

CYP15G0101DXB Evaluation Board User's Guide

Table of Contents

1. Overview	. 5
2. Kit Contents	. 5
3. Features of the CYP15G0101DXB	. 5
4. Functional Description of CYP15G0101DXB	. 6
5. Board Layout, Photograph and Pin Descriptions	. 8
6. Test Modes	13
6.1 Adjusting Settings on the Board	.14
6.2 BIST Test Set-up	.15
6.2.1 BIST Internal Loopback Mode	15
6.2.1.1 Equipment Required	15
6.2.1.2 Test Equipment Set-up	.16
6.2.1.3 Test Set-up	16
6.2.2 BIST External Loopback Mode	18
6.2.2.1 Equipment Required	18
6.2.2.2 Test Set-up	18
6.3 Parallel Data In – Parallel Data Out Mode	.19
6.3.1 Encoded Mode	19
6.3.1.1 Equipment Required	19
6.3.1.2 Test Set-up	19
6.3.1.3 Result Verification	20
6.3.2 Unencoded Mode (Parallel-In – Parallel-Out)	20
6.3.2.1 Equipment Required	20
6.3.2.2 Test Set-up	20
6.3.2.3 Result Verification	22
6.3.3 Operational Variations for Parallel-In-Parallel-Out Mode	22
6.3.3.1 Equipment Required	22
6.3.3.2 Test Set-up and Result Verification	22
7. Schematic Diagram, PCB Layout, and Bill of Materials (BOM)	23
Appendix A. Schematic Diagram of CYP15G0101DXB Evaluation Board	24
Appendix B. PCB Layout for CYP15G0101DXB Evaluation Board	30
Appendix C. Bill Of Materials (BOM) CYP15G0101DXB Evaluation Board	39

List of Figures

Figure 1. CYP15G0101DXB Transmitter Section Block Diagram	. 6
Figure 2. CYP15G0101DXB HOTLink II™ Block Diagram	. 6
Figure 3. CYP15G0101DXB Receiver Section Block Diagram	. 7
Figure 4. CYP15G0101DXB-EVAL Skeletal View	. 8
Figure 5. Pin Description of CYP15G0101DXB-EVAL	. 9
Figure 6. The BIST Mode Operation	13
Figure 7. Control Switches for Test Set-up	14
Figure 8. Controlling REFCLK Settings	14
Figure 9. Controlling SWT1 Dip Switches Settings	15
Figure 10. Controlling JT7 Pins Settings	15
Figure 11. Pictorial Representation of the Internal BIST Set-up	16
Figure 12. Signal on RXST1 when BIST is Successful	17
Figure 13. The Eye Diagram through the Signal Analyzer	18
Figure 14. Coaxial Cable Connection for External BIST Mode	18
Figure 15. Generated Clock, Data and Control Signal from DG2020	19
Figure 16. Adding Two Framing Characters to Data Stream	22
Figure 17. CYP15G0101DXB-EVAL Top Level Schematics	25
Figure 18. CYP15G0101DXB-EVAL Terminated Transmitter & Receiver Blocks	26
Figure 19. CYP15G0101DXB-EVAL Terminated Control Signals Block	27
Figure 20. CYP15G0101DXB-EVAL Transmit and Receive Clock Schematics	28
Figure 21. CYP15G0101DXB-EVAL Input Power Schematics	29
Figure 22. CYP15G0101DXB-EVAL Top Layout	31
Figure 23. CYP15G0101DXB-EVAL Bottom Layout	32
Figure 24. CYP15G0101DXB-EVAL Top Layer Silk Layout	33
Figure 25. CYP15G0101DXB-EVAL Bottom Layer Silk Layout	34
Figure 26. CYP15G0101DXB-EVAL Top Layer Solder Mask Layout	35
Figure 27. CYP15G0101DXB-EVAL Bottom Layer Solder Mask Layout	36
Figure 28. CYP15G0101DXB-EVAL Power Plane Layout	37
Figure 29. CYP15G0101DXB-EVAL Ground Plane Layout	38

List of Tables

Table 1. Description of Connectors of the CYP15G0101DXB Evaluation Board	10
Table 2. Description of Control Pins in JT7	11
Table 3. The High, Mid, and Low Levels on JT32	15
Table 4. The Levels of Different Static Signals on JT7 for BIST Mode	16
Table 5. Channel Enabling Controls	17
Table 6. The Levels of Static Signals on JT32 for Parallel In-Parallel Out Mode (Encoded)	20
Table 7. The Levels of Static Signals on JT32 for Parallel In-Parallel Out Mode (Unencoded)	21
Table 8. Output Register Bit Assignments	21
Table 9. Input Register Bit Assignments	21
Table 10. Operation Specification of CYP15G0101DXB Eval Board	23
Table 11. CYP15G0101DXB Eval Board Bill Of Materials	40

1. Overview

The CYP15G0101DXB single-channel HOTLink II[™] Transceiver is a point-to-point or point-to-multipoint communications building block allowing the transfer of data over high-speed serial links at signaling speeds ranging from 195 to 1500 MBaud.

This document describes the operation and interface of the CYP15G0101DXB evaluation board. The evaluation board allows users to become familiar with the functionality of the CYP15G0101DXB. *Figure 4* gives a skeletal view of the evaluation board.

2. Kit Contents

- CYP15G0101DXB evaluation board (CYP15G0101DXB-EVAL)
- Dear Customer letter
- a CD containing
 - CYP15G0101DXB data sheet
 - CYP15G0101DXB-EVAL user's guide
 - HOTLink II application notes
 - BSDL model
 - CYP15G0101_EVAL.PDA.

3. Features of the CYP15G0101DXB

- Second-generation HOTLink[®] technology
- GbE-, FC-, ESCON-®, DVB-ASI-, SMPTE259-, and SMPTE292-compliant
- 8B/10B-coded or 10-bit unencoded
- · Selectable parity check/generate
- · Selectable input clocking options
- · Selectable output clocking options
- MultiFrame™ receive framer provides alignment to
 - Bit, byte, half-word, word, multi-word
 - COMMA or Full K28.5 detect
 - Single or multi-byte framer for byte alignment
 - Low-latency option
- · Skew alignment support for multiple bytes of offset
- · Synchronous LVTTL parallel input interface
- · Synchronous LVTTL parallel output interface
- 195-to-1500 MBaud serial signaling rate
- · Internal PLLs with no external PLL components
- Dual differential PECL-compatible serial inputs
- · Dual differential PECL-compatible serial outputs
- JTAG Boundary Scan
- · Built In Self Testing (BIST) for at-speed link testing
- Link Quality Indicator
- Low power (1W typical)
- 100-ball BGA
- 0.25 µ BICMOS technology

4. Functional Description of CYP15G0101DXB

Figure 2 shows the block diagram of CYP15G0101DXB, which has a pair of transmit and receive channels. *Figure 1* shows the transmitter section of CYP15G0101DXB.

Figure 3 shows the receive section of the CYP15G0101DXB. The serial data input passes through the framer (where the recovered bit stream is framed to framing character), the 10B/8B Decoder and the elasticity buffer.

5. Board Layout, Photograph and Pin Descriptions

Figure 4 shows the skeletal view of the CYP15G0101DX board.

Figure 4. CYP15G0101DXB-EVAL Skeletal View

Figure 5 shows the different connectors and pins of the evaluation board for CYP15G0101DXB.

Figure 5. Pin Description of CYP15G0101DXB-EVAL

Table 1 gives a brief description of the connectors of the evaluation board.

Table 1 Description of Connectors of the CVP15G0101DYB Evaluation Boar							
10016 1. DESCHUNUUN UN GUNNECIUNS UN NIE GIE ISQUIUTUAD EVANAUUNI DUA	Board	3 Evaluation	CYP15G0101DXB	of the	ption of Connectors	. Descripti-	Table 1.

Connectors	Signals	Description			
JT1, JT2	SERIN1 <u>+</u>	SMA Connectors for SERIN± (one pair per primary input)			
		PECL compatible primary differential serial data inputs			
		Routed through 50-ohm Impedance			
		AC coupling capacitors present			
		100-ohm differential Load present			
JT3, JT4	SEROUT1 <u>+</u>	SMA connectors for SEROUT + (one pair per primary output)			
		CML compatible primary differential serial data outputs			
		Routed through 50-ohm Impedance			
		AC coupling capacitors present			
JT7	RX and TX side Control Signals	Please refer to <i>Table 2:</i> Description of Control Pins in JT7 on page 11.			
Power Supply					
JT8	VCC	Banana Jack			
		• +3.3 V DC			
JT13	GND	Banana Jack			
		• Ground			
DT1	Power On Indicator	Indicates if the power supply is ON. The LED glows when the power supply goes ON.			
JT11	JTAG Interface	Note: For CYP15G0101DXB, there is no dedicated JTAG reset. The JTAG logic will be reset on power-on.			
JT10	TXD[7:0] TXCT[1:0]	LVTTL Input TXD[7:0]			
	TXOP	Transmit Data Input			
		 50 Ohms Impedance terminated to 50 ohms load TXCT[1:0] 			
		Transmit control signals TXOP			
		Transmit Path Odd parity			
JT9	Clock Outputs and	• TXPER			
	Controls	• RXCLK*			
		• RXCLK			
		• TXCLK			
		• XTAL_EN			
		— A shunt across this implies that the onboard crystal clock is disabled.			
		• XTAL_OUT			
		 A shunt across this implies that the crystal clock on the board is used as REFCLK. 			
		• REFCLK			
		 A shunt across this implies that external REFCLK is used. The external REFCLK inputs are JT12 and JT14. 			
		• REFCLK*			
		• TXCLKO			
		• TXCLKO*			

Connectors	Signals	Description
JT12	REFCLK	External differential Reference clock. For single ended REFCLK input, apply an
JT14	REFCLK*	LVTTL clock signal to REFCLK input in JT12.
DT2	LFI	LED Indicator
SWT1	BOE[1:0] RXLE OELE <u>BISTLE</u> TRSTZ	BOE BIST, serial output, and receive channel enables. LVTTL Input RXLE (Receive channel enable latch enable) Active HIGH OELE (Serial output driver enable latch enable) Active HIGH BISTLE (Transmit and Receive BIST Latch Enable) Active HIGH TRSTZ Active LOW
JT5	Optical Controls	Controls for optical modules
XT1	The optical Interface	Options for small form factor pluggable (SFP) optical modules.
JT6	RXD[7:0] RXST[2:0] RXOP	LVTTL Output RXD[7:0] • Receive Data output RXST[2:0] • Receive Parallel Status output RXOP • Receive Path Odd parity
UT1	CYP15G0101DXB	

Table 1. Description of Connectors of the CYP15G0101DXB Evaluation Board (continued)

Table 2 gives a detailed description of all the control pins in JT7.

Many of the static control signals are of 3-level select. This means that they operate at three voltage levels, which are termed as

- HIGH (Direct connection to V_{CC})
- MID (Open or allowed to float)
- LOW (Direct connection to V_{SS}, i.e., GND).

In JT7 on the Eval board, these levels are implemented as follows:

- HIGH Place a shunt across columns 1 and 2
- MID Don't place any shunt
- LOW Place a shunt across columns 2 and 3.

Table 2. Description of Control Pins in JT7

Pin Name	Characteristics
TXMODE0, TXMODE1	Transmit mode (two inputs) 3-Level Select
	Configure LL for Encoder bypass
	 LM and LH are reserved for testing (we will be using LM in our tests)
	• All other combinations along with the selection of SCSEL are for encoder control. (Please refer to the data sheet for more details.)
TXCKSEL	Transmit Clock Select (1 input) 3-Level Select
	 When L, REFCLK is used by all the input registers.
	When M or H, TXCLK is used.

Table 2. Description of Control Pins in JT7 (continued)

Pin Name	Characteristics
TXRATE	LVTTL Input
	• When H, the transmit PLL multiplies REFCLK by 20 to generate the bit rate clock.
	• When L, the transmit PLL multiplies REFCLK by 10 to generate the bit rate clock.
SCSEL	Special Character Select
	LVTTL Input Used with the TXMODE[1:0] to
	Fither encode special characters
	Or initiate a word sync sequence
TXRST*	Transmit Clock Phase Alian Buffer Reset
	Active LOW
	L: the Phase-Align Buffer is allowed to adjust its data transfer timing.
	• H: the internal phase relationship between the TXCLK and the internal character-rate clock is fixed.
SPDSEL	Serial Rate Select 3-level select
	• LOW = 195–400 MBd
	• MID = 400–800 MBd
	• HIGH = 800–1500 MBd
SDASEL	Signal Detect Amplitude Level Select 3-Level Select
	LOW = 140 mV peak-peak differential
	 MID = 280 mV peak-peak differential
	 HIGH = 420 mV peak-peak differential
PARCTL	Parity check/generate control 3-Level Select
	LOW = Parity checking is disabled
	 MID = If encoder/decoder is enabled, inputs are checked for odd parity
	 HIGH = If encoder/decoder is enabled, inputs are checked for odd parity
RXMODE	Receive Operating Mode. This input selects one of two RXST channel status reporting modes.
	L: Status A selected
	M: Reserved for Test
	• H: Status B selected
DVOKOEL	This input is interpreted only when DECMODE is not LOW.
RACKSEL	3-Level Select
	L: Output register is clocked by REFCLK.
	- RXCLK± presents a buffered/delayed form of REFCLK.
	M: Output register is clocked by the recovered clock.
	- RXCLK+ follows the recovered clock as selected by RXRATE.
	— The elasticity buffer is bypassed.
	• H: Invalid State.
RFMODE	Reframe Mode Select.
	3-Level Select
FRAMCHAR	Framing Character Select
	3-Level select.
	Please refer to the data sheet for CYP15G0101DXB for detailed information.

Table 2. Description of Control Pins in JT7 (continued)

Pin Name	Characteristics
DECMODE	Decoder Mode Select. 3-Level Select
	L: Decoder bypassed
	M: Cypress decoder table for special code characters is used.
	H: Alternate decoder table for special code characters is used.
RXRATE	Receive Clock Rate Select. 2-Level Select LVTTL Input
	 L: RXCLK+ operates at the recovered channel clock rate
	 H: RXCLK+ operates at HALF the recovered channel clock rate
LPEN	All-Channel Loop-Back-Enable. LVTTL Input Active HIGH. When HIGH
	 Transmit serial data is internally routed to receive serial data
	 All external serial data inputs are ignored When LOW, the transmit data is not looped back to the receive side.
RFEN	Reframe Enable for all channels. Active HIGH.
INSEL	Receive Input Channel Selector. LVTTL Input.
	 HIGH - IN1± input is passed into the CDR circuit
	 LOW - IN2± input is passed into the CDR circuit For example, if INSEL is selected as HIGH, IN1± input will be passed into the receiver.

6. Test Modes

The different test modes discussed in this document are as follows:

1. BIST mode

CYP15G0101DXB has the Built-In Self-Test (BIST) capability. The transmit and receive channel contain the BIST Pattern Generator and Checker respectively.

Figure 6 shows the BIST mode operation.

The modes described in this document are:

- BIST internal loopback mode
- BIST external loopback mode

- 2. Parallel Data In and Parallel Data Out mode
 - Encoded Mode
 - Unencoded Mode

The variations discussed in this document, for this mode are

- Parallel-In Serial-Out Mode. (testing the transmit side)
- Different Clock Source (i.e., internal vs. external; different frequency mode, etc.)

The detailed description will be comprised of

- Equipment required (equipment, cable, etc.)
- Test Set-up
- Result Verification
- Operational Variations

6.1 Adjusting Settings on the Board

To successfully run any test, the REFCLK, SWT1(BOE[0:1]), JT7 and the REFCLK INT/EXT selector (JT9) on the board must be correctly configured. This section of the user guide gives some directions on how to read the settings on the board. Shown in *Figure 7* is a review of the control switches that you may use in the test set-up.

Figure 7. Control Switches for Test Set-up

To run the board either on the internal or the external clock, configure XTAL_EN, XTAL_OUT and REFCLK pins on JT9 shown in *Figure 8* accordingly. Shunting XTAL_OUT routes the device clock input to the on-board crystal clock. Ensure the on-board clock is ON by removing any shunts on the XTAL_EN pins. Shunting REFCLK routes the device clock input to the external clock input. To switch from one clock mode to another, simply remove the shunt on the REFCLK pin and replace it onto the desired pin. Ensure the board does not run on both internal and external clock at the same time.

(Note: External clock input is located at JT12 or JT14. For single ended REFCLK apply an LVTTL clock signal to REFCLK input in JT12 and leave REFCLK*(JT14) input floating.)

Figure 8. Controlling REFCLK Settings

The 2-level dip switches on SWT1 are configured high or low as illustrated in Figure 9.

Figure 9. Controlling SWT1 Dip Switches Settings

JT7 pins have 3-level inputs. Identify the column of the JT7 pins using column numbers on the silkscreen. A HIGH setting is achieved by placing a shunt across columns 1 and 2. A LOW setting is achieved by placing a shunt across columns 2 and 3. A MID setting is achieved when there is no shunt placed and the pins are left open. To change settings on a pin, remove the shunt from the original position and follow the instructions in *Table 3*. This is illustrated in *Figure 10*.

Figure 10. Controlling JT7 Pins Settings

15

Table 3. The High, Mid, and Low Levels on JT32

	Instruction		
High	Place a shunt across column 1 and 2		
Mid	Do not place any shunt		
Low	Place a shunt across column 2 and 3		

6.2 BIST Test Set-up

6.2.1 BIST Internal Loopback Mode

6.2.1.1 Equipment Required

Equipment needed:

- CYP15G0101DXB-EVAL
- Instrument-grade power supply 1 Amp @ 3.3V
- Oscilloscope (500 MHz or better)
- Digital Signal Analyzer.

Multimeter

Cable Needed:

- SMA-to-SMA coaxial cables
- · Power supply cables.

6.2.1.2 Test Equipment Set-up

Figure 11 shows the test set-up of BIST. The signal analyzer in the diagram is optional.

Figure 11. Pictorial Representation of the Internal BIST Set-up

6.2.1.3 Test Set-up

The intention of this set-up is to test CYP15G0101DXB in BIST mode.

Follow the procedure below for the test set-up.

1. Connect the clock input to the internal clock by placing a shunt across the XTAL_OUT on JT9.

2. Configure the JT7 pins using the following settings in Table 4 by adjusting their shunt position:.

Table 4. The Levels of Different Static Signals on JT7 for BIST Mode

Signal	Level	Signal	Level	Signal	Level
TXMODE0	LOW	SPDSEL	HIGH	FRAMCHAR	HIGH
TXMODE1	MID	SDASEL	LOW	DECMODE	HIGH
TXCKSEL	LOW	PARCTL	LOW	RXRATE	LOW
TXRATE	LOW	RXMODE	LOW	LPEN	HIGH
SCSEL	LOW	RXCKSEL	LOW	RFEN	HIGH
TXRST*	HIGH	RFMODE	MID	INSEL	HIGH

The values of the TXMODE[1:0] have been selected for TX Mode 3.

The FRAMECHAR value is HIGH to select K28.5 characters as the framing character.

RFMODE is set MID which means that the Cypress-mode multibyte framer is selected.

RFEN is HIGH which implies that the framer selected by the RFMODE is enabled.

Parity Generation is disabled as PARCTL is LOW.

LPEN is HIGH, which indicates that the internal loopback mode is enabled.

INSEL is HIGH, which means that the IN1+ are selected.

3. Ensure that RXLE, OELE and BISTLE are all pushed to LOW and all BOEs to HIGH. (SWT1 - Red dip switches)

4. Check that TRSTZ* is pushed to HIGH. (the right most button of the SWT1)

5. Adjust the power supply to 3.3V and 1 amps limit.

- 6. Apply power on the board.
- 7. Verify that the power supply LED (DT1) is on.

- 8. Toggle TRSTZ* to LOW for a short moment and toggle to HIGH again, which will reset the board.
- 9. Push RXLE and OELE HIGH and BISTLE to LOW
- 10.Enable necessary transmit and receive channels by keeping the corresponding BOEs HIGH as shown in *Table 5*. To perform BIST, enable all channels.

Table 5. Channel Enabling Controls

BOE Input	Output Controlled (OELE)	BIST Channel Enable (BISTLE)	Receive PLL Channel Enable (RXLE)
BOE[1]	OUT2±	Transmit	Х
BOE[0]	OUT1±	Receive	Receive

11. Push RXLE and OELE to LOW. The corresponding transmit and receive channels should be enabled at this point.

12.At this point, the RXLE, OELE, and BISTLE will be closed (pushed LOW). Now pull the BISTLE HIGH.

13. Then close (LOW) the corresponding BOEs switches for those channels in which BIST is desired. To perform BIST, all the BOEs must set to LOW now. Please refer to *Table 5* for details.

14.Push the BISTLE switch to LOW.

15. Verify that the LFI LED (DT2) for the corresponding channels are OFF while the power supply LED (DT1) is still on.

16. The board should already in BIST mode at this time. Verify the oscilloscope display on RXST1 matches with the waveform in *Figure 12*.

Figure 12. Signal on RXST1 when BIST is Successful

17. Verify that RXST2 is always at logic-0 to indicate that there is no BIST error. RXST2 pin is next to the RXST1 pin.

18. With the completion of the above, BIST is successful. The following steps are optional.

19. Check the Serial Out in the BIST mode by following the procedure below.

- Change LPEN to LOW on the JT7. Notice that the LFI LED will go ON.
- Connect a pair of serial outputs (SEROUTx1/SEROUTx1*) to the digital signal analyzer using SMA cable.
- Trigger the signal analyzer by connecting a jumper-to-SMA cable from TXCLKO on JT9 to the trigger input on the analyzer.
- Verify on the signal analyzer that the eye diagram looks as shown in *Figure 13*. Make sure that the eye width is equal to 1-bit period.

Figure 13. The Eye Diagram through the Signal Analyzer

6.2.2 BIST External Loopback Mode

6.2.2.1 Equipment Required

Equipment needed is the same as mentioned in Section 6.2.1.1 on page 15.

6.2.2.2 Test Set-up

Retain the initial set-up for the Internal BIST set-up as described in Section 6.2.1.3 and then follow the procedures below.

- 1. Before performing the test, loop a coaxial cable from INx1± to OUTx1± as shown in Figure 14.
- 2. Continue with the step 1 mentioned in Section 6.2.1.3.
- 3. Configure the JT32 pins using the same settings mentioned in step 2 of Section 6.2.1.3, except for the following change. Change LPEN from HIGH to LOW in *Table 4*.
- 4. Continue with all other subsequent steps in Section 6.2.1.3.

Figure 14. Coaxial Cable Connection for External BIST Mode

6.3 Parallel Data In – Parallel Data Out Mode

The intention of this set-up is to test CYP15G0101DXB in parallel-in and parallel-out mode for encoded and unencoded data.

6.3.1 Encoded Mode

6.3.1.1 Equipment Required

Equipment needed:

- CYP15G0101DXB evaluation board
- Instrument-grade power supply 1 Amp @ 3.3V
- Parallel Data Generator: DG2020 from Tektronix (settings will be provided by Cypress)
- · Logic Analyzer: TLA700 series from Tektronix or equivalent
- Multimeter.

Cable needed:

- Two SMA-to-SMA coaxial cables
- · Power supply cables
- DG2020 cables with right connectors
- · Logic Analyzer cables with right connectors.

6.3.1.2 Test Set-up

Follow the procedure below for the test set-up.

1. Load the file CYP15G0101_EVAL.PDA into the DG2020. If you are using your own data generator, use a similar waveform as shown in *Figure 15*.

Figure 15. Generated Clock, Data and Control Signal from DG2020

Note: The CYP15G0101_EVAL.PDA file will be included in the kit. The outputs of the DG2020 for this PDA file are mapped to POD-A bits 0–11. The outputs may need to be remapped for particular test set-ups. Consult the users manual for setting up the DG2020.

- 2. Connect the TXDATA lines, i.e., TXDATA[7:0] of the data generator to JT10 TXD[7:0] in the proper order. Connect TXCT0 on the data generator to TXCT0 on JT10 on the board.
- 3. Ground TXCT1 and TXOP on JT10 on the board by shunting them.
- 4. On the JT9 place shunts across
 - XTAL_EN (Pin 11 Pin 12): The on-board crystal clock will be disabled.
 - REFCLK (Pin 17 Pin 18): The clock input to JT12 will be used as the clock for the board.
- 5. Connect the REFCLK output of the DG2020 to the REFCLK input on the board (JT12).
- 6. Connect the Logic Analyzer TLA700 to read the following receive data lines on JT6, RXD[7:0] and RXST[2:0].
- 7. Connect a clock input of the logic analyzer to RXCLK on JT9. The clocking of the logic analyzer needs to set to external. On the TLA 700 series logic analyzer this is done in the "SETUP" window. After selecting external clocking press the "MORE" button to customize your clock's settings. The clock definition needs to be changed to the clock input that you are using.
- 8. Configure the shunts on JT7 as listed on Table 6.

Signal	Level	Signal	Level	Signal	Level
TXMODE0	LOW	SPDSEL	HIGH	FRAMCHAR	HIGH
TXMODE1	MID	SDASEL	LOW	DECMODE	HIGH
TXCKSEL	LOW	PARCTL	LOW	RXRATE	LOW
TXRATE	LOW	RXMODE	LOW	LPEN	HIGH
SCSEL	LOW	RXCKSEL	LOW	RFEN	HIGH
TXRST*	HIGH	RFMODE	MID	INSEL	HIGH

Table 6. The Levels of Static Signals on JT32 for Parallel In-Parallel Out Mode (Encoded)

The values of the TXMODE[1:0] have been selected for TX Mode 3.

The FRAMECHAR value is HIGH to select K28.5 characters as the framing character.

RFMODE is set MID which means that the Cypress-mode multibyte framer is selected.

RFEN is HIGH which implies that the framer selected by the RFMODE is enabled.

Parity Generation is disabled as PARCTL is LOW.

LPEN is HIGH, which indicates that the internal loopback mode is enabled.

INSEL is HIGH, which means that the IN1+ are selected.

9. Adjust the voltage and current limit of the power supply to 3.3V and 1 Amp respectively.

- 10.Apply power to the board. Adjust the voltage across the banana jacks for power supply on the board to 3.3V. Verify that the power LED is ON.
- 11. Toggle TRSTZ* to LOW for a short moment and toggle to HIGH again, which will reset the board.
- 12. Push RXLE and OELE HIGH, and BISTLE to LOW
- 13. Enable necessary transmit and receive channels by keeping the corresponding BOEs HIGH as shown in Table 5.
- 14.Start transmitting the data from the DG2020. The format of the clock and the data should be as shown in *Figure 15* as seen below. Make sure that the data is generated in repeat mode.

15. Press the RUN button on the logic analyzer TLA700. After it has acquired the data, stop the logic analyzer.

6.3.1.3 Result Verification

1. Compare the received data on the logic analyzer and the transmitted data from the DG2020. The data should be same as the transmitted data except for the cycle when TxCTC0 is 1, During this cycle the TXCT[1:0] signals tell the transmitter to ignore the parallel inputs and to send a K28.5 character. Thus in this cycle the receiver will output a K28.5 character, which is not what was presented at the transmitter.

6.3.2 Unencoded Mode (Parallel-In – Parallel-Out)

6.3.2.1 Equipment Required

Equipment Needed is same as mentioned in Section 6.3.1.1 on page 19.

6.3.2.2 Test Set-up

Retain the test set-up as described in Section 6.3.1.2 on page 19. Now make the following changes to the set-up.

1. The shunts on JT7 should be placed in the following manner. The highlighted texts show the changes made to *Table 6* on page 20.

Signal	Level	Signal	Level	Signal	Level
TXMODE0	LOW	SPDSEL	HIGH	FRAMCHAR	HIGH
TXMODE1	LOW	SDASEL	LOW	DECMODE	LOW
TXCKSEL	LOW	PARCTL	LOW	RXRATE	LOW
TXRATE	LOW	RXMODE	LOW	LPEN	HIGH
SCSEL	LOW	RXCKSEL	MID	RFEN	HIGH
TXRST*	HIGH	RFMODE	MID	INSEL	HIGH

Table 7. The Levels of Static Signals on JT32 for Parallel In-Parallel Out Mode (Unencoded)

The change of TXMODE[1] to LOW implies that the encoder is bypassed, i.e., the data now will be 10-bit instead of eight bits, or the data is considered as pre-encoded. The DECMODE is now LOW, which implies that the decoder is bypassed.

2. The output registers are assigned in a different sequence when the DECMODE is LOW, i.e., when the decoder is bypassed, than when the DECMODE is not equal to LOW. *Table 8* shows the sequence in which the bits are arranged from LSB to MSB.

Table 8. Output Register Bit Assignments

Signal Name	DECMODE = LOW	DECMODE = MID or HIGH
RXST[2]	COMDET	RXST[2]
RXST[1]	DOUT[0]	RXST[1]
RXST[0]	DOUT[1]	RXST[0]
RXD[0]	DOUT[2]	RXD[0]
RXD[1]	DOUT[3]	RXD[1]
RXD[2]	DOUT[4]	RXD[2]
RXD[3]	DOUT[5]	RXD[3]
RXD[4]	DOUT[6]	RXD[4]
RXD[5]	DOUT[7]	RXD[5]
RXD[6]	DOUT[8]	RXD[6]
RXD[7]	DOUT[9]	RXD[7]

Note that when DECMODE is LOW, i.e,. the decoder is bypassed, the signal RXST[1] corresponds to the LSB of the 10-bit data. This is unlike when the decoder is not bypassed, and the signal RXD[0] corresponds to the LSB of the 8-bit data.

Similarly, when the DECMODE is LOW, the signal RXD[7] corresponds to the MSB of the 10-bit data. When the decoder is not bypassed, RXD[7] is the MSB of the 8-bit data.

This warrants the change in the way the data is viewed in the logic analyzer. The connector for the logic analyzer on the board needs to be reversed in order to see the right data that is being received and therefore, can be compared with the transmit data.

The input register bit assignments for the 10-bit unencoded data is shown in *Table 9*. Note that TXD[0] corresponds to the LSB of the 10-bit value. TXCT[1] corresponds to the MSB of the 10-bit value.

Signal Name	Unencoded
TXD[0] (LSB)	DIN[0]
TXD[1]	DIN[1]
TXD[2]	DIN[2]
TXD[3]	DIN[3]
TXD[4]	DIN[4]
TXD[5]	DIN[5]
TXD[6]	DIN[6]
TXD[7]	DIN[7]
TXCT[0]	DIN[8]
TXCT[1] (MSB)	DIN[9]

The DG2020 data pattern provided by Cypress does not contain any framing patterns for the unencoded mode. In order for HOTLink to frame the data properly, two consecutive K28.5's need to be added to the DG2020 pattern.

This can be accomplished by extending the data pattern by two clock cycles. Add the two 10-bit K28-5 characters as shown in *Figure 16*.

Figure 16. Adding Two Framing Characters to Data Stream

6.3.2.3 Result Verification

Follow the verification steps as mentioned in Section 6.3.1.3 on page 20.

6.3.3 Operational Variations for Parallel-In–Parallel-Out Mode

6.3.3.1 Equipment Required

Equipment needed is the same as mentioned in Section 6.3.1.1 on page 19.

6.3.3.2 Test Set-up and Result Verification

Following are a few variations that can be worked out with the present settings.

1. Parallel In - Serial Out Mode

Changes to the set-up described in Section 6.3.1.2 on page 19:

- Change LPEN to LOW on the JT7.
- · Connect a pair of serial output to the digital signal analyzer using SMA cable.
- Trigger the signal analyzer by connecting a JT to SMA cable from TXCLKO on JT9 to the trigger input on the analyzer.
- Results Verification:
- Verify on the signal analyzer that the eye diagram looks perfect as in Figure 13 on page 18.
- 2. Different Clock Signal

The test set-up for using a TXCLK to latch the parallel data into the device instead of REFCLK, is similar to that of the parallel in parallel out mode described in *Section 6.3.1.2* on page 19. The following are some of the changes that need to be made.

a.Changing the transmit clock select.

- By changing TXCKSEL on JT7 to MID, parallel data can be latched into the input registers by using TXCLK instead
 of the reference clock. Please refer to Table 2: Description of Control Pins in JT7 on page 11 to locate TXCLK signals
 in the board. A clock should be connected to TXCLK input and this clock must have identical frequency to REFCLK.
- b.Once dataflow has started, move TXRST* jumper in JT7 from HIGH to LOW and then back to HIGH. This will reset the phase align buffer to absorb the phase differences between the TxCLK and REFCLK.

7. Schematic Diagram, PCB Layout, and Bill of Materials (BOM)

Figure 17 to *Figure 21* in Appendix A shows the schematic diagram of the CYP15G0101DXB-EVAL. *Figure 22* to *Figure 29* in Appendix B shows the PCB layout of each layer of the CYP15G0101DXB-EVAL. The Bill of Materials (BOM) of the evaluation board is listed in Appendix C in *Table 11*.

Table 10.Operation Specification of CYP15G0101DXB Eval Board

Description	Min.	Max.	Unit
Operating Voltage	3	3.3	V
Operating Current			А
Operating Temperature	0	70	°C

Appendix A. Schematic Diagram of CYP15G0101DXB Evaluation Board

Figure 17. CYP15G0101DXB-EVAL Top Level Schematics

Figure 18. CYP15G0101DXB-EVAL Terminated Transmitter & Receiver Blocks

Figure 19. CYP15G0101DXB-EVAL Terminated Control Signals Block

Figure 20. CYP15G0101DXB-EVAL Transmit and Receive Clock Schematics

Figure 21. CYP15G0101DXB-EVAL Input Power Schematics

Appendix B. PCB Layout for CYP15G0101DXB Evaluation Board

Figure 22. CYP15G0101DXB-EVAL Top Layout

Figure 23. CYP15G0101DXB-EVAL Bottom Layout

Figure 24. CYP15G0101DXB-EVAL Top Layer Silk Layout

Figure 25. CYP15G0101DXB-EVAL Bottom Layer Silk Layout

Figure 26. CYP15G0101DXB-EVAL Top Layer Solder Mask Layout

Figure 27. CYP15G0101DXB-EVAL Bottom Layer Solder Mask Layout

Figure 28. CYP15G0101DXB-EVAL Power Plane Layout

Figure 29. CYP15G0101DXB-EVAL Ground Plane Layout

Appendix C. Bill Of Materials (BOM) CYP15G0101DXB Evaluation Board

Table 11.CYP15G0101DXB Eval Board Bill Of Materials

Part Name	Ref Des	Manufacturer	MAN_PN	Qty
CAP1UF	CB1,CB2,CB5, CB6,CB7,CB8, CB9,CT1,CT6, CT7,CT8,CT9, CT10,CT11	Vishay	VJ0805Y104KXJAT	14
CAP-SMDC0805V-2400PF	CT2,CT3,CT4, CT5	DIELECTRIC LABORATO- RIES	C08BLBB1X5UX	4
CAPPOL-10UF	CB3,CB4,CB10	VISHAY	293D106X9010C2T	3
CLK_HCMOS-LCC197X295P4	UB1	Connor Winfield	HSM923-125.00MHZ	1
CYP15G0101DXB_BGA100	UT1	CYPRESS	CYP15G0101DXB	1
ECONORESET_SOT23	QT1	DALLAS	DS1818R-10	1
ETHR1G_OXCVR-MSA_SFP	XT1	STRATOS LIGHTWAVE	437-001	1
HEADER10-HDR100STR2X5	JT11	DIGIKEY	MHB10K-ND	1
HEADER26-HDR100STR2X13	JT5,JT6,JT9,JT10	DIGIKEY	S2011-13-ND	4
HEADER3X18-HDR100STR	JT7	DIGIKEY	S2011-18-ND	1
SHUNT		DIGIKEY	929955-06	25
INDUCTOR-10UH	LB1,LB2	VISHAY	ILBB-0805 80 25%	2
JACK-BASE-CONJBANANA	JT8,JT13	DIGIKEY	J147-ND	2
LED-N/A	DT1,DT2	DIGIKEY	67-1316-ND	2
RES0402-0	RT51,RT52,RT57	VISHAY	CRCW0402000RT2	3
RES0402-100	RB5,RB9,RB12, RB15,RB17,RT1, RT2,RT5,RT9, RT12,RT14,RT15, RT18,RT20,RT25, RT29,RT30,RT31, RT34,RT35,RT36, RT39,RT41,RT44, RT48,RT58,RT61, RT70,RT71,RT82, RT83	VISHAY	CRCW04021000FB02	31
RES0402-1M	RT8,RT13,RT19, RT23, RT24,RT26	VISHAY	CRCW0402106JRT2	6
RES0402-267	RB13,RB14,RB18, RT6,RT7,RT16, RT17,RT27,RT28, RT37,RT38,RT45, RT46,RT47,RT54, RT56,RT59,RT60, RT63,RT65,RT67, RT69,RT73,RT75, RT77,RT79,RT81	VISHAY	CRCW04022670FB02	27
RES0402-365	RB10,RB11,RB16, RT3,RT4,RT10, RT11,RT21,RT22, RT32,RT33,RT40, RT42,RT43,RT49, RT50,RT53,RT55, RT62,RT64,RT66, RT68,RT72,RT74, RT76,RT78,RT80	VISHAY	CRCW04023650FB02	27
RES0402-4.7K	RB1-RB4,RB6-RB8	VISHAY	CRCW0402472JRT2	7
RES0402-390	RT84-RT87	VISHAY	CRCW0402391JRT2	4

Table 11.CYP15G0101DXB Eval Board Bill Of Materials (continued)

Part Name	Ref Des	Manufacturer	MAN_PN	Qty
SMA_THRU-SMA_TH_VERT	JT1-JT4,JT12,JT14	DIGIKEY	ARFX1231-ND	6
SWITCH_DIP8	SWT1	GRAYHILL	76SB08S	1
ZENER-5.1V	DT3	DIGIKEY	1N4733ADICT-ND	1

ESCON is a registered trademark of IBM. HOTLink is a registered trademark and HOTLink II and MultiFrame are trademarks of Cypress. All product and company names mentioned in this document may be the trademarks of their respective holders. UG001_B approved kkv 08/12/03

© Cypress Semiconductor Corporation, 2001. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.