Riverstone's "Hitless Protection System" Hot Failover for IP Routers

Tim Wu, Riverstone Networks

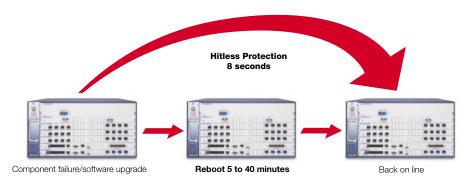
ABSTRACT Riverstone's Hitless Protection System (HPS) increases router and network uptime on carrier networks, providing carrier-class hot failover characteristics similar to SONET and circuit-switched voice networks. It does so by eliminating the single leading source of switch and router downtime: reboots during software upgrades and control module restarts. Carriers who use HPS can save, depending on the size of their networks, hundreds of hours of router downtime on service provider networks.

HPS acts as a complement to frequently deployed Virtual Router Redundancy Protocol, which provides for inter-platform failover in cases of router crashes. Some carriers may choose to deploy a single HPS-capable router as a substitute for a pair of VRRP routers, halving equipment and fiber lease costs for that deployment.

The Hitless Protection System is one part of Riverstone's Carrier Class Metro initiative. It is one of a layered series of redundancy and resiliency technologies designed to maximize network availability and support high availability networking practices.

JUSTIFICATION: CUSTOMER DEMAND

Repeated surveys show that when choosing a service provider, customers value "availability" over every other criteria. "Network reliability" has ranked #1 in each of the last 5 years of Telechoice/Interactive Week's annual ISP surveys. In the 2001 survey, 95% ranked reliability as extremely or very important, making it by far the leading customer concern. The following graph shows the top five surveyed customer concerns when choosing a service provider:



Source: Infonetics 2001 ISP Survey

TECHNOLOGY WHITE PAPER # 132

HOW IT WORKS An average router encounters control module software crashes or requires software upgrades 2 to 4 times a year. Standard routers require a reboot at this juncture. Depending on the complexity of the configuration, a reboot can take from 5 to 40 minutes, during which the router is "down" (i.e., not passing traffic).

On the other hand, any Riverstone RS router equipped with Hitless Protection System and a redundant control module overcomes a failover or a software upgrade without a reboot. It does so by constantly keeping the redundant control module "ready for action" by continually updating state information with spare CPU cycles. As a result, in the case of control module failure or during software upgrades, it takes only 8 seconds for the new control module to come on line. Crucially, **no traffic is lost** during that time and all flows are maintained through Riverstone's patented ASICs technology.

ONE SMALL STEP FOR A ROUTER, ONE GIANT LEAP FOR NETWORK UPTIME

The Hitless Protection System eliminates reboots, the leading cause of router downtime on today's networks. The following calculations show, for a 500 chassis network typical of a medium-sized nationwide service provider, average expected savings of about **247 hours** of router downtime.

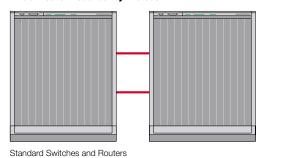
Router Downtime Calculations

Assume a router will encounter, on average, a total of 3 software upgrades or control module failures per year (actual range: 2-6)

Assume an average chassis router reboot takes 10 minutes (actual range: 5-40)

Savings:	246.66 hours router downtime/year	
Riverstone HPS Network:	500 routers x 24 sec/year/router = 3.34 hours*	
Competitor Network:	500 routers x 30 min/year/router = 250 hours	
Assume a service provider with 500 routers (average of 33.3/city in 15 cities)		
Riverstone with HPS:	3 hitless switchovers x 8 sec = 24 sec/year downtime [*]	
Competitor Router:	3 reboots x 10 min = 30 min/year router downtime	

* From failures or software upgrades. There may be other sources of downtime not surveyed here.


RIVERSTONE HPS AS A VRRP REPLACEMENT: ONE ROUTER INSTEAD OF TWO

Today, many service providers deploy two routers and use VRRP to prevent router downtime from becoming network downtime. Riverstone's Hitless Protection System can either be used to complement VRRP, improving VRRP performance dramatically, or even, in some cases, used as a full substitute for VRRP.

Of course, in any mission-critical network, a carrier will want the double protection of VRRP and HPS. But situations may arise where the costs of maintaining two platforms are too high in terms of equipment, space, and power. In these cases, carriers can deploy a single HPS router in place of a dual VRRP system. The obvious advantage: a halving of both initial equipment and ongoing real-estate leasing, electrical, and fiber leasing costs.

The Hitless Protection System as a VRRP Replacement

Virtual Router Redundancy Protocol

• ~15-30 sec lost traffic/failure

Double equipment costs

Double fiber costs

Hitless Protection System

100	. Sent	
a:		Diam)
-		
45		
		-
	Non West N	

Riverstone RS16000 Router

Zero lost traffic/failure

- Single equipment costsReduced rack space & electricity usage
- Single fiber costs
- Can complement VRRP

(Note: Not recommended for all network positions)

HPS OVER VRRP HPS can also be used as a powerful complement to VRRP. HPS adds another layer of protection, before VRRP kicks in. By reducing usage of VRRP, HPS can save considerable amounts of VRRP-related downtime.

In the calculations shown below, a service provider with 500 chassis routers using HSP as a complement to VRRP can save around 22 hours of lost traffic per year.

Network Traffic Loss Calculations

Assume a router will encounter, on average, a total of 3 events requiring VRRP or HSP protection per year (actual range: 2-6)

Assume that VRRP takes 60 seconds to pick up flows (actual range: 15 sec-1 min)

Savings:	21.66 hours lost traffic/year	
Riverstone HPS Network:	500 routers x 24 sec/year/router = 3.34 hours*	
Competitor Network:	500 routers x 3 min/year/router = 25 hours	
Assume a service provider with 500 routers (average of 33.3/city in 15 cities)		
Riverstone with HPS:	3 hitless switchovers x 8 sec = 24 sec/year lost traffic*	
Competitor Router:	3 reboots x 1 min = 3 min/year lost traffic downtime	

* From failures or software upgrades. There may be other sources of downtime not surveyed here.

HPS SETS THE STANDARD IN ROUTER RESILIENCY: THE ONLY FEATURE OF ITS KIND IN THE INDUSTRY

The Riverstone RS router is the only router available that features a Layer 3 and Layer 4 redundant router failover system. While there do exist implementations at Layer 2, there are no other systems that provide protection for routed traffic, or when services are based on Layer 4 information such as dynamically provisioning bandwidth to guarantee a committed information rate for voice or video traffic.

In summary, Riverstone's new Hitless Protection System sets a new standard for platform layer redundancy in an IP router. HPS is a standard feature of RapidOS version 8.0, and is available on every RS router that has a redundant control module.

132

Acronyms	
10GbE:	10-Gigabit Ethernet
ABR:	Available Bit Rate
ACL:	Access Control List
ANSI:	American National Standards Institute
API:	Application Program Interface
ASIC:	Application-Specific Integrated Circuit
ASP:	Application Service Provider
ATM:	Asynchronous Transfer Mode
BGP:	Border Gateway Protocol
BPDU:	Bridge Protocol Data Units
CAR:	Committed Access Rate
CBR:	Constant Bit Rate
CLEC:	
	Competitive Local Exchange Carrier (ie: MCI, Sprint, etc.)
CLI:	Command Line Interface
CMTS:	Cable Modern Termination System
CoS:	Class of Service
CR-LDP:	Constraint-Based LDP
CSMA/CD:	Carrier Sense Multiple Access/Collision Detection
CSP:	Content Service Provider
DiffServe:	Differential Services IETF Standard
DLL:	Data Link Layer
DOCSIS:	Data Over Cable System Interface Specification
DS1/DS3:	Digital Signal, Level 1 (1.54 Mbps) or 3 (44.7 Mbps)
DSL:	Digital Subscriber Line
DSLAM:	DSL Access Multiplexer
E1/E2:	European Trunk 1/2 (2 Mbps/34.3 Mbps)
EMS:	Element Management System
ERP:	Enterprise Resource Planning
EXP:	Experimental bits
FDDI:	Fiber Distributed Data Interface
FEC:	Forwarding Equivalence Class
GARP:	Generic Attribute Register Protocol
GVRP:	GARP VLAN
HPS:	Hitless Protection System
HSSI:	High Speed Serial Interface
IANA:	Internet Assigned Numbers Authority
IBGP:	Internal Border Gateway Protocol
IETF:	Internet Engineering Task Force
IGP:	Interior Gateway Protocol
IP:	Internet Protocol
IS-IS:	Intermediate Systems to Intermediate Systems
ISP:	Internet Service Provider
ITU:	International Telecommunications Union
LAN:	Local Area Network
LDP:	Label Distribution Protocol
LEC:	Local Exchange Carrier
LEC: LER:	
	Label Edge Router
LFAP:	Lightweight Flow Accounting Protocol
LSP:	Label Switched Path
LSR:	Label Switched Router
MAC:	Media Access Control
MAN:	Metropolitan Area Network
MCDN:	Microcellular Data Network
MDI:	Media Dependent Interface
MDU:	Multiple Dwelling Unit
MIB:	Management Information Base
MLPPP:	Multi Layer Point to Point Protocol
MMDS:	Multi-point Multi-channel Distribution System
MMF:	Multi-mode fiber
MPLS:	Multi-Protocol Label Switching
MSN:	Management Network Server
MSP:	Metropolitan Service Provider
MSTP:	Multiple Spanning Tree Protocol
MTU:	Multiple Tenant Unit
MVST:	Multiple-VLAN Spanning Tree Optical Carrier 3/12 (155 Mbps/622 Mbps)

OSPF:	Open Shortest Path First
PCS:	Physical Coding Sublayer
PDU:	Protocol Data Units
PE:	Provider Edge
PEF:	Packet over Ethernet over Fiber
PES:	Packet over Ethernet over SONET-based optical
PEW:	Packet over Ethernet over WDM-based optical
PHY:	Physical Layer
PMA:	Physical Media Attachment
PMD:	Physical Media Dependent
PON:	Passive Optical Networking
POP:	Point of Presence
POS:	Packet over SONET
PPP:	Point to Point Protocol
PSTN:	Public Switch Telephone Network
PVC:	Private Virtual Circuit
PVST:	Per-VLAN Spanning Tree
QoS:	Quality of Service
RBOC:	Regional Bell Operating Company (ie: PacBell, etc.)
RED:	Random Early Discard
RSTP:	Rapid Spanning Tree Protocol
RSVP:	Resource Reservation Protocol
RSVP-TE:	RSVP-Traffic Engineering
rt-VBR:	real-time Variable Bit Rate
SAN:	Storage Area Network
SAP:	Session Announcement Protocol
SLA:	Service Level Agreement
SMF:	Single-mode fiber
SNMP:	Simple Network Management Protocol
SONET:	Synchronous Optical Network
STP:	Spanning Tree Protocol
T1:	Trunk 1 (1.544 Mbps)
TCP/IP:	Transmission Control Protocol/Internet Protocol
TDM:	Time Division Multiplexing
TOS:	Terms of Service
UBR:	Undefined Bit Rate
VBR:	Variable Bit Rate
VLAN:	Virtual LAN
VoD:	Video on Demand
VPN:	Virtual private network
VRRP:	Virtual Router Redundancy Protocol
WAN:	Wide Area Network
WDM:	Wave Division Multiplexing
WFQ:	Weighted Fair Queuing
WRED:	Weighted Random Early Discard
XGMII:	10G Media Independent Interface
ACIVIII.	тостлосии посрепости пистасе

Riverstone Networks, Inc.

5200 Great America Parkway, Santa Clara, CA 95054 USA

877 / 778-9595 or 408 / 878-6500 or www.riverstonenet.com

©2002 Riverstone Networks, Inc. All rights reserved. Riverstone Networks, the Riverstone Networks logo, and Bandwidth with Brains are trademarks or servicemarks of Riverstone Networks, Inc. NASDAQ is a registered trademark of the NASDAQ Stock Market, Inc. NASDAQ*: RSTN