
[TD 2570-CR] EV6 Interlocked Memory Instructions for Alpha Compilers - BLITZ

Unique Id: 009D0AFA-95035BA0-1C02A1

' Copyright 1998 Compaq Computer Corporation.  All rights reserved

   SOURCE:  Compaq Computer Corporation         INFORMATION   BLITZ

   INFORMATION BLITZ TITLE:
 
      Ensuring Proper Use of Interlocked Memory Instructions for 
      Applications to Run on Alpha 21264 (EV6) processors.

   
   DATE: December 11th 1998
   INFORMATION BLITZ #: 2570-CR

   AUTHOR: Karen Marion
   TEL#:   603-884-1455 
           DTN: 264-1455
   EMAIL:  karen.marion@digital.com
   DEPARTMENT: OpenVMS Engineering
   
   =================================================================

   PRODUCT NAME(S) IMPACTED:  Compilers for Use on OpenVMS Alpha:
                                BLISS V1.1 
                                DEC C V5.x
                                DEC C++ V5.x
                                DEC Pascal V5.0-2 
                                MACRO-32 V3.0
                                MACRO-64 V1.2      

   PRODUCT FAMILY: PRODUCT NUMBERS:

   Storage         ___                            ________________
   Systems         ___                            ________________
   Networks        ___                            ________________
   PC              ___                            ________________
   Software        _X_                      ________________         

  
   PROBLEM STATEMENT:

      The Alpha Architecture Reference Manual, Third Edition (AARM) 
      describes strict rules for using interlocked memory instructions. 
      The forthcoming Alpha 21264 (EV6) processor and all future Alpha
      processors are more stringent than their predecessors in their 
      requirement that these rules be followed. As a result, code that
      has worked in the past despite noncompliance may now fail when 
      executed on systems featuring the new 21264 processor. Occurrences
      of these noncompliant code sequences are believed to be rare. 
      
      NOTE: The 21264 processor is not supported prior to OpenVMS



            Alpha Version 7.1-2.

   PROBLEM SYMPTOM:

      The result can be a loss of synchronization between processors 
      when interprocessor locks are used or an infinite loop when an 
      interlocked sequence always fails. This has occurred in some code 
      sequences in programs compiled on old versions of the BLISS compiler, 
      some versions of the MACRO-32 compiler and the MACRO-64 assembler, 
      and in some DEC C and C++ programs.

      The affected code sequences use LDx_L/STx_C instructions, either 
      directly in assembly language source or in code generated by a 
      compiler. Applications most likely to use interlocked instructions 
      are complex, multithreaded applications or device drivers using 
      highly optimized, hand-crafted locking and synchronization techniques.

   SOLUTION:

      OpenVMS recommends that code that will run on the 21264 processor 
      be checked for these sequences. Particular attention should be paid 
      to any code that does interprocess locking, multithreading, or 
      interprocessor communication.

      The SRM_CHECK tool (named after the System Reference Manual, which 
      defines the Alpha architecture) has been  developed to analyze Alpha
      executables for noncompliant code sequences. The tool will detect 
      sequences that may fail, report any errors, and display the machine 
      code of the failing sequence.

      The SRM_CHECK tool can be downloaded from the following location:

         www.openvms.digital.com/openvms/srm_check.exe

 
   ADDITIONAL INFORMATION:

      This section contains information about:

      o  Using the SRM_CHECK tool

      o  Characteristics of noncompliant code

      o  Coding requirements

      o  Compilers

      Using SRM_CHECK.EXE to Analyze Code

        To run the SRM_CHECK tool, define it as a foreign command (or use the
        DCL$PATH mechanism) and invoke it with the name of the image to check. 
        If a problem is found, the machine code will be displayed and some image



        information will be printed. The following example illustrates how to 
        use the tool to analyze an image called myimage.exe:

              $ define DCL$PATH []
              $ srm_check myimage.exe

              The tool supports wildcard searches. Use the following
              command line to initiate a wildcard search:

              $ srm_check [*...]* -log

              Use the -log qualifier to generate a list of which images
              have been checked. The -output qualifier can be used
              to write the output to a data file, as in the following
              example that writes to a file named check.dat.

              $ srm_check ’file’ -output check.dat

              The output from the tool can be used to find the module
              that generated the sequence by looking in the image’s
              MAP file. The addresses shown correspond directly to the
              addresses that can be found in the MAP file.

              The following example illustrates the output from using the
              analysis tool on an image named system_synchronization.exe

               ** Potential Alpha Architecture Violation(s) found in file...
               ** Found an unexpected ldq at 00003618
               0000360C   AD970130     ldq_l          R12, 0x130(R23)
               00003610   4596000A     and            R12, R22, R10
               00003614   F5400006     bne            R10, 00003630
               00003618   A54B0000     ldq            R10, (R11)
               Image Name:    SYSTEM_SYNCHRONIZATION
               Image Ident:   X-3
               Link Time:      5-NOV-1998 22:55:58.10
               Build Ident:   X6P7-SSB-0000
               Header Size:   584
               Image Section: 0, vbn: 3, va: 0x0, flags: RESIDENT EXE (0x880)

              The MAP file for system_synchronization.exe contains the
              following:

     EXEC$NONPAGED_CODE       00000000 0000B317 0000B318 (      45848.) 2 **  5
     SMPROUT                  00000000 000047BB 000047BC (      18364.) 2 **  5
     SMPINITIAL               000047C0 000061E7 00001A28 (       6696.) 2 **  5

              The address 360C is in the SMPROUT module (which contains
              the addresses from 0-47BB). By looking at the machine code
              output from the module, you can locate the code and use the
              listing line number to identify the corresponding source
              code. If SMPROUT had a nonzero base, it would be necessary
              to subtract the base from the address (360C in this case)
              to find the relative address in the listing file.

              Note that the tool reports potential violations in its
              output. Although SRM_CHECK can normally identify a code



              section in an image by the section’s attributes, it is
              possible for OpenVMS images to contain data sections with
              those same attributes. As a result, SRM_CHECK may scan
              data as if it were code, and occasionally report a "false
              positive" when a block of data appears to be a noncompliant
              code sequence. This has also been found to be quite rare.
              This circumstance can be detected in the same way the
              noncompliant source code is found, by examining the MAP
              and listing files.

        Characteristics of Noncompliant Code

              The areas of noncompliance detected by the SRM_CHECK tool
              can be grouped into the following four categories. Most of
              these can be fixed by recompiling with new compilers. In
              rare cases, the source code may need to be modified. See
              Section 4.4 for information about compiler versions.

              o  Some versions of OpenVMS compilers introduce
                 noncompliant code sequences during an optimization
                 called "loop rotation." This problem can only be
                 triggered in C or C++ programs which use LDx_L/STx_C
                 instructions in assembly language code that is embedded
                 in the C/C++ source using the ASM function, or in
                 assembly language written in MACRO-32 or MACRO-64. In
                 some cases, a branch was introduced between the LDx_L
                 and STx_C instructions.

                 This can be addressed by recompiling.

              o  Some code compiled with very old Bliss, MACRO-32, or DEC
                 Pascal compilers may contain noncompliant sequences.
                 Early versions of these compilers contained a code
                 scheduling bug where a load was incorrectly scheduled
                 after a load_locked.

                 This can be addressed by recompiling.

              o  The MACRO-32 compiler may generate a noncompliant code
                 sequence for a BBSSI or BBCCI instruction in rare cases
                 where there are too few free registers.

                 This can be addressed by recompiling.

              o  Incorrectly coded MACRO-64 or MACRO-32 and incorrectly
                 coded assembly language embedded in C or C++ source
                 using the ASM function.

                 This requires source code changes. The new MACRO-32
                 compiler will flag noncompliant code at compile time.

              If the SRM_CHECK tool finds a violation in an image, the
              image should be recompiled with the appropriate compiler
              (see Section 4.4). After recompiling, the image should be
              analyzed again. If violations remain after recompiling,
              source code must be examined to determine why the code



              scheduling violation exists. Modifications should then be
              made to the source code.

        Coding Requirements

              The Alpha Architecture Reference Manual describes how an
              atomic update of data between processors must be formed.
              The Third Edition, in particular, has expanded greatly on
              this topic. In this edition, Section 5.5, "Data Sharing",
              and Section 4.2.4, which describes the LDx_L instructions,
              detail the conventions of the interlocked memory sequence.

              The following two requirements are the source of all known
              noncompliant code:

              o  There cannot be a memory operation (load or store)
                 between the LDx_L (load locked) and STx_C (store
                 conditional) instructions in an interlocked sequence

              o  There cannot be a branch taken between a LDx_L and a
                 STx_C instruction. Rather, execution must "fall through"
                 from the LDx_L to the STx_C without taking a branch.

                 Any branch whose target is between a LDx_L and matching
                 STx_C creates a noncompliant sequence. For example,
                 any branch to "label" in the following would result
                 in noncompliant code, regardless of whether the
                 branch instruction itself was within or outside of the
                 sequence:

                                 LDx_L  Rx, n(Ry)
                                 ...
                          label: ...
                                 STx_C  Rx, n(Ry)

              Therefore, the SRM_CHECK tool looks for the following:

              o  Any memory operation (LDx/STx) between a LDx_L and a
                 STx_C.

              o  Any branch which has a destination between a LDx_L and
                 STx_C.

              o  STx_C instructions that do not have a preceding LDx_L
                 instruction.

                 This typically indicates that a backward branch is taken
                 from a LDx_L to the STx_C. Note that hardware device
                 drivers that do device mailbox writes are an exception,
                 and use the STx_C to write the mailbox. This is only
                 found on early Alpha systems, and not on PCI based
                 systems.

              o  Excessive instructions between a LDx_L and STxC.

                 The AARM recommends that no more than 40 instructions



                 appear between a LDx_l and STx_c. In theory, more
                 than 40 instructions can cause hardware interrupts to
                 keep the sequence from completing. There are no known
                 occurrences of this.

              To illustrate, the following are examples of code flagged
              by SRM_CHECK.

                      ** Found an unexpected ldq at 0008291C
                      00082914   AC300000     ldq_l          R1, (R16)
                      00082918   2284FFEC     lda            R20, 0xFFEC(R4)
                      0008291C   A6A20038     ldq            R21, 0x38(R2)

              In the above example, a LDQ instruction was found after a
              LDQ_L before the matching STQ_C. The LDQ must be moved out
              of the sequence, either by recompiling or by source code
              changes.

              * Backward branch from 000405B0 to a STx_C sequence at 0004059C
              00040598   C3E00003     br             R31, 000405A8
              0004059C   47F20400     bis            R31, R18, R0
              000405A0   B8100000     stl_c          R0, (R16)
              000405A4   F4000003     bne            R0, 000405B4
              000405A8   A8300000     ldl_l          R1, (R16)
              000405AC   40310DA0     cmple          R1, R17, R0
              000405B0   F41FFFFA     bne            R0, 0004059C

              In the above example, a branch was discovered between the
              LDL_L and STQ_C. In this case, there is no "fall through"
              path between the LDx_L and STx_C, which the architecture
              requires.

                ________________________ Note ________________________

                This branch backward from the LDx_L to the STx_C is
                characteristic of the noncompliant code introduced by
                the "loop rotation" optimization.

                ______________________________________________________

              The following MACRO-32 source code demonstrates code
              where there is a fall through path, but that is still
              noncompliant because of the potential branch, AND a memory
              reference in the lock sequence.

               getlck: evax_ldql  r0, lockdata(r8)  ; get the lock data
                       movl       index, r2         ; and the current index
                       tstl       r0                ; If the lock is zero,
                       beql       is_clear          ; skip ahead to store
                       movl       r3, r2            ; Else, set special index
              is_clear:
                       incl       r0                ; increment lock count
                       evax_stqc  r0, lockdata(r8)  ; and store it
                       tstl       r0                ; did store succeed?
                       beql       getlck            ; retry if not



              To correct this code, the memory access to read the value
              of INDEX must first be moved outside the LDQ_L/STQ_C
              sequence. Next, the branch between the LDQ_L and STQ_C,
              to the label IS_CLEAR, must be eliminated. In this case,
              it could be done using a CMOVEQ instruction. The CMOVxx
              instructions are frequently useful for eliminating branches
              around simple value moves. The following example shows the
              corrected code.

                      movl       index, r2         ; Get the current index
              getlck: evax_ldql  r0, lockdata(r8)  ; and then the lock data
                      evax_cmoveq r0, r3, r2       ; If zero, use special index
                      incl       r0                ; increment lock count
                      evax_stqc  r0, lockdata(r8)  ; and store it
                      tstl       r0                ; did write succeed?
                      beql       getlck            ; retry if not

        Compiler Versions

              This section contains information about versions of
              compilers that may generate noncompliant code sequences
              and the recommended versions to be used when recompiling.

              Table 1 contains information for OpenVMS compilers.

              ___________________________________________________________
              Table 1 OpenVMS_Compilers

              Old Version           Recommended Minimum Version
              ___________________________________________________________

              BLISS V1.1            Bliss V1.3

              DEC C V5.x            DEC C V6.0

              DEC C++ V5.x          DIGITAL C++ V6.0

              DEC Pascal V5.0-2     DEC Pascal V5.1-11

              MACRO-32 V3.0         V3.1 for OpenVMS Version 7.1-2
                                    V4.1 for OpenVMS Version 7.2

              MACRO-64 V1.2         See below    
              ___________________________________________________________

              Current versions of the MACRO-64 Assembler may still
              encounter the loop rotation issue. However, MACRO-64
              does not perform code optimization by default, and this
              problem can only arise when optimization is enabled. If
              SRM_CHECK indicates a noncompliant sequence in MACRO-64
              code, it should first be recompiled without optimization.
              If the sequence is still flagged when retested, the source
              code itself contains a noncompliant sequence and must be
              corrected.



    *****************************< NOTE >***********************************
    *                                                                      *
    * INFORMATION IN THIS DOCUMENT REPRESENTS OPERATIONAL EXPERIENCES AND  * 
    * SUGGESTIONS BY COMPAQ OR PARTNER EMPLOYEES.  COMPAQ SHALL NOT BE     *
    * RESPONSIBLE FOR ANY ERRORS OR OMMISSIONS CONTAINED IN THIS DOCUMENT, * 
    * AND RESERVES THE RIGHT TO MAKE CHANGES TO IT WITHOUT NOTICE.         *
    *                                                                      *
    ************************************************************************

<>UPDATE /TEXT_UPDATE/UNIQUE_IDENTIFIER="009D0AFA-95035BA0-1C02A1"-
 /TITLE="[TD 2570-CR] EV6 Interlocked Memory Instructions for Alpha Compilers - BLITZ
 /BADGE=(AUTHOR="999997",ENTER="913696",MODIFY="913696",-
 EDITORIAL_REVIEW="913696",TECHNICAL_REVIEW="999997")-
 /NAME=(AUTHOR="MARION KAREN",ENTER="SPAINHOWER JOE",-
 MODIFY="SPAINHOWER JOE",EDITORIAL_REVIEW="SPAINHOWER JOE",TECHNICAL_REVIEW="MARION K
 /DATE=(AUTHOR="14-DEC-1998",ENTER="14-DEC-1998",-
 EXPIRE="14-DEC-2000",FLASH="15-JAN-1999 10:48:03.91",MODIFY="15-JAN-1999",-
 EDITORIAL_REVIEW="14-DEC-1998",TECHNICAL_REVIEW="14-DEC-1998")-
 /GEOGRAPHY="USA"/SITE="EIRS"/OWNER="TIM-BLITZ"-
 /FLAGS=(USA_CUSTOMER_READABLE,NOPOST_MESSAGE_DISPLAY,NOLOCAL,-
 EUR_CUSTOMER_READABLE,GIA_CUSTOMER_READABLE,NOINIT_MESSAGE_DISPLAY,-
 EDITORIAL_REVIEWED,FIELD_READABLE,FLASH,TECHNICAL_REVIEWED,READY)


