[TD 2570-CR] EV6 Interl ocked Menory Instructions for Al pha Conpilers - BLITZ
Uni que |d: O09DOAFA- 95035BA0- 1C02A1

" Copyright 1998 Conpaq Conmputer Corporation. Al rights reserved

SOURCE: Conpaq Conputer Corporation | NFORMATION BLITZ

| NFORVATI ON BLI TZ TI TLE:

Ensuring Proper Use of Interlocked Menory Instructions for
Applications to Run on Al pha 21264 (EV6) processors.

DATE: Decenber 11th 1998
| NFORMATI ON BLI TZ #: 2570-CR

AUTHOR: Karen Marion
TEL#: 603- 884- 1455
DTN. 264- 1455
EMAI L: karen. mari on@li gi tal . com
DEPARTMENT: QOpenVMsS Engi neeri ng

PRODUCT NAME(S) | MPACTED: Conpilers for Use on OpenVMS Al pha:
BLISS V1.1
DEC C V5. x
DEC C++ V5. x
DEC Pascal V5.0-2
MACRO 32 V3.0
MACRO- 64 V1. 2

PRODUCT FAM LY: PRODUCT NUMBERS

St or age
Systens
Net wor ks
PC

Sof t war e X

PROBLEM STATEMENT:

The Al pha Architecture Reference Manual, Third Edition (AARM
describes strict rules for using interlocked nenory instructions.
The forthcom ng Al pha 21264 (EV6) processor and all future Al pha
processors are nore stringent than their predecessors in their
requi renent that these rules be followed. As a result, code that
has worked in the past despite nonconpliance may now fail when
executed on systens featuring the new 21264 processor. COccurrences
of these nonconpliant code sequences are believed to be rare.

NOTE: The 21264 processor is not supported prior to QpenVMS

Al pha Version 7.1-2.

PROBLEM SYMPTOM

The result can be a | oss of synchroni zati on between processors

when interprocessor |ocks are used or an infinite | oop when an

i nterl ocked sequence always fails. This has occurred in sone code
sequences in prograns conpiled on old versions of the BLISS conpiler,
sone versions of the MACRO 32 conpil er and the MACRO 64 assenbl er,
and in some DEC C and C++ prograns.

The affected code sequences use LDx L/ STx _C instructions, either
directly in assenbly | anguage source or in code generated by a
conpiler. Applications nost likely to use interlocked instructions

are conplex, nmultithreaded applications or device drivers using
hi ghly optim zed, hand-crafted | ocki ng and synchroni zati on techni ques.

SCLUTI ON:
OpenVMS recommends that code that will run on the 21264 processor
be checked for these sequences. Particular attention should be paid
to any code that does interprocess |ocking, nultithreadi ng, or
I nt er processor conmuni cati on.
The SRM CHECK tool (named after the System Reference Manual, which
defines the Al pha architecture) has been devel oped to analyze Al pha
execut abl es for nonconpliant code sequences. The tool w || detect
sequences that may fail, report any errors, and display the machine
code of the failing sequence.
The SRM CHECK t ool can be downl oaded fromthe follow ng | ocation

www. openvis. di gi tal . coml openvis/ srm check. exe

ADDI TI ONAL | NFORNMATI ON:
This section contains information about:
0 Using the SRM CHECK t ool
0 Characteristics of nonconpliant code
o Coding requirenents

o Conpilers

Usi ng SRM CHECK. EXE to Anal yze Code

To run the SRM CHECK tool, define it as a foreign conmand (or use the
DCL$PATH mechani sm) and invoke it with the name of the inmage to check
If a problemis found, the machine code will be displayed and sone i mage

information will be printed. The follow ng exanple illustrates how to
use the tool to analyze an inmage called nyinmage. exe:

$ define DCL$PATH []
$ srm check nyi nage. exe

The tool supports wldcard searches. Use the follow ng
command line to initiate a wildcard search

$ srmcheck [*...]* -log

Use the -log qualifier to generate a list of which i mages
have been checked. The -output qualifier can be used

to wite the output to a data file, as in the follow ng
exanple that wites to a file naned check. dat.

$ srmcheck 'file' -output check. dat

The output fromthe tool can be used to find the nodul e
that generated the sequence by looking in the inage’s
MAP file. The addresses shown correspond directly to the
addresses that can be found in the MAP file.

The followi ng exanple illustrates the output from using the
anal ysis tool on an i mage naned system synchroni zati on. exe

** Potential Al pha Architecture Violation(s) found in file...
** Found an unexpected | dg at 00003618

0000360C AD970130 | dg_|I R12, O0x130(R23)
00003610 4596000A and R12, R22, R10
00003614 F5400006 bne R10, 00003630
00003618 A54B0000 | dq R10, (R11)

| mage Nane: SYSTEM_SYNCHRONI ZATI ON

| mage |dent: X-3

Li nk Ti me: 5- NOV- 1998 22: 55: 58. 10

Build Ident: X6P7- SSB- 0000
Header Si ze: 584
| mage Section: 0, vbn: 3, va: 0x0, flags: RESIDENT EXE (0x880)

The MAP file for system synchronization.exe contains the

fol | ow ng:
EXEC$NONPAGED _CODE 00000000 0000B317 0000B318 (45848.) 2 **
SMPROUT 00000000 000047BB 000047BC (18364.) 2 **
SMPI NI TI AL 000047C0 000061E7 00001A28 (6696.) 2 **

The address 360C is in the SMPROUT nodul e (which contains
the addresses from 0-47BB). By | ooking at the machi ne code
output fromthe nodule, you can |ocate the code and use the
listing line nunber to identify the correspondi ng source
code. |If SMPROUT had a nonzero base, it would be necessary
to subtract the base fromthe address (360C in this case)
to find the relative address in the listing file.

Note that the tool reports potential violations inits
out put. Al though SRM CHECK can nornally identify a code

section in an imge by the section’s attributes, it is
possi bl e for OpenVMNS i nages to contain data sections with
those sane attributes. As a result, SRM CHECK may scan
data as if it were code, and occasionally report a "fal se
positive" when a block of data appears to be a nonconpli ant
code sequence. This has al so been found to be quite rare.
Thi s circunstance can be detected in the sanme way the
nonconpl i ant source code is found, by exam ning the MAP
and listing files.

Characteristics of Nonconpliant Code

The areas of nonconpliance detected by the SRM CHECK t ool
can be grouped into the follow ng four categories. Mst of
these can be fixed by reconpiling with new conpilers. In
rare cases, the source code nmay need to be nodified. See
Section 4.4 for information about conpiler versions.

0 Sone versions of QpenVMS conpilers introduce
nonconpl i ant code sequences during an optim zation
called "loop rotation."™ This problemcan only be
triggered in C or C++ prograns which use LDx_L/STx_C
i nstructions in assenbly | anguage code that is enbedded
in the C C++ source using the ASM function, or in
assenbly | anguage witten in MACRO- 32 or MACRO-64. In
sonme cases, a branch was introduced between the LDx L
and STx_C instructions.

This can be addressed by reconpiling.

o Sone code conpiled with very old Bliss, MACRO 32, or DEC
Pascal conpilers may contai n nonconpliant sequences.
Early versions of these conpilers contained a code
schedul i ng bug where a | oad was incorrectly schedul ed
after a | oad_| ocked.

This can be addressed by reconpiling.

o The MACRO 32 conpiler nay generate a nonconpliant code
sequence for a BBSSI or BBCCl instruction in rare cases
where there are too few free registers.

This can be addressed by reconpiling.

0 Incorrectly coded MACRO 64 or MACRO 32 and incorrectly
coded assenbly | anguage enbedded in C or C++ source
usi ng the ASM functi on.

This requires source code changes. The new MACRO 32
conpiler will flag nonconpliant code at conpile tine.

If the SRM CHECK tool finds a violation in an inmage, the
i mage shoul d be reconpiled with the appropriate conpiler
(see Section 4.4). After reconpiling, the inage shoul d be
anal yzed again. If violations remain after reconpiling,
source code nust be exanmined to determ ne why the code

scheduling violation exists. Mdifications should then be
made to the source code.

Codi ng Requirenents

The Al pha Architecture Reference Manual describes how an
atom ¢ update of data between processors nust be forned.
The Third Edition, in particular, has expanded greatly on
this topic. In this edition, Section 5.5, "Data Sharing",
and Section 4.2.4, which describes the LDx L instructions,
detail the conventions of the interlocked nmenory sequence.

The following two requirenents are the source of all known
nonconpl i ant code:

0 There cannot be a nenory operation (load or store)
between the LDx_L (load | ocked) and STx_C (store
conditional) instructions in an interlocked sequence

o There cannot be a branch taken between a LDx_L and a
STx_C instruction. Rather, execution rnust "fall through”
fromthe LDx_L to the STx_C without taking a branch

Any branch whose target is between a LDx_L and natching
STx_C creates a nonconpliant sequence. For exanpl e,

any branch to "label” in the follow ng would result

I n nonconpliant code, regardl ess of whether the

branch instruction itself was within or outside of the
sequence:

LDx_L Rx, n(Ry)

| abel : ...
STx_C Rx, n(Ry)

Therefore, the SRM CHECK tool |ooks for the foll ow ng:

0 Any nenory operation (LDx/STx) between a LDx_L and a
STx_C.

0 Any branch which has a destination between a LDx_L and
STx_C.

0 STx _Cinstructions that do not have a preceding LDx_L
I nstruction.

This typically indicates that a backward branch is taken
froma LDx L to the STx_C. Note that hardware device
drivers that do device nailbox wites are an exception
and use the STx Cto wite the mailbox. This is only
found on early Al pha systens, and not on PCl based
systens.

0 Excessive instructions between a LDx L and STxC.

The AARM recommends that no nore than 40 instructions

appear between a LDx | and STx_c. In theory, nore
than 40 instructions can cause hardware interrupts to
keep the sequence from conpleting. There are no known
occurrences of this.

To illustrate, the followi ng are exanpl es of code flagged

by SRM CHECK.
** Found an unexpected | dg at 0008291C
00082914 AC300000 | dg_| R1, (R16)
00082918 2284FFEC | da R20, OxFFEC(R4)
0008291C A6A20038 | dg R21, 0x38(R2)

In the above exanple, a LDQ instruction was found after a
LDQ L before the matching STQ C. The LDQ must be noved out
of the sequence, either by reconmpiling or by source code
changes.

* Backward branch from 000405B0 to a STx_C sequence at 0004059C

00040598 C3E00003 br R31, 000405A8
0004059C 47F20400 bi s R31, R18, RO
000405A0 B8100000 stl_c RO, (R16)
000405A4 F4000003 bne RO, 000405B4
000405A8 A8300000 I dl _I R1, (R16)
000405AC 40310DA0 cnpl e R1, R17, RO
000405B0 FA1FFFFA bne RO, 0004059C

In the above exanple, a branch was di scovered between the
LDL L and STQC. In this case, there is no "fall through"
path between the LDx_L and STx_C, which the architecture
requires.

Not e

This branch backward fromthe LDx L to the STx Cis
characteristic of the nonconpliant code introduced by
the "l oop rotation"” optim zation

The foll owi ng MACRO 32 source code denonstrates code

where there is a fall through path, but that is stil
nonconpl i ant because of the potential branch, AND a nenory
reference in the | ock sequence.

getlck: evax _ldgl rO, lockdata(r8) ; get the |ock data
novl I ndex, r2 ; and the current index
tstl ro ; If the lock is zero,
beql is_clear ; skip ahead to store
novl r3, r2 ; Else, set special index
Is_clear:
i ncl ro ; increment | ock count
evax_stqgc r0, lockdata(r8) ; and store it
tstl ro ; did store succeed?
beql getl ck ; retry if not

To correct this code, the nenory access to read the val ue
of I NDEX must first be noved outside the LDQ L/STQ C
sequence. Next, the branch between the LDQ L and STQ C,

to the label 1S CLEAR, nust be elimnated. In this case,

it could be done using a CMOVEQ i nstruction. The CMOVXX
Instructions are frequently useful for elimnating branches
around si npl e val ue noves. The follow ng exanple shows the
corrected code.

novl i ndex, r2 ; CGet the current index
getlck: evax _ldgl r0O, lockdata(r8) ; and then the |ock data

evax_cnoveq r0, r3, r2 ; If zero, use special index

i ncl ro ; increment |ock count

evax_stqgc r0O, lockdata(r8) ; and store it

tstl ro ; did wite succeed?

beql getl ck ; retry if not

Conmpi | er Versi ons
This section contains information about versions of
conpilers that may generate nonconpliant code sequences
and the reconmended versions to be used when reconpiling.

Table 1 contains information for OpenVMsS conpil ers.

Tabl e 1 OpenVMs_Conpil ers

ad Version Recomended M ni mum Ver si on
BLISS V1.1 Bliss V1.3

DEC C V5. x DEC C V6.0

DEC C++ V5. X DA TAL C++ V6.0

DEC Pascal V5.0-2 DEC Pascal V5.1-11

MACRO- 32 V3.0 V3.1 for OpenVMS Version 7.1-2

V4.1 for OpenVMs Version 7.2

MACRO- 64 V1.2 See bel ow

Current versions of the MACRO 64 Assenbler may stil
encounter the |oop rotation issue. However, MACRO 64

does not perform code optim zation by default, and this
probl em can only arise when optim zation is enabled. If
SRM CHECK i ndi cates a nonconpliant sequence in MACRO 64
code, it should first be reconpiled w thout optim zation.
If the sequence is still flagged when retested, the source
code itself contains a nonconpliant sequence and nust be
corrected.

*****************************< NC)"'E >***********************************

| NFORVATI ON IN THI S DOCUMENT REPRESENTS OPERATI ONAL EXPERI ENCES AND *
SUGGESTI ONS BY COVPAQ OR PARTNER EMPLOYEES. COWPAQ SHALL NOT BE *
RESPONSI BLE FOR ANY ERRORS OR OMM SSI ONS CONTAI NED IN THI S DOCUMENT, *
AND RESERVES THE RI GHT TO MAKE CHANGES TO I T W THOUT NOTI CE. *

L T T S

kkhkhkkhkkhkhkkhkhkhhhkhhkhkhhkhhhkhhkhhkhkhhkhkhhkhhkhkrhkhhkhkrhkhhhkhhkhkrhkhkhkkrhkhhkkhkhkk kkhkikkikkkik*k*

<>UPDATE / TEXT_UPDATE/ UNI QUE_I DENTI FI ER=" 009DOAFA- 95035BA0- 1C02A1" -
[TITLE="[TD 2570-CR] EV6 Interlocked Menory Instructions for Al pha Conpilers - BLITZ
/ BADGE=(AUTHOR="999997" , ENTER="913696" , MODI FY="913696", -
EDI TORI AL_REVI EW=" 913696" , TECHNI CAL_REVI EW="999997") -
/ NAMVE=(AUTHOR=" MARI ON KAREN", ENTER=" SPAl NHOW\ER JOE", -
MODI FY=" SPAI NHONER JCE", EDI TORI AL_REVI EW" SPAI NHOAER JOE", TECHNI CAL_REVI EW=" MARI ON K
/ DATE=(AUTHOR="14- DEC- 1998" , ENTER="14- DEC- 1998", -
EXPI RE=" 14- DEC- 2000", FLASH="15- JAN- 1999 10: 48: 03. 91", MODI FY="15- JAN- 1999", -
EDI TORI AL_REVI EW=" 14- DEC- 1998" , TECHNI CAL_REVI EW" 14- DEC- 1998") -
| GEOGRAPHY="USA"/ SI TE="EI RS"/ OANER="TI M BLI TZ" -
| FLAGS=(USA_CUSTOVER_READABLE, NOPOST_MESSAGE_DI SPLAY, NOLOCAL, -
EUR_CUSTOVER_READABLE, G A CUSTOVER_READABLE, NO NI T_MESSAGE_DI SPLAY, -
EDI TORI AL_REVI EVED, FI ELD_READABLE, FLASH, TECHNI CAL_REVI EVEED, READY)

