�Read Buffer and Write Buffer Error Handling� for some notes on specific sense codes.

The following is a list of sense codes used in Chaparral controllers. Note that not all of these sense codes
are used for the commands that you will use for CAPI applications, as described above. These codes are
listed in the form that is used internally in Chaparral controllers. You may wish to use a different form in

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

362 Chaparral document #07-0003-340

your CAPI application. For example, we have combined the ASC and ASCQ into a single, 16-bit number
for our convenience, but you may wish to handle this as two, separate, 8-bit numbers.

Following the list of codes is information on which sense codes can occur for the commands described
above and what events cause those codes to occur. Although we believe that this list of events is
complete, we recommend that your CAPI app be designed to gracefully handle other codes as well.

// Sense keys.
const U8 SCSI_KEY_NO_SENSE = 0x00; // no sense data
const U8 SCSI_KEY_RECOVERED_ERROR = 0x01; // recovered error
const U8 SCSI_KEY_NOT_READY = 0x02; // not ready
const U8 SCSI_KEY_MEDIUM_ERROR = 0x03; // medium error
const U8 SCSI_KEY_HARDWARE = 0x04; // hardware error
const U8 SCSI_KEY_ILLEGAL_REQUEST = 0x05; // illegal request
const U8 SCSI_KEY_UNIT_ATTENTION = 0x06; // unit attention
const U8 SCSI_KEY_DATA_PROTECT = 0x07; // write/read protect
const U8 SCSI_KEY_BLANK_CHECK = 0x08; // blank medium or end of data
const U8 SCSI_KEY_VENDOR_SPECIFIC = 0x09; // vendor specific errors
const U8 SCSI_KEY_COPY_ABORTED = 0x0a; // copy aborted due to error
const U8 SCSI_KEY_ABORTED_COMMAND = 0x0b; // command aborted
const U8 SCSI_KEY_MISCOMPARE = 0x0e; // miscompare

// Additional sense codes and additional sense code qualifiers.
// Note: These are kept in a 16 bit word with the ASCQ in the high byte and
// the ASC in the low byte. This is so on our little endian (x86)
// processor, we can jam them in the sense data without byte reversing them.
//
const U16 SCSI_ASC_BUS_DEV_RESET = 0x0329; // bus device reset occurred
const U16 SCSI_ASC_CMD_PHASE = 0x004a; // command phase error
const U16 SCSI_ASC_CMD_SEQUENCE = 0x004a; // command sequence error
const U16 SCSI_ASC_CMDS_CLEARED = 0x002f; // commands cleared by another initiator
const U16 SCSI_ASC_DATA_PHASE = 0x004b; // data phase error
const U16 SCSI_ASC_DEFECT_LIST = 0x0019; // defect list error
const U16 SCSI_ASC_DEFECT_LIST_GRN = 0x0319; // defect list error in grown list
const U16 SCSI_ASC_DEFECT_LIST_PRI = 0x0219; // defect list error in primary list
const U16 SCSI_ASC_DEFECT_LIST_NA = 0x0119; // defect list not available
const U16 SCSI_ASC_DEFECT_LIST_NF = 0x001c; // defect list not found
const U16 SCSI_ASC_DEFECT_LIST_UPD = 0x0132; // defect list update failure
const U16 SCSI_ASC_DIAG_FAILURE = 0x0040; // diagnostic failure on component nn
const U16 SCSI_ASC_DME_NOT_ENABLED = 0x0a04; // DME segment not enabled
const U16 SCSI_ASC_DME_NOT_LOADED = 0x1026; // DME buffer id not loaded
const U16 SCSI_ASC_DME_BUFFER_ERROR = 0x0f26; // DME physical buffer number miscompare
const U16 SCSI_ASC_DME_SEQ_ERROR = 0x0e26; // DME sequence number miscompare
const U16 SCSI_ASC_ERROR_LOG_OVF = 0x000a; // error log overflow
const U16 SCSI_ASC_IO_TERMINATED = 0x0600; // I/O process terminated
const U16 SCSI_ASC_INIT_DET_ERROR = 0x0048; // initiator detected error received
const U16 SCSI_ASC_INTERNAL_RESET = 0x0429; // device internal reset
const U16 SCSI_ASC_INVALID_IDENTIFY = 0x003d; // invalid bits in identify message
const U16 SCSI_ASC_INVALID_CMD_CODE = 0x0020; // invalid command operation code
const U16 SCSI_ASC_INVALID_CDB = 0x0024; // invalid field in CDB
const U16 SCSI_ASC_INVALID_PARM = 0x0026; // invalid field in parameter list
const U16 SCSI_ASC_INVALID_MESSAGE = 0x0049; // invalid message
const U16 SCSI_ASC_LAMP_FAILURE = 0x0060; // lamp failure
const U16 SCSI_ASC_LOG_COUNTER_MAX = 0x025b; // log counter at maximum
const U16 SCSI_ASC_LBA_TOO_BIG = 0x0021; // lba out of range
const U16 SCSI_ASC_LUN_FAILED_CFG = 0x004c; // LUN failed self configuration
const U16 SCSI_ASC_LUN_NOT_CFG_YET = 0x003e; // LUN not set configured yet
const U16 SCSI_ASC_LUN_GETTING_RDY = 0x0104; // LUN in process of becoming ready
const U16 SCSI_ASC_LUN_FORMATTING = 0x0404; // LUN not ready, format in progress
const U16 SCSI_ASC_LUN_MAN_INTERV = 0x0304; // LUN not ready, manual intervention needed
const U16 SCSI_ASC_LUN_NEEDS_INIT = 0x0204; // LUN not ready, init needed
const U16 SCSI_ASC_LUN_NOT_SUPP = 0x0025; // LUN not supported
const U16 SCSI_ASC_MESSAGE_ERROR = 0x0043; // message error
const U16 SCSI_ASC_NEW_MICROCODE = 0x013f; // microcode has changed
const U16 SCSI_ASC_VERIFY_MISCOMP = 0x001d; // miscompare during verify
const U16 SCSI_ASC_MODE_PARM_CHG = 0x012a; // mode parameters changed
const U16 SCSI_ASC_NO_SENSE = 0x0000; // no additional sense
const U16 SCSI_ASC_NO_SPARE = 0x0032; // no defect spare available
const U16 SCSI_ASC_OVERLAPPED_CMDS = 0x004e; // overlapped commands

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 363

const U16 SCSI_ASC_PAPER_JAM = 0x053b; // paper jam (for CAPI: 2 Read Buffer commands in
a row or 2 Write Buffer commands in a row)
const U16 SCSI_ASC_PARM_LIST_LENGTH = 0x001a; // parameter list length error
const U16 SCSI_ASC_POWER_ON_RESET = 0x0029; // power on, reset or BDR occurred
const U16 SCSI_ASC_POWER_ON = 0x0129; // power on occurred
const U16 SCSI_ASC_PRIMARY_LIST_NF = 0x0042; // primary defect list not found
const U16 SCSI_ASC_RPT_LUN_CHANGE = 0x0e3f; // reported LUN’s data has changed
const U16 SCSI_ASC_SCSI_PARITY = 0x0047; // SCSI parity error
const U16 SCSI_ASC_SCSI_BUS_RESET = 0x0229; // SCSI bus reset occurred
const U16 SCSI_ASC_SDTR_ERROR = 0x001b; // SDTR error
const U16 SCSI_ASC_SYSTEM_RSRC = 0x0055; // system resource failure
const U16 SCSI_ASC_TARGET_CONDITION = 0x003f; // target conditions changed
const U16 SCSI_ASC_XCVR_CHG_TO_LVD = 0x0629; // transceiver mode changed to LVD
const U16 SCSI_ASC_XCVR_CHG_TO_SE = 0x0529; // transceiver mode changed to SE
const U16 SCSI_ASC_WRITE_PROTECTED = 0x0027; // write protect error
const U16 SCSI_ASC_UNREC_READ_ERROR = 0x0011; // unrecovered read error
const U16 SCSI_ASC_WRITE_ERROR = 0x000c; // write error
const U16 SCSI_ASC_NOTRDY_BUSY = 0x0704; // Logical Unit Not Ready, Operation in Progress

//
// Vendor-unique additional sense codes and qualifiers.
// These are used for the non-CAPI pass-through feature.
//
const U16 SCSI_ASC_VU_PT_NO_MEMORY = 0x0080; // pass through cmd couldn't allocate enough
memory
const U16 SCSI_ASC_VU_PT_DEVINARRAY = 0x0180; // pass through cmd device in an array (not safe
to pass through)
const U16 SCSI_ASC_VU_PT_INVALIDBUS = 0x0280; // pass through cmd sent to invalid bus
const U16 SCSI_ASC_VU_PT_SELTO = 0x0380; // pass through cmd selection timeout
const U16 SCSI_ASC_VU_PT_GENERROR = 0x0480; // pass through cmd general error

At initialization:

SCSI_KEY_UNIT_ATTENTION SCSI_ASC_POWER_ON

General errors:

If invalid SCSI command code received:
SCSI_KEY_ILLEGAL_REQUEST SCSI_ASC_INVALID_CMD_CODE

If parity error or (for Fibre Channel host connections) frame error:
SCSI_KEY_ABORTED_COMMAND SCSI_ASC_SCSI_PARITY

If illegal request to non-zero LUN in LUA mode. (Should never happen unless CAPI app sends
command to undefined LUN in our Target ID space.):
SCSI_KEY_ILLEGAL_REQUEST SCSI_ASC_LUN_NOT_SUPP

For Inquiry:

If reserved fields in the message are non-zero, or the page code is not one of the ones that
Chaparral supports (0x00 to retrieve supported pages, 0x80 for serial number, or 0x83 to retrieve
device ids):
SCSI_KEY_ILLEGAL_REQUEST SCSI_ASC_INVALID_CDB

For Test Unit Ready:

If reserved fields in the message are non-zero:
SCSI_KEY_ILLEGAL_REQUEST SCSI_ASC_INVALID_CDB

For Request Sense:

If reserved fields in the message are non-zero:
SCSI_KEY_ILLEGAL_REQUEST SCSI_ASC_INVALID_CDB

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

364 Chaparral document #07-0003-340

For Read Buffer:

If initiator sent a Read Buffer command without first sending a Write Buffer command:
SCSI_KEY_ILLEGAL_REQUEST SCSI_ASC_PAPER_JAM

If initiator set the Mode to something other than 0x01 (vendor specific mode), or set the Buffer
Id to an illegal value:
SCSI_KEY_ILLEGAL_REQUEST SCSI_ASC_INVALID_CDB

For Write Buffer:

If parameter list length is an odd number of bytes:
SCSI_KEY_ILLEGAL_REQUEST SCSI_ASC_PARM_LIST_LENGTH

If the Transfer Length is too long for our buffer:
SCSI_KEY_ILLEGAL_REQUEST SCSI_ASC_INVALID_PARM

If initiator sent two Write Buffer commands in a row:
SCSI_KEY_ILLEGAL_REQUEST SCSI_ASC_PAPER_JAM

If initiator set the Mode to something other than 0x01 (vendor specific mode), or set the Buffer
Id to an illegal value:
SCSI_KEY_ILLEGAL_REQUEST SCSI_ASC_INVALID_CDB

For pass-through requests to devices on the disk channels. (This is the non-CAPI pass-through
feature.):

If can’t get memory:
SCSI_KEY_VENDOR_SPECIFIC SCSI_ASC_VU_PT_NO_MEMORY;

If not configured to allow passthrough:
SCSI_KEY_VENDOR_SPECIFIC SCSI_ASC_VU_PT_DEVINARRAY

If user specified timeout >255:
SCSI_KEY_ILLEGAL_REQUEST SCSI_ASC_INVALID_CDB

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 365

◊◊◊◊ ◊◊◊◊ ◊◊◊◊
RS-232 LMX

Introduction
This chapter describes the protocol that implements a reliable, asynchronous, serial, RS-232 link between
the host system and the controller. This is sometimes referred to as �out-of-band CAPI.� The Data Link
Manager (DLM) is defined as the code and the modules developed to implement the asynchronous,
reliable protocol described in this chapter. The Link Manager Exchange (LMX) is defined as a higher-level
module which uses the DLM.

Protocol Elements Description
A modified version of the BISYNC protocol for the Data Link Layer was used for the following reasons:
♦ Error checking and recovery is required.
♦ A sliding window of outstanding data frames is not required. At most, there is only one outstanding data

frame open on both the master and slave sides.
♦ Absolute high performance is not required. This means the inefficiencies associated with the double

transmission of the DLE-DLE character is acceptable.
♦ Binary byte data of any value is allowed in the data block portion of the frame.
♦ No XON/XOFF flow control characters are required, though their use is not prohibited.
♦ No flow control using the RTS-DTR-CTS � RS-232 leads is required. The RS-232 link is established

on three wires: XMT Data, RCV Data, and ground.
♦ The Data Link can be full duplex; however, the actual exchange of data frames is done primarily in a

half-duplex manner with a defined master-slave relationship.
♦ Large data transactions, up to 64 KBytes, can be handled. The largest data frame that can be sent is

256 bytes. For large data transactions, multiple data frames are coalesced into one final data buffer.
♦ Either the slave or the master can reset or initialize the link by sending the sequence DLE-BEL.

However, the slave must respond with the frame DLE-SI to bring the link up. The master can detect
that the link has gone down either by having a receive function time out when the link is turned or by no
response to a polling status message periodically sent from the LMX for the master.

Framing
All I/O transmissions begin with DLE (Data Link Escape). Each DLE is followed by a unique character.
When a DLE-DLE is received, it is treated as a single DLE. A typical block is framed as follows:

DLE-STX payload DLE-ETX BCC-BCC

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

366 Chaparral document #07-0003-340

where DLE-STX indicates a start of frame, payload is up to 256 bytes, DLE-ETX is the end of frame
marker, and BCC-BCC is a 16-bit Block Check Character (BCC).

Timeouts
RECOVERY_COUNT = 5
LINE_BID_TIMEOUT = 1/2 second
TRANSMIT_TIMEOUT = 1 second
RECEIVE_TIMEOUT = 2 seconds

TRANSMIT_TIMEOUT must exceed the maximum time to transmit a block. If an unrecognizable sequence is
received when a block is expected, bytes are discarded for this amount of time.

RECEIVE_TIMEOUT is the maximum amount of time to receive an ACK and must be longer than
TRANSMIT_TIMEOUT. If a block is transmitted but no ACK is received for a period of RECEIVE_TIMEOUT
seconds, the transmitter waits TRANSMIT_TIMEOUT seconds, discards all incoming bytes, and sends DLE-
ENQ. This solicits the last response sent by the receiver. The transmitter uses this to determine if the last
block should be re-transmitted or if it was received correctly.

By waiting this length of time, a race condition is eliminated between sending the late ACK and the DLE-
ENQ frame. Thus, RECEIVE_TIMEOUT is longer than TRANSMIT_TIMEOUT. It allows the receiver of
garbage to re-sync and be ready to receive the DLE-ENQ sent RECEIVE_TIMEOUT seconds later.

If the connection is lost, the transmitter determines that there is a loss of connection after
RECOVERY_COUNT unsuccessful timeout recovery attempts. The master attempts to establish a new
connection by sending DLE-BEL every LINE_BID_TIMEOUT seconds. After the connection is re-
established, the slave re-initializes its ACK counter as described above and responds appropriately.

BCC Calculation
BCC (Block Check Character) is a 16-bit CRC (CRC-16) and is calculated over all preceding characters
except for the DLE-xxx lead-in characters and the first DLE of a DLE-xxx sequence. The CRC is not
calculated over itself. The BCC accumulation consists of 2 to 4 bytes when it is transmitted on the line, but
functionally is one sequence. For example, in the following sequence:

DLE-STX some-data DLE-DLE more-data DLE-ETX

the BCC is calculated over some-data, one DLE, more-data, and the ETX.

Embedded XON (0x11) and XOFF (0x13) characters may be within the BCC sequence. These cannot
appear in the CRC because they are used for flow control. If the values 0x11 or 0x13 are part of the 16-bit
CRC, they are encoded as DLE-DC2 (0x10-0x12) and DLE-DC4 (0x10-0x14). Therefore, the actual
number of BCC bytes transmitted can be two, three, or four bytes depending on if any encoding is required
for the BCC bytes.

Responses
After transmitting a block, the receiver replies with an ACK0, ACK1, or a DLE-NAK. ACK0 and ACK1 are
shorthand for the following sequences: ACK0 = DLE-�p�, ACK1 = DLE-�a�. Each time a block is
acknowledged, the receiver of the block advances to the next ACK. Each time an acknowledgment is
correctly received, the transmitter advances to the next ACK.

If the block is not received well enough to determine if it is even a block, no reply is given and characters
are ignored for a period of RECEIVE_TIMEOUT seconds. If an acknowledgment is not received well
enough to determine if it is valid, characters are ignored for a period of TRANSMIT_TIMEOUT seconds.

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 367

Out-of-Sequence
An out-of-sequence condition occurs when the sender of a block asks for a repeat of the last response and
the receiver repeatedly responds with the wrong ACK.

When an ACK frame is received that is out of sequence, the DLM responds with a DLE-ENQ response. If
the response to the DLE-ENQ is still out of sequence after RECOVERY_COUNT attempts, then the DLM
returns to an uninitialized state.

Establishing a Connection
A new connection starts with DLE-BEL. That causes the receiver to initialize its next reply to ACK0. The
receiver then responds with DLE-SI. DLE-BEL can also be used to synchronize the receiver in the event
that a hopeless out-of-sequence condition exists.

Master/Slave and Line Turn
One device is designated to be a master and the other is a slave. During initialization, only one device may
be a master and the other must be a slave. The master is always initialized as a transmitter and a slave is
initialized as a receiver. When this relationship must be exchanged, the master turns the line around by
issuing a Line Turn Sequence. This sequence is DLE-ESC and replaces the normal DLE-ETX of a data
frame. It is acceptable to send a zero-length frame.

When the slave initializes, it must ignore all characters until a DLE-BEL is received.

Jabber Frames
For frames longer than 512 bytes, all data collected is thrown out. A jabber frame can occur when
mismatching baud rates are present on the line. When a jabber frame is found, the DLM waits
RECEIVE_TIMEOUT seconds and then begins scanning for the valid start of the frame. By waiting this
time, a valid start of frame sequence embedded in a jabber frame is not misinterpreted.

Stalled Frames
Whenever a valid start of frame sequence is received, a receive timer starts which limits the time to wait to
receive a valid end of frame. If the RECEIVE_TIMOUT occurs, then the DLM throws out any data received
up to that point and searches for a valid start up data sequence.

Link Up Status Checking
The software layers above the DLM are responsible for sending data frames at regular time intervals that
check the link status and the status of the other device. This protocol is not responsible for periodic polling
to determine link status.

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

368 Chaparral document #07-0003-340

Data-Link Control
Control of the data link is maintained through the use of the following control characters and sequences:

Table 12-1. Control Character Sequences

DLE-STX Start of Text Sequence. This indicates a start of a frame.
DLE-ETX End of Text Sequence. This indicates the end of a frame as well as the last

block of data within a data transaction. This also indicates that the link has not
turned and our side is still the only one which can transmit data.

DLE-ETB End of Block Sequence. This indicates the end of a frame as well as indicating
that additional data blocks will follow to complete a data transaction transfer.

DLE-ESC End of Text Sequence with Line Turn. This indicates the end of a frame as well
as the last block of data within a data transmission. This also indicates that the
link has turned and the other side can now transmit data. This is the same as
DLE-ETX except with a line turn indication.

DLE-BEL Line Bid. This is used to initialize the system.
DLE-SI Response from slave to a line bid frame. This is used to bring the link up.
DLE-ENQ Enquiry. This is used to recover from a lost ACK.
DLE-�p� ACK0 affirmative acknowledgment to an even block.
DLE-�a� ACK1 affirmative acknowledgment to an odd block.
DLE-NAK Negative acknowledgment.
DLE-DLE A single DLE within the payload.
DLE-DC2 A single DC1 (XON) byte within the payload or BCC.
DLE-DC4 A single DC3 (XOFF) byte within the payload or BCC.
BCC-BCC A CRC-16 Block Check Character (BCC) sequence.

Line Encodings
One of the basic characteristics of the modified BISYNC protocol developed at Chaparral is to allow the
transmission of binary byte data of any value. For some async terminal connections, this may cause
problems with the XON (DC1 - Hex Value 0x11) and XOFF (DC3 - Hex Value 0x13) bytes. Therefore, these
byte values are always encoded with a two-byte sequence where:

XON (DC1) = DLE-DC2
XOFF (DC3) = DLE-DC4

Also, the DLE byte is encoded as DLE-DLE.

These three line encodings are in effect for payload data. The line encodings for XON/XOFF are valid for
the BCC bytes as well.

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 369

Example Data Exchanges
The following tables are examples of different data exchanges.

Table 12-2. Initialize system to perform simple data exchange

Master Slave
DLE-BEL �>

<<<<�� DLE-SI
DLE-STX DATA DLE-ESC BCC �>

<<<<�� ACK0
<<<<�� DLE-STX DATA DLE-ESC BCC

ACK0 �>

Table 12-3. Perform data transaction of 513 bytes

Master Slave
DLE-STX 0x00 0x01 � 0xff DLE-ETB BCC ��>

<<<<�� ACK0
DLE-STX 0x00 0x01 � 0xff DLE-ETB BCC ��>

<<<<�� ACK1
DLE-STX 0x00 DLE-ETX BCC ��>

<<<<�� ACK0

Table 12-4. Out-of-sequence ACK received

Master Slave
DLE-BEL ��>

<<<<�� DLE-SI
DLE-STX DATA DLE-ETX BCC ��>

<<<<�� ACK1
DLE-ENQ ��>

<<<<�� ACK1
DLE-ENQ ��>

<<<<�� ACK1
DLE-BEL ��>

<<<<�� DLE-SI

Table 12-5. ACK timeout occurs

Master Slave
DLE-BEL ��>

<<<<�� DLE-SI
DLE-STX DATA DLE-ETX BCC ��>

<<<<�� ACK1 (lost at Master)
(TRANSMIT_TIMEOUT Seconds Later:)
DLE-ENQ ��>

<<<<�� ACK1

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

370 Chaparral document #07-0003-340

Table 12-6. BCC error occurs on the data transmission

Master Slave
DLE-BE ��>

<<<<�� DLE-SI
DLE-STX DATA DLE-ETX BAD BCC ��>

<<<<�� DLE-NAK
DLE-STX DATA DLE-ETX GOOD BCC ��>

<<<<�� ACK0

The examples listed above do not represent all possible error conditions that can occur in data exchanges.
The intent of the examples is to provide an understanding of how each Data Link Control sequences is
used within the protocol.

Error Handling
The following cases describe how error conditions are handled on the line. References to LMX responses
are dependent on the actual implementation.

Case 1: A Data Frame is sent with a Bad BCC
A DLE-NAK frame is sent in response. Up to RECOVERY_COUNT DLE-NAKs can be received by the data
transmitter before a failure code is sent back to the LMX. After this, the DLM returns to an uninitialized
state.

Case 2: ACK not received within TRANSMIT_TIMEOUT seconds
After a data frame is sent and does not get an ACK back within TRANSMIT_TIMEOUT seconds, the
transmitter sends a DLE-ENQ frame up to RECOVERY_COUNT times. If a successful ACK is never
received, a failure code is sent back to the LMX and the DLM returns to an uninitialized state. The DLE-
ENQ frame is sent every TRANSMIT_TIMEOUT seconds.

Case 3: A Jabber Frame is received
The DLM discards the data frame and begins searching for a valid start of frame to respond to after
RECEIVE_TIMEOUT seconds.

Case 4: A DLE-BEL reset request is received during data transaction
The data transaction is terminated and an error message is passed up to the LMX. The DLM is then placed
into the uninitialized state and responds back with a DLE-BEL frame to bring up the link again.

Case 5: An out-of-sequence ACK frame is received
At the receipt of the out-of-sequence frame, a DLE-ENQ is sent. If the response is still out of sequence
after RECOVERY_COUNT attempts, then the DLM returns to the uninitialized state. If the DLM is in the
middle of a data transaction, then an error is reported back to the LMX.

Case 6: A receive overrun occurs
The BCC, RECEIVE_TIMEOUT, and TRANSMIT_TIMEOUT protocols give the proper error recovery. If
desired, the DLM can return to an uninitialized state and an error can be reported to the LMX.

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 371

Case 7: Receipt of unexpected frames
Any receipt of frames that do not match one of the defined Data Link Control formats is ignored. Again, all
legal frames start with one of the following:
♦ DLE-STX
♦ DLE-BEL
♦ DLE-SI
♦ DLE-ENQ
♦ DLE-�a�
♦ DLE-�p�
♦ DLE-NAK

The DLM constantly searches for these sequences.

Case 8: Receipt of unexpected escape sequence
Within the data block of a frame, the only legal escape sequences include:
♦ DLE-ETX�End of text marker.
♦ DLE-ESC�End of text and line turn marker.
♦ DLE-ETB�End of frame marker.
♦ DLE-DLE�DLE char within the data.
♦ DLE-DC2�DC1 (XON) char within the data or BCC.
♦ DLE-DC4�DC3 (XOFF) char within the data or BCC.

An invalid sequence results in a BCC error and the previously mentioned error handling takes care of this

How to Get Serial Port Back to Disk Array
Administrator
Since the Disk Array Administrator (also known as the Menu User Interface or MUI) uses the same serial
port that the serial LMXs use, it is necessary to have a mechanism to tell the controller which interface it
should present. By default, the serial port comes up in MUI mode. The serial LMXs send a Ctrl-P
character to the serial port to tell it that it should switch from MUI mode to CAPI mode. Your application
should not need to be concerned with this if you use either of our serial LMXs.

If you are running a serial CAPI application and wish to switch back to MUI mode, you should send the
character sequence Ctrl-P Ctrl-Z. Typically, this is accomplished by connecting a terminal emulator such
as HyperTerminal to the serial port and then typing Ctrl-P Ctrl-Z.

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

372 Chaparral document #07-0003-340

◊ ◊ ◊
SIMPLIF IED RS-232 LMX

Introduction
A simplified RS-232 protocol has been implemented on CAPI3 controllers to better support some
embedded systems that have difficulties running the standard RS-232 protocol described in Chapter 12.
This simplified protocol is a �non-guaranteed delivery� protocol and requires the user application to retry
any failed commands. The only way to detect failed commands is to time out on not receiving a response
from the external controller. This protocol can be used by compiling in DLMJ.C, DLMJ.H, LMX232J.C and
defining DLMJ and not defining DLM. The standard protocol and not this protocol should be used in most
cases, as it provides much error handling and correction. This protocol sends the entire data payload at
once (which could be up to 64KB) without using any flow-control mechanism (XON/XOFF characters are
supported by the protocol). CAPI3 controllers will respond to either protocol and cannot switch protocols
without a reboot.

Note: This LMX is not supported by controllers that have a LAN processor.

Protocol Elements Description
The protocol is extremely simple. There is a MASTER/SLAVE relationship. The application is the
MASTER and the external controller is the SLAVE. All transfers are initiated by the MASTER. If the
SLAVE receives a good packet, it will reply with a packet. If the packet is bad or incomplete, the SLAVE
will ignore it. In this case, the application should timeout waiting for the reply and retry the command. The
protocol will not re-send the packet; it is up to the application to timeout and retry.

The entire message is in one packet. The message is not broken up into smaller blocks of data. The
packet has this format:

PACKET FORMAT:

DLE-BS DLE-STX PAYLOAD HIGHBYTE_CRC16 LOWBYTE_CRC16 DLE-ETX

CONTROL CHARACTER ENCODING:

If a DLE is in the payload, it will be encoded as DLE � DLE
If a XON is in the payload, it will be encoded as DLE � DC2
if a XOFF is in the payload, it will be encoded as DLE � DC4
if a SPACE is in the payload, it will be encoded DLE � ENQ
if a CTRL-C is in the payload, it will be encoded DLE � TAB

If a DLE is in the CRC, it will be encoded as DLE - ETB

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 373

CHARACTER DEFINES:

#define SPACE_CHAR 0x20
#define CTRLC_CHAR 0x03
#define TAB_CHAR 0x09
#define DLE_CHAR 0x10
#define STX_CHAR 0x02
#define ETX_CHAR 0x03
#define ETB_CHAR 0x17
#define ENQ_CHAR 0x05
#define DC2_CHAR 0x12
#define DC4_CHAR 0x14
#define XON_CHAR 0x11
#define XOFF_CHAR 0x13
#define BS_CHAR 0x08

How to Get Serial Port Back to Disk Array
Administrator
Since the Disk Array Administrator (also known as the Menu User Interface or MUI) uses the same serial
port that the serial LMXs use, it is necessary to have a mechanism to tell the controller which interface it
should present. By default, the serial port comes up in MUI mode. The serial LMXs send a Ctrl-P
character to the serial port to tell it that it should switch from MUI mode to CAPI mode. Your application
should not need to be concerned with this if you use either of our serial LMXs.

If you are running a serial CAPI application and wish to switch back to MUI mode, you should send the
character sequence Ctrl-P Ctrl-Z. Typically, this is accomplished by connecting a terminal emulator such
as HyperTerminal to the serial port and then typing Ctrl-P Ctrl-Z.

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

374 Chaparral document #07-0003-340

◊◊◊◊ ◊◊◊◊ ◊◊◊◊
CHANGES BETWEEN CAPI 2.X AND
CAPI 3.X

Major changes
CAPI was upgraded significantly in CAPI 3.x. Here are some highlights of what changed:

NOTE: CONTROLLER MAY NOT SUPPORT ALL NEW FEATURES; CAPABILITY BITS IN
CAPI_CONTROLLER SHOULD BE CONSULTED.

• CAPI_ARRAY_PARTITIONs added, allowing arrays to be carved up into multiple host visible LUNs.
• more front-end channels
• more back-end channels
• more drives (250 per controller maximum, 125 per channel maximum)

• CAPI_DRIVE structures are retrieved via a call to CAPI_GetDrives.
• more arrays (32 initially, up to 32 * 8 using future bank switching)

• CAPI_ARRAY structures are retrieved via a call to CAPI_ArrayDrives, CAPI_CONTROLLER has a
reference to the index of this array.

• There is an added level of indirection to associate CAPI_MEMBER drive (logical array drive) to
CAPI_DRIVE (physical drive)

• support for Fibre Channel devices
• support for Router product
• more logical unit numbers
• changed the word �SAFTE� to �ENVIRON� for inclusion of other environmental processors such as

SES
• password capability
• advanced LUN mapping (Router products only)
• InfoShield (using GetHostTable, Add/RemoveHost)
• bus speed changed from a #define to actual speed in MB/s
• CAPI_FLEX_ID is a flexible ID that is used for both Fibre Channel and SCSI in the InfoShield functions
• some controller parameters have been moved to the channel parameter structure because of multiple

front-end channel capability
• CAPI_CAPABILITY_2_SMART_SUPPORT has been split into HOST and DISK SMART_SUPPORT.
• Multiple Controller Modes, including some of which support a dual controller system (i.e. �Active-Active�

controllers).

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 375

◊◊◊◊ ◊◊◊◊ ◊◊◊◊
CAPABIL IT IES

JSS122 (G6322) L410 / JFS224 (G8324) L411
Implementation
This section shows the CAPI CAPABILITIES bits for the Chaparral JSS122 (G6322) and JFS224 (G8324)
controllers with L410 and L411 firmware. For the most accurate information, the application developer
should always consult the capability bits returned from a particular controller. &&&&

• CAPABILITIES
• CAPI_CAPABILITY_SPARE_POOL
• CAPI_CAPABILITY_DEDICATED_SPARE
• CAPI_CAPABILITY_READ_AHEAD_CACHE
• CAPI_CAPABILITY_WRITE_BACK_CACHE
• CAPI_CAPABILITY_SAFTE
• CAPI_CAPABILITY_ARRAY_STATS
• CAPI_CAPABILITY_FORMAT_AT_CREATION
• CAPI_CAPABILITY_AUTO_VERIFY_FIX
• CAPI_CAPABILITY_ONLINE_CAPACITY_EXPAND
• CAPI_CAPABILITY_ARRAY_NAME
• CAPI_CAPABILITY_RAID0
• CAPI_CAPABILITY_RAID1
• CAPI_CAPABILITY_RAID3
• CAPI_CAPABILITY_RAID4
• CAPI_CAPABILITY_RAID5
• CAPI_CAPABILITY_RAID10
• CAPI_CAPABILITY_RAID50
• CAPI_CAPABILITY_RAID_VOLUME_SET
• CAPI_CAPABILITY_2_ABORT_CREATE_ARRAY
• CAPI_CAPABILITY_2_SCSI_MAINT_COMMANDS
• CAPI_CAPABILITY_2_TEST_SPARES
• CAPI_CAPABILITY_2_FIRMWARE_DOWNLOAD
• CAPI_CAPABILITY_2_DRIVE_SERIAL_NUMBERS
• CAPI_CAPABILITY_2_DISK_SMART_SUPPORT
• CAPI_CAPABILITY_2_MULTIPLE_HOST_CHANNELS
• CAPI_CAPABILITY_2_FAILOVER_ACTIVE_ACTIVE
• CAPI_CAPABILITY_2_INFOSHIELD (G7324/G8324 only)
• CAPI_CAPABILITY_2_ARRAY_PARTITIONS
• CAPI_CAPABILITY_2_DYNAMIC_POOL_SPARES
• CAPI_CAPABILITY_2_2GB_FC_SPEED_SUPPORT (G8324 only)

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

376 Chaparral document #07-0003-340

• CAPI_CAPABILITY_2_AUTO_FC_TOPOLOGY_SUPPORT (G8324 only)
• CAPI_CAPABILITY_2_ONLINE_ARRAY_INIT

• FEATURES
• controller->raid.maxChunkSize = 64
• controller->raid.minChunkSize = 16

JFS226 (A8526) A400 Implementation
This section shows the CAPI CAPABILITIES bits for the Chaparral JFS226 (A8526) controller with A400
firmware. For the most accurate information, the application developer should always consult the capability
bits returned from a particular controller.

• CAPABILITIES
• CAPI_CAPABILITY_SPARE_POOL
• CAPI_CAPABILITY_DEDICATED_SPARE
• CAPI_CAPABILITY_READ_AHEAD_CACHE
• CAPI_CAPABILITY_WRITE_BACK_CACHE
• CAPI_CAPABILITY_SAFTE
• CAPI_CAPABILITY_ARRAY_STATS
• CAPI_CAPABILITY_FORMAT_AT_CREATION
• CAPI_CAPABILITY_AUTO_VERIFY_FIX
• CAPI_CAPABILITY_ONLINE_CAPACITY_EXPAND
• CAPI_CAPABILITY_ARRAY_NAME
• CAPI_CAPABILITY_RAID0
• CAPI_CAPABILITY_RAID1
• CAPI_CAPABILITY_RAID3
• CAPI_CAPABILITY_RAID4
• CAPI_CAPABILITY_RAID5
• CAPI_CAPABILITY_RAID10
• CAPI_CAPABILITY_RAID50
• CAPI_CAPABILITY_RAID_VOLUME_SET
• CAPI_CAPABILITY_2_ABORT_CREATE_ARRAY
• CAPI_CAPABILITY_2_SCSI_MAINT_COMMANDS
• CAPI_CAPABILITY_2_TEST_SPARES
• CAPI_CAPABILITY_2_FIRMWARE_DOWNLOAD
• CAPI_CAPABILITY_2_MULTIPLE_HOST_CHANNELS
• CAPI_CAPABILITY_2_DRIVE_SERIAL_NUMBERS
• CAPI_CAPABILITY_2_INFOSHIELD
• CAPI_CAPABILITY_2_ARRAY_PARTITIONS
• CAPI_CAPABILITY_2_DEV_MEM_EXPORT_PROTOCOL
• CAPI_CAPABILITY_2_DYNAMIC_POOL_SPARES
• CAPI_CAPABILITY_2_DISK_SMART_SUPPORT
• CAPI_CAPABILITY_2_2GB_FC_SPEED_SUPPORT
• CAPI_CAPABILITY_2_AUTO_FC_TOPOLOGY_SUPPORT
• CAPI_CAPABILITY_2_AUTO_FC_SPEED_SUPPORT

• FEATURES
• controller->raid.maxChunkSize = 64
• controller->raid.minChunkSize = 16

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 377

◊◊◊◊ ◊◊◊◊ ◊◊◊◊
FAILOVER NOTES

Placeholder LUN
The CAPI placeholder LUN is used automatically by the controller in an active-active configuration if
failover occurs when information on the other controller�s controller LUN is not available. This can happen
if a single controller boots. In that case, the placeholder LUN will be enabled automatically if there is a LUN
gap in the other controller�s LUNs. For example, if the controller B has a single array LUN at LUN 1, and
controller A boots when B is not plugged in, then A will present B�s array LUN at LUN 1 and it will present a
placeholder LUN at LUN 0 to fill in the LUN gap. The intent is that some host OS�s can�t handle gaps in the
LUN sequence and will stop scanning if they see one. The placeholder allows them to see all LUNs if there
is a single LUN gap.

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

378 Chaparral document #07-0003-340

◊◊◊◊ ◊◊◊◊ ◊◊◊◊
NON-CAPI PASS THROUGH
FEATURE

Introduction
Chaparral RAID controllers provide the ability to directly access SCSI devices on the back end (disk)
channels with pass through commands. There are two mechanisms for pass through commands provided
by Chaparral controllers:
• Via CAPI commands, blocks of data up to 32 KBytes can be passed through (defined as

CAPI_MAX_MAINT_DATA_SIZE in capipak.h). This pass through feature is accessed via
CAPI_ScsiMaintenance and CAPI_ScsiMaintRetrieveData.

• Blocks up to 1 MByte can be transferred via a different mechanism that bypasses CAPI. This feature is
documented in this chapter. When this chapter refers to �pass through� it is this non-CAPI pass
through mechanism that is being referred to.

Both of these pass through mechanisms use the same LUN, referred to as the �controller LUN� or
sometimes as the �bridge LUN� or �CAPI LUN.� Messages sent to this LUN are routed internally to the
CAPI or non-CAPI pass through mechanism within the Chaparral controller based on the SCSI Operation
Code in Byte 0 of each message.

These pass through mechanisms are supported for Chaparral RAID controllers, but not Chaparral routers.

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 379

Pass Through Command

The non-SCSI pass through command uses a 16-byte CDB. Embedded in the 16-byte CDB is a 6- or 10-
byte CDB that is sent directly to the back-end device, plus some routing information so the controller knows
which device to send it to.

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
Byte 0 Operation Code (D7h)
Byte 1 TargetID
Byte 2 DOut Channel CDBLength
Byte 3 TargetLUN (MSB)
Byte 4 Data Transfer Length
Byte 5 (LSB)
Byte 6
Byte 7
Byte 8
Byte 9
Byte10 10-Byte CDB
Byte11
Byte12
Byte13
Byte14
Byte15

Table 1 Pass Through CDB
The routing information consists of disk channel number (Channel), TargetID, and TargetLUN.

CDBLength is the length of the embedded CDB (in bytes 6-15).

DOut=1 indicates that the command requires data out phase. DOut=0 indicates data in phase, or no data
transfer if Data Transfer Length is zero.

Data Transfer Length is the number of bytes to transfer. This is a 20-bit field, providing for maximum of
1MB of data transferred.

Pass Through To Array Members
Although any SCSI CDB may be passed through to any back end SCSI device, the controller attempts to
protect array members� user data. Commands may be sent to non-array-member devices with no
restrictions. Commands sent to an array member disk are permitted only if:

• the array is fault tolerant, or
• the command is one of: Inquiry, Mode Sense (6 or 10), Read (6 or 10), Read Capacity, Request

Sense, or Test Unit Ready. (These are the �safe� commands.)

If the array is fault tolerant and the pass through CDB is not one of those listed above, a Down Drive
command will be internally issued to the target device of the pass through operation. This will cause the
array to go to Critical (Non Fault Tolerant) state. If the array was not originally fault tolerant and an
unsafe pass through command is attempted, the controller will not pass the command through.

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

380 Chaparral document #07-0003-340

Pass Through Errors
Errors returned from the target device are indicated by request sense Error Code 7Fh (vendor specific), so
that host software issuing them can distinguish them from errors detected by the controller. Sense data
reported by the target device will be reported via the normal check condition/request sense method (or
autosense for Fibre Channel). Pass through command errors detected by the controller (as opposed to the
target device) are reported by request sense Error Code 70h, Sense Key 9 (vendor specific). The following
vendor specific pass through errors are reported:

Error Code Sense Key Additional
Sense Code

Additional
Sense Code

Qualifier

Meaning

70h 9 80h 0 Not enough memory for requested
operation. The command may work if
retried. A write back cache full of dirty data
can cause this error.

70h 9 80h 1 Target device is a member of a non-fault-
tolerant array and the command issued was
not one of the �safe� commands. Command
was not sent to target.

70h 9 80h 2 Invalid channel number specified.
70h 9 80h 3 No response from target (selection timeout

in parallel SCSI).
70h 9 80h 4 General error (none of above).

Table 2 Pass Through Errors

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 381

Pass Through Timeout Command
Chaparral RAID controllers provide the ability to change the pass through command timeout. This is a
useful feature for doing time-intensive pass through operations; for example, loading firmware onto a drive
through the controller. The timeout pass through command is 16 bytes as described in Table 3.

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
Byte 0 Operation Code (D8h)
Byte 1 Timeout (MSB) (not used)
Byte 2 Timeout (LSB)
Byte 3 Reserved[0]
Byte 4 Reserved[1]
Byte 5 Reserved[2]
Byte 6 Reserved[3]
Byte 7 Reserved[4]
Byte 8 Reserved[5]
Byte 9 Reserved[6]
Byte10 Reserved[7]
Byte11 Reserved[8]
Byte12 Reserved[9]
Byte13 Reserved[10]
Byte14 Reserved[11]
Byte15 Reserved[12]

Table 3 Pass Through Timeout CDB
Although there are 2 bytes, bytes 1 and 2, allocated for the timeout setting, the controller only evaluates the
value at byte 2. Since the timeout value units are in seconds, the maximum timeout that can be set is 255
seconds.

If this command is not used to set the timeout, a default timeout of 60 seconds is used for pass through
commands.

Pass Through Timeout Errors
Errors returned by the controller are listed in Table 4.

Error Code Sense Key Additional
Sense Code

Additional
Sense Code

Qualifier

Meaning

70h 5 24h 0 Illegal request, invalid field in CDB,
indicating timeout value is > 255.
Note: since the controller doesn�t evaluate
the value in byte 1 in the current version, it
won�t return this error.

Table 4 Pass Through Timeout Errors

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

382 Chaparral document #07-0003-340

◊◊◊◊ ◊◊◊◊ ◊◊◊◊
CAPI INTERFACE WITHOUT USING
THE SDK
Some developers prefer to not use the Chaparral CAPI Software Developer�s Kit (SDK), but instead choose
to develop their own interface to Chaparral controllers. We generally recommend against this, especially if
you are developing a CAPI app that will run on Windows NT or 2000 (since the sample code has been
tested on Windows NT) or if you are developing a complex application that will use many of the commands
defined in the Function Reference in Chapter 5. But if you prefer to design your own interface, this chapter
provides some information that will be useful to you.

In the example below, we assume that all you want to do is monitor the health of the controller and so you
just want to send the commands related to getting events. You can do this either using in-band
communications (that is, using SCSI commands over parallel SCSI or Fibre Channel) or out-of-band
communications (that is, RS-232 communications, also known as a serial communications).

In-band (SCSI/Fibre Channel) Communications
Even though you will not be using the Chaparral SCSI LMX, you should read Chapter 11 to understand
about how to interface to Chaparral controllers via in-band communications.

The CAPI commands are passed to the controller using the SCSI Write Buffer command and replies are
received with the SCSI Read Buffer command. The data that is passed with these commands always
consists of at least the structure CAPI_PACKET. For some commands, extra data accompanies
CAPI_PACKET. Referring to the Write Buffer section of Chapter 11, note that the Transfer Length that is in
CDB bytes 6 through 8 is sizeof(CAPI_PACKET) (which is 80 decimal) if you are sending a command to
get an event, as in the example below. This number must also be put in the CAPI_PACKET struct as
member packetLength. If you are sending one of the other CAPI commands that requires passing data to
the controller, then the size of Transfer Length = sizeof(CAPI_PACKET) + sizeof(the extra data you are
passing to the controller), and that extra data must immediately follow the CAPI_PACKET struct.

Out-of-band (RS-232) Communications
Even though you will not be using either of the two Chaparral serial LMXs, you should read Chapters 12
and 13 to understand the serial communications implementations that you will have to interface with. The
Simplified RS-232 LMX (Chapter 13) is much simpler, but is not supported on controllers that have a LAN
processor.

The data format is the same as for in-band communications. That is, there is a CAPI_PACKET struct
which, for some commands, is followed immediately by extra data.

Note that you must send a Ctrl-P before you send the first CAPI command, to switch the serial interface
from MUI mode to CAPI mode, as noted at the end of Chapters 12 and 13.

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

Chaparral document #07-0003-340 383

Example CAPI_PACKET Usage
To determine which members of the CAPI_PACKET struct must contain data and what that data is, see the
code in capi2pak.c for each of the commands that you want to use. Note especially the parameters passed
to function BuildAndSendPacket, which in turn calls function BuildPacket.

For example, the values that need to go in CAPI_PACKET for the event commands are shown in the
following code sample. We have pulled the following code out of the BuildPacket function in file capi2lmx.c
in our SDK, then edited it to be specifically for the get-event commands. pPak is a pointer to a
CAPI_PACKET struct.

pPak->control = 0;
pPak->byteOrder = 0;
pPak->capiVersionMajor = CAPI_VERSION_MAJOR; /* Always 3, as of this writing */
pPak->capiVersionMinor = CAPI_VERSION_MINOR; /* 2 for pre-RIO products,

4 for RIO and later products,
as of this writing */

pPak->requestCompressionType = CAPI_COMPRESSION_TYPE_NONE; /* = 0 */
pPak->packetCompressionType = CAPI_COMPRESSION_TYPE_NONE; /* = 0 */
pPak->eventOrCommand = CAPI_PACKET_TYPE_COMMAND; /* = 0 */
pPak->signatureString[0]='C';
pPak->signatureString[1]='A';
pPak->signatureString[2]='P';
pPak->signatureString[3]='I';
pPak->includeStructType = INCLUDE_NO_STRUCTURE; /* = 0 */
pPak->commandCode = commandCode;
pPak->identifier.controllerHandle = 0
pPak->identifier.arrayIndex = 0
pPak->identifier.channelIndex = 0
pPak->identifier.driveIndex = 0
pPak->configSequenceNumber = 0;
pPak->errorCode = 0;
pPak->param1 = param1;
pPak->param2 = 0;
pPak->param3 = 0;
pPak->param4 = 0;
pPak->packetLength = sizeof(CAPI_PACKET); /* = 80 */
pPak->arrayListConfigSequenceNumber = 0;
pPak->uniqueId = 0;
pPak->driveListConfigSequenceNumber = 0;

Struct members capiVersionMajor and capiVersionMinor can be determined for the controller model(s) you
are interfacing to by using the Disk Array Administrator (also known as MUI). Use Ctrl-E to get into the
�CFG Info� screen, then scroll and look for �CAPI Version = �.

Struct member requestCompressionType should be set as shown in this example if you are doing a very
simple app that only gets events. But if you are implementing a more complex management app and are
using serial communications, you should set requestCompressionType to
CAPI_COMPRESSION_TYPE_SIMPLE_RLE to speed up getting large structures and you will need to
implement the uncompression algorithm. You can copy the uncompression algorithm from function
ReceivePacket in capi2pak.c.

Struct member commandCode should be set to one of these for this example:
CAPI_COMMAND_GET_FIRST_EVENT = 36 (or 0x24000000 endian reversed if this is needed)
CAPI_COMMAND_GET_LAST_EVENT = 37 (or 0x25000000 endian reversed if this is needed)
CAPI_COMMAND_GET_EVENT = 38 (or 0x26000000 endian reversed if this is needed)

CAPI Functional Specification � Version 3.4 Document Revision Date: 20 Sep 2002

384 Chaparral document #07-0003-340

Struct member param1 is the event number that you want to fetch when commandCode is
CAPI_COMMAND_GET_EVENT and can be set to 0 for the other two commandCodes that get events.
For information on how param1 through param4 are used for other commands, see the code in capi2pak.c
for the commands that you are interested in implementing.

Struct member includeStructType is INCLUDE_NO_STRUCTURE for commands that pass no extra data to
the controller, which is the case for the commands used to get events. For commands that pass data, this
member must be set appropriately. For example, if commandCode =
CAPI_COMMAND_SET_CONTROLLER_PARAMS, then you need to set this member to
INCLUDE_CONTROLLER_PARAM_STRUCT and you need to include struct
CAPI_CONTROLLER_PARAMS in the message, placed immediately after CAPI_PACKET. Again, see the
code in capi2pak.c for the commands you are interested in implementing.

Struct member packetLength is sizeof(CAPI_PACKET) + sizeof(extra data), where �extra data� depends on
the command. For the commands to get events, there is no extra data. But continuing the example of
setting controller params from the previous paragraph, packetLength would be set to
sizeof(CAPI_PACKET) + sizeof(CAPI_CONTROLLER_PARAMS).

If you are calling a command that is changing the configuration of the controller (typically a command with
�Set� in the name), then you need to pass a valid value for the three struct members
configSequenceNumber, arrayListConfigSequenceNumber, and driveListConfigSequenceNumber. See
the discussion of configuration sequence numbers in Chapter 2 in the section titled Controller Structure
Updates on page 9 and the two sections that follow that. Typically, your application would be designed to
get all three of the key structures just before sending a set command, then it would copy each
configSequenceNumber member of those three structures into the corresponding configSequenceNumber,
arrayListConfigSequenceNumber, and driveListConfigSequenceNumber members of the CAPI_PACKET
struct for the set command.

Struct member errorCode is unused when sending commands, but when you receive a reply, you should
check to see if this is something other than CAPI_NO_ERROR and look at what the code means. (See
Chapter 9, Error Code Reference.)

If the processor that your CAPI app is running on does not match the endian convention of an Intel
processor, then you will also need to do endian reversal for the non-zero members of this struct that are
larger than 8 bits: commandCode, param1, and packetLength in the above example. For example,
packetLength is 80 bytes, or 0x50, so the endian reversal would give 0x50000000, so you can code it this
way:

pPak->packetLength = 0x50000000; /* = 80 bytes */

See the table in the Callback section of each command in Chapter 5 to understand which members of
CAPI_PACKET are important for you to look at when the reply comes back. For the commands that get
events, the key items to look at in the callback table are the definitions for param1 through param3. (Note
that you may not need CAPI_COMMAND_GET_FIRST_EVENT, since both the first event number and the
last event number are returned when you do CAPI_COMMAND_GET_LAST_EVENT.) Since the event
data comes back in a CAPI_EVENT struct, you may need to do some endian reversal again on the
members of this struct, depending on the endian convention of your processor. This struct immediately
follows the CAPI_PACKET struct in the received message data. The replyCode listed in the callback table
is returned in the commandCode member of CAPI_PACKET and should always correspond to the
commandCode sent to the controller; you can ignore this if you wish�it just provides a sanity check that
the reply you are receiving is for the command that you sent. Some of the members of the identifier
substructure are valid for some commands, as noted in the callback table; you can ignore the
controllerHandle member of identifier for simple CAPI applications. The dataPtr row in the callback table
should be used to determine the type of struct that contains the returned data; you can ignore the fact that
it is referred to as a pointer in the callback table�the actual data always immediately follows the
CAPI_PACKET struct.

	Introduction
	CAPI Overview
	Document Overview

	CAPI Programming Concepts
	CAPI Basics
	Unified CAPI
	Reply to Function Calls
	CAPI Events
	Lengthy Operations
	Obtaining Information on the Health of a System Via CAPI
	Controller Structure Updates
	Controller Configuration Sequence Number
	SDK Code Assists with Current Configuration Information
	Portability
	SDK Contents
	Primitive Data Types
	Initialization Details
	Controller Handle
	CAPI Timer Tick
	Finding Controllers Example

	Typedefs and Defines
	Data Structures
	Controller Structure Diagram
	CAPI Versions
	CAPI Capabilities
	CAPI_ADD_ARRAY_STRUCT
	CAPI_ADVANCED_NETWORK_INTERFACE
	CAPI_ARRAY
	CAPI_ARRAY_PARTITION
	CAPI_ARRAY_STATS
	CAPI_ARRAY_STATS_HOST
	CAPI_CACHE_PARAMS
	CAPI_CHANNEL
	CAPI_CHANNEL_COMMON_DATA � in CAPI 3.4
	CAPI_CHANNEL_PARAMS
	CAPI_CHANNEL_UNIQUE_DATA � in CAPI 3.4
	CAPI_CHANNEL_UNIQUE_PARAMS � in CAPI 3.4
	CAPI_CONTROLLER
	CAPI_CONTROLLER_CONTEXT
	CAPI_CONTROLLER_ENVIRONMENTALS
	CAPI_CONTROLLER_PARAMS
	CAPI_CONTROLLER_RAID_PARAMS
	CAPI_CONTROLLER_ROUTER_PARAMS
	CAPI_DRIVE
	CAPI_DRIVE_ERROR_STATS � in CAPI 3.3
	CAPI_DRIVE_LOCATION
	CAPI_ENVIRON_PROCESSOR_DATA
	CAPI_ENVIRON_PROCESSOR_INFO
	CAPI_EVENT
	CAPI_FAILOVER
	CAPI_FC_DRIVE_ERRORS � in CAPI 3.3
	CAPI_FC_INFO
	CAPI_FC_LOOP_POSITION
	CAPI_FC_PARAMS
	CAPI_FLEX_ID
	CAPI_FW_REVS
	CAPI_HOST_DESCRIPTOR
	CAPI_HOST_NICKNAMES � in CAPI 3.3
	CAPI_HOST_TABLE
	CAPI_IDENTIFIER
	CAPI_KNOWN_HOSTS
	CAPI_MAINT_CDB
	CAPI_MAINT_DATA_STRUCT
	CAPI_MEMBER_DRIVE
	CAPI_MEMORY
	CAPI_MIN_MAX_DRIVES_PER_RAID_LEVEL
	CAPI_NETWORK_INTERFACE
	CAPI_NETWORK_INTERFACE_COMMON_DATA�� in CAPI 3.4
	CAPI_NETWORK_INTERFACE_COMMON_PARAMS�� in CAPI 3.4
	CAPI_NETWORK_INTERFACE_UNIQUE_DATA�� in CAPI 3.4
	CAPI_NETWORK_INTERFACE_UNIQUE_PARAMS�� in CAPI 3.4
	CAPI_PACKET
	CAPI_PARTITION_REQUEST
	CAPI_PER_CHANNEL_PARAMS � in CAPI 3.4
	CAPI_RAID
	CAPI_ROUTER
	CAPI_SCSI_INFO
	CAPI_SCSI_PARAMS
	CAPI_SERIAL_NUMS
	CAPI_UNIFIED_CONTROLLER � in CAPI 3.4
	CAPI_UNIFIED_CONTROLLER_COMMON_DATA�� in CAPI 3.4
	CAPI_UNIFIED_CONTROLLER_COMMON_PARAMS�� in CAPI 3.4
	CAPI_UNIFIED_CONTROLLER_PARAMS�� in CAPI 3.4
	CAPI_UNIFIED_CONTROLLER_UNIQUE_DATA�� in CAPI 3.4
	CAPI_UNIFIED_CONTROLLER_UNIQUE_PARAMS�� in CAPI 3.4
	CAPI_UNIFIED_CREATE_ARRAY_SERIAL_NUMBER_STRUCT�� in CAPI 3.4
	CAPI_UNIFIED_CREATE_ARRAY_STRUCT�� in CAPI 3.4
	CAPI_UNIFIED_DRIVE � in CAPI 3.4
	CAPI_UNIFIED_KNOWN_HOSTS � in CAPI 3.4
	CAPI_UNIT_MAP

	CAPI Function Reference
	Abort Utility
	Add Array Partition
	Add Dedicated Spare
	Add Host
	Add Host Nickname � in CAPI 3.3
	Add Pool Spare
	Blink Drive
	Cache Test
	Change Array Name
	Change Array Partition Geometry
	Change Array Partition LUN
	Change Array Partition Name
	Change InfoShield Type
	Change Utility Priority
	Clear Event Log
	Create Array
	Delete Array
	Delete Array Partition
	Delete Spare
	Down Drive
	Enable Packet Compression
	Enable Packet Compression Master To Slave� � in CAPI 3.4
	Environ Read
	Environ Write
	Expand Array
	Find LMX Of Type
	Find Next Controller
	Find Next Environ Processor
	Force Offline � in CAPI 3.3
	Force Online � in CAPI 3.3
	Free Cache
	Get Advanced Environmentals
	Get Advanced Network Interface
	Get Advanced Unit Mapping
	Get Array List
	Get Array Partitions
	Get Config Sequence Number
	Get Debug Data � in CAPI 3.3
	Get Drive Error Statistics � in CAPI 3.3
	Get Drive List
	Get Event
	Get First Event
	Get Free Array Partitions
	Get Host Nicknames � in CAPI 3.3
	Get Host Table
	Get Known Hosts
	Get Last Event
	Get Percent Complete
	Initialize
	Kill Other
	Log Event � in CAPI 3.3
	Log In
	Log Out
	Pause Bus
	Put Offline � in CAPI 3.3
	Put Online � in CAPI 3.3
	Reboot Controller
	Reconstruct Array
	Register Callback
	Remove Host
	Rescan Bus
	Reset Array Statistics
	Reset Array Partition Statistics
	Reset Drive Error Statistics � in CAPI 3.3
	Reset Drive Statistics
	Reset LAN
	Restore Controller Defaults
	SCSI Maintenance
	SCSI Maintenance Retrieve Data
	Set Advanced Network Interface
	Set Advanced Unit Mapping
	Set Array Partition Cache Params � in CAPI 3.3
	Set Battery Monitor
	Set Cache Params
	Set Channel Params
	Set Controller Params
	Set Controller Time Date
	Set Preferred Owner
	Set Unit Mapping
	Shut Down Controller
	Silence Alarm
	Test Drive
	Test Spares
	Timer Tick
	Trust Array
	Unblink Drive
	Unkill Other
	Unpause Bus
	Update Controller
	Update Firmware
	Use Key
	Verify Array
	Unified Abort Utility � in CAPI 3.4
	Unified Add Array Partition � in CAPI 3.4
	Unified Add Dedicated Spare � in CAPI 3.4
	Unified Add Host � in CAPI 3.4
	Unified Add Host Nickname � in CAPI 3.4
	Unified Add Pool Spare � in CAPI 3.4
	Unified Blink Drive � in CAPI 3.4
	Unified Change Array Name � in CAPI 3.4
	Unified Change Array Partition Geometry � in CAPI 3.4
	Unified Change Array Partition LUN � in CAPI 3.4
	Unified Change Array Partition Name � in CAPI 3.4
	Unified Change InfoShield Type � in CAPI 3.4
	Unified Clear Event Log � in CAPI 3.4
	Unified Create Array � in CAPI 3.4
	Unified Delete Array � in CAPI 3.4
	Unified Delete Array Partition � in CAPI 3.4
	Unified Delete Spare � in CAPI 3.4
	Unified Do SCSI Maintenance � in CAPI 3.4
	Unified Down Drive � in CAPI 3.4
	Unified Environ Read � in CAPI 3.4
	Unified Environ Write � in CAPI 3.4
	Unified Expand Array � in CAPI 3.4
	Unified Find Next Environ Processor � in CAPI 3.4
	Unified Force Offline � in CAPI 3.4
	Unified Force Online � in CAPI 3.4
	Unified Free Cache � in CAPI 3.4
	Unified Get Advanced Network Interface
	Unified Get Array List � in CAPI 3.4
	Unified Get Array Partitions � in CAPI 3.4
	Unified Get Config Sequence Number � in CAPI 3.4
	Unified Get Controller Data � in CAPI 3.4
	Unified Get Debug Data � in CAPI 3.4
	Unified Get Drive Error Statistics � in CAPI 3.4
	Unified Get Drive List � in CAPI 3.4
	Unified Get Event � in CAPI 3.4
	Unified Get First Event � in CAPI 3.4
	Unified Get Free Array Partitions � in CAPI 3.4
	Unified Get Host Nicknames � in CAPI 3.4
	Unified Get Host Table � in CAPI 3.4
	Unified Get Known Hosts � in CAPI 3.4
	Unified Get Last Event � in CAPI 3.4
	Unified Get Percent Complete � in CAPI 3.4
	Unified Get SCSI Maintenance Data � in CAPI 3.4
	Unified Log Event � in CAPI 3.4
	Unified Pause Bus � in CAPI 3.4
	Unified Put Offline � in CAPI 3.4
	Unified Put Online � in CAPI 3.4
	Unified Reboot Controller � in CAPI 3.4
	Unified Remove Host � in CAPI 3.4
	Unified Rescan Bus � in CAPI 3.4
	Unified Reset Array Statistics � in CAPI 3.4
	Unified Reset Array Partition Statistics � in CAPI 3.4
	Unified Reset Drive Error Statistics � in CAPI 3.4
	Unified Reset LAN � in CAPI 3.4
	Unified Restore Controller Defaults � in CAPI 3.4
	Unified Set Advanced Network Interface
	Unified Set Array Partition Cache Params � in CAPI 3.4
	Unified Set Battery Monitor � in CAPI 3.4
	Unified Set Cache Params � in CAPI 3.4
	Unified Set Channel Params
	Unified Set Controller Params � in CAPI 3.4
	Unified Set Controller Time Date � in CAPI 3.4
	Unified Set Preferred Owner � in CAPI 3.4
	Unified Set Unit Mapping � in CAPI 3.4
	Unified Shut Down Controller � in CAPI 3.4
	Unified Silence Alarm � in CAPI 3.4
	Unified Test Drive � in CAPI 3.4
	Unified Test Spares � in CAPI 3.4
	Unified Trust Array � in CAPI 3.4
	Unified Unblink Drive � in CAPI 3.4
	Unified Unpause Bus � in CAPI 3.4
	Unified Update Firmware � in CAPI 3.4
	Unified Verify Array � in CAPI 3.4

	Reply Code Reference
	Event Code Reference
	Return Code Reference
	Error Code Reference
	Link Manager Exchange (LMX)
	Include Files
	Routines
	Adding a New Type of LMX

	SCSI LMX
	Introduction
	Controller SCSI Commands for CAPI

	RS-232 LMX
	Introduction
	Protocol Elements Description
	Data-Link Control
	Error Handling
	How to Get Serial Port Back to Disk Array Administrator

	Simplified RS-232 LMX
	Introduction
	Protocol Elements Description
	How to Get Serial Port Back to Disk Array Administrator

	Changes between CAPI 2.x and CAPI 3.x
	Capabilities
	JSS122 (G6322) L410 / JFS224 (G8324) L411 Implementation
	JFS226 (A8526) A400 Implementation

	Failover Notes
	Placeholder LUN

	Non-CAPI Pass Through Feature
	Introduction
	Pass Through Command
	Pass Through Timeout Command

	CAPI Interface Without Using the SDK
	In-band (SCSI/Fibre Channel) Communications
	Out-of-band (RS-232) Communications
	Example CAPI_PACKET Usage

